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Abstract: Mechanical response of textile-reinforced aerated concrete sandwich panels was inves-
tigated using instrumented three-point bending tests under quasi-static and low-velocity impact
loads. Two types of core material were compared in the sandwich composite consisting of plain
autoclaved aerated concrete (AAC) and fiber-reinforced aerated concrete (FRAC), and the stress skins
were alkali-resistant glass (ARG) and textile reinforced concrete (TRC). The textile-reinforced layer
promoted distributed cracking mechanisms and resulted in significant improvement in the flexural
strength and ductility. Digital Image Correlation (DIC) was used to study the distributed cracking
mechanism and obtain impact force-crack width response at different drop heights. A constitutive
material model was also developed based on a multi-linear tension/compression strain hardening
model for the stress-skin and an elastic, perfectly plastic compression model for the core. A detailed
parametric study was used to address the effect of model parameters on the flexural response. The
model was further applied to simulate the experimental flexural data from the static and impact tests
on the plain aerated concrete and sandwich composite beams.

Keywords: aerated concrete; textile reinforced concrete; sandwich composite; impact; digital image
correlation; moment-curvature; flexural modeling

1. Introduction

Precast concrete sandwich panels have been used in the construction industry in
North America for more than 60 years, since their thermal characteristics reduce the energy
consumption of buildings due to heating and cooling [1]. A comparative evaluation of
the embodied energy data of lightweight concrete with normal weight concrete, wood, or
brick construction could result in 40–70% energy reduction during the entire life cycle [2].
Other positive attributes such as fire resistance, flexibility in shape, casting with precise
dimension, and ability to span large vertical spaces between supports encourages the
utilization of sandwich construction compared to other standard options such as wood,
light-gauge steel, and exterior wall panels [1,3,4].

Aerated concrete (AC) uses a mixture of portland cement, high volume fly ash, quick
lime, gypsum, water, and an expansive agent such as aluminum paste [3]. During the
production process, a well-defined pore system is entrapped by the addition of metallic
powders such as Al, Zn, or other gas forming agents [4]. The chemical reaction between
aluminum paste and calcium hydroxide generates hydrogen gas, which forms a highly
porous structure with a dry density of 400–800 kg/m3 and compressive strength values
of 2–6 MPa for aerated concrete products [5]. Curing AC under pressure in an autoclave
chamber prevents water movement and limits drying shrinkage [6]. Thermal conductivity
and heat capacity describes the ability of heat to flow or be stored, respectively [7]. Thermal
conductivity is in the range of 0.07–0.11 W/m◦C, which is an order of magnitude lower
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than normal-weight concrete [8]. A mix design methodology to optimize thermal and
mechanical properties by Yu et al. [9] showed that the structural efficiency defined as
the ratio of compressive strength and density is not sufficient to compare different AC
mixtures. This means that individual compressive strength or density are unable to indicate
the thermal conductivity and efficiency. The experiments showed that finer lightweight
aggregates (LWA) are more homogeneously distributed in the matrix than coarse LWA,
which reduces the thermal conductivity. The properties of AC with high porosity, low
permeability, and homogeneous aggregate distribution in the matrix are desirable [9,10].
AC products are primarily processed through an autoclaving industrial production to make
Aerated Autoclaved Concrete (AAC). The hardened structure has a general ratio of 2.5:1.0
air-pores to micro-pores [11], which results in an 80% porosity discontinuous pore system.

Cellular structures exhibit considerable ductility and residual strength in post-peak
compression [10]. The high ductility in compression is associated with pore crushing, but
the ductility does not translate to enhanced flexural and tensile strength properties. There-
fore, structural applications are limited to block construction [3]. Autoclaving provides
higher strength due to the homogenization of the reaction products and reduces shrinkage
potential when compared to moist curing [6].

In order to enhance the ductility in flexural and tensile response, about 0.5% by volume
of short polypropylene fibers may be added to AC ingredients and normal curing used
instead of autoclaving to make Fiber Reinforced Aerated Concrete (FRAC) [12]. FRAC
exhibits lower compressive strength and higher variability than AAC, comparable thermal
properties, and a flexural toughness as much as two orders of magnitude higher [3,13].
The short fibers affect the initiation, growth, and bridging of cracks due to mechanical,
shrinkage, or impact stresses and are suitable core materials for sandwich composites [14].
The crack bridging of the fibers allows for the ductility based design using an elastic–
quasi plastic approach for the core of sandwich composites [15]. Moreover, high ductility
in the core can ensure full composite action with the shear transfer between two skin
layers [16,17].

