Skip to main content
. 2021 Jan 25:1–16. Online ahead of print. doi: 10.1007/s12559-020-09785-7

Table 8.

Comparison of the results with state of the art DL networks with CT images

Reference Methods Accuracy (%) Sensitivity (%) Specificity (%) F1 score (%) PPV (%) NPV (%)
[8] ResNet-50 - 90 96 - - -
[12] CGAN 82.91 - - - - -
[18] Ensemble CNN 86 - - 86.7 - -
[19] CNN-Resnet-18 86.7 - - - - -
[22] CNN-Ensemble - - - 92.2 -
[24] DL 90.8 84 93 - - -
[27] CNN - 98.2 92.2 - - -
[38] CNN 94.98 94.06 95.47 - - -
[39] CNN-Resnet-50 - 93 - - - -
Proposed Optimized GAN based InceptionV3 99.22 99.78 97.78 98.79 97.82 99.77