A sandwich panel with a ductile or brittle AAC core has potential applications for
wall and roof elements by allowing higher flexural capacity, and longer span elements.
Textile reinforced concrete (TRC) materials have been used for skin elements of sandwich
composites by several researchers [16,18–21]. The skin is primarily involved in strength,
stiffness, and load-carrying capacity, whereas the core acts as a thermal barrier and carries
shear stresses. Utilization of TRC as a skin improves the panel surface characteristics and
reduces the dead load, while its tensile strength and stiffness improves the overall system
strength [19,22]. The high durability and aesthetic of external finishing [22,23] are also
potential features that made TRC sandwich panels competitive.

Modeling of sandwich composites requires predictive tools for the design of structural
elements [18,19]. Cuypers et al. [20] studied the behavior of sandwich panels with TRC
faces using ANSYS finite element analysis [21]. TRC skin elements were used with IPC
(inorganic phosphate cement) composites. The ACK model [24,25] was used for the behav-
ior of the skin and the nonlinear behavior of the panels was compared with experimental
observations. Djamai et. al. [26] studied the response of sandwich TRC composites using
the ABAQUS finite element method. The textile–concrete bond was tested and modeled
using the existing pull-out test results of the bond–slip law, which were then used to
produce a multiscale numerical model based on matrix cracking and yarn pull-out damage
parameters. Two approaches accounted for the mechanical behavior of a textile-reinforced
concrete sandwich panel under a four-point bending test: a macroscopic finite element
approach, which considers the composite TRC with a tri-linear stress–strain relation, as
well as a multiscale 3D finite element approach, which uses a cohesive-friction bond–slip
law evaluated as traction–separation law proposed by Turon et al. [27]. Wu and Wan [28]
studied glass fiber reinforced polymer (GFRP) face sheets with foam core sandwich pan-
els under low-velocity impact and compression after impact (CAI) tests. Fam et al. [29]
developed a flexural model for sandwich panels of polyurethane foam core and glass



Materials 2021, 14, 390 3 of 23

fiber-reinforced polymer (GFRP) skins. Using equilibrium, strain compatibility, and both
material and geometrical nonlinearity, their model incorporated various failure criteria of
core shear, flexural tension and compression failure, compression skin crushing or wrin-
kling, and tensile rupture of skin. Nominal stresses at layer-by-layer were integrated over
the cross-sectional area of the GFRP skins and the polyurethane foam core. These complex
models necessitate the need for the development of closed-form solutions, since multiple
phases of core and skin complicate the number of design variables, in terms of geometry
and material parameters. In an area where numerical solutions of several parameters are
the primary choice with so many interactive parameters and failure modes, the use of
closed-form solutions for the design of sandwich panels is attractive.

In this paper, a closed-form solution model is developed using skin and core constitu-
tive relationships to obtain the flexural load-deflection response of sandwich composites.
Calibration of the model using experimental results allows for the extraction of material
properties at various impact energy levels. The experiments consist of the flexural tests in
quasi-static and low-velocity impact modes on sandwich composites with FRAC and AAC
as core elements and TRC with alkali-resistant glass (ARG) textile as the skin element. The
behavior of the beam specimens with different cross-sections and varying drop heights
were tested and modes of failure were reported by Bonakdar et al. and Dey et al. [3,30].
The experimental results were evaluated using Digital Image Correlation (DIC) to further
investigate the damage mechanisms, crack initiation, and propagation in the sandwich
composites. By establishing crack length, location, and width measurements as a function
of impact load, the modes of failure were studied. A multi-parameter constitutive model
for the flexural moment–curvature relationship was developed using a series of interactive
response zones constituting a combination of elastic, hardening, and softening for both
tension and compression response of each of the phases. A permutation of failure mode
interactions depending on the strain capacity and ductility of each phase is used to fit the
experimental curves. This approach produced a predictive tool used as a basis of design
and optimization for structural applications. Furthermore, a proper understanding of
flexural response of sandwich panels helps the planning, design, and mobilization such
as lifting and stacking to make sure that panels are able to maintain the performance
characteristics during their service life.

2. Materials and Methods
2.1. Sample Preparation

AAC mixes were manufactured by using 18% Portland cement, 27% silica, 8% lime
stone and gypsum, and 9% class F flyash. On the other hand, FRAC mixes was manufac-
tured with 28% cement and 42% fly ash. Some 0.5% short PP fibers with a length of 12 mm
were added to FRAC core in order to activate the ductility. Water content used in AAC
was 38% and 28% in FRAC. It should be noted that mixture contents presented here are
in percentage by weight. Static mechanical test results of the two core types are listed in
Figure 1 tested by closed-loop displacement control [3]. The compressive strength values
for the AAC and FRAC are 5.6 and 3.1 MPa, respectively, the higher strength of the AAC is
attributed to the autoclave process, while FRAC was cured under room temperature. The
toughness of FRAC at a displacement of 15 mm was reported to be 19 Nm [3]. This value is
more than 60 times the toughness of AAC, and such a high difference is attributed to the
effect of short polymeric fibers in FRAC.

Sandwich specimens were prepared in this study with AR glass TRC skins bonded to
FRAC and AAC core panels. The skin layer of the sandwich composite used two layers
of bonded AR glass textiles with a perpendicular set of warp and weft yarns glued at the
junction points. In the absence of fibers in the core element, TRC-AAC can be characterized
as a ductile skin-brittle core system, whereas TRC-FRAC can be considered as a ductile
skin-ductile core system. Schematics of the assembly process of the different components
of the sandwich members are shown in Figure 2a,b. The density of the textile in both warp
and weft directions was four yarns per centimeter with 400 filaments of 13.5 µm in diameter.
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This resulted in an average fiber bundle of 0.27 mm in diameter with a tensile strength
in the range of 1270–2450 MPa and modulus of elasticity about 78 MPa [31]. A blended
cementitious paste with solids constituting 75% Portland cement (Type I/II) and 25% fly
ash (class F) content was used as the binder for the TRC skin with a water/cementitious
solids ratio of 0.15 and high range water reducing admixture of 0.2% by weight of the
solids. During the casting of the sandwich specimens, equal portions of freshly mixed
cement paste were placed layer-wise on the aerated concrete core with layers of AR-Glass
textile placed in between them. Two layers of TRC were placed at the top and bottom
face of the core sandwich composites were initially prepared with nominal dimensions
of 300 × 300 mm in length and width using two different depths, 50 and 100 mm, as
shown in Figure 2b. Using a mechanical press, compacting pressure was applied to the
laminated surface to improve the interfacial bonding of samples before they were cured
in a temperature and humidity-controlled chamber for 28 days at 23 ◦C with 95% RH.
The beams were cut to the designated size by a water-cooled diamond blade saw with
dimensions summarized in Table 1.
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Table 1. Sandwich composite groups. (A) and (B) refer to specimen size designation

Designation Skin Core Material Dimensions, mm

TRC-FRAC 2-ARG FRAC
(A) 50 × 50 × 250
(B) 50 × 100× 250

TRC-AAC 2-ARG AAC
(A) 50 × 50 × 250
(B) 50 × 100 × 250

2.2. Static and Impact Tests

Three-point bending static tests were performed using a servo-hydraulic MTS under
closed-loop conditions using the mid-span deflection control at the rate of 1.3 mm/min.
The impact test set-up shown in Figure 3 is based on the free-fall of an instrumented
hammer weighing 134 N on a specimen under three-point bending with a support span
of 200 mm [32]. The hammer’s force is measured by strain-gage based load-cell of 90 kN
capacity mounted behind the blunt shaped impact head. The initial force on the load cell
was zeroed to account for the dead weight of the hammer. A linear variable differential
transformer (LVDT) with a range of ±2.5 mm was connected to the tension zone utilizing
a lever arm. A MATLAB code was developed for processing and interpretation of load,
acceleration, and deflection. Time history data for the impact load, deflection, acceleration,
and high-speed camera images were collected and analyzed.
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2.3. Digital Image Correlation (DIC) Measurement

Digital Image Correlation (DIC) developed by Sutton et al. [33] and Bruck et al. [34] is
an accurate non-contact optical deformation tool used in a wide range of stress analysis
applications. DIC is used to measure the deformation and strain distributions in cementi-
tious materials under static, high speed, and impact tests by various researchers [35,36]. A
specimen with a speckled pattern is photographed using a high-resolution camera during
its load-deformation impact event. A high-speed camera captures the impact event using a
frequency of 3000 fps. A subset of pixels in the speckle pattern is used as an area of interest
(AOI), and the position of the same pixels in the reference image and deformed images
are tracked to calculate their corresponding translation using a cross-correlation function.
This computation results in displacement and deformation; moreover, cracks are defined
as discontinuities in the strain field, and their widths are measured by the software [37,38].
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3. Results
3.1. Static Tests

Typical load-deflection trends from static tests and damage mechanisms of TRC-AAC
and TRC-FRAC are shown in Figure 4a–d [13]. The load-deformation response shows three
dominant zones starting with the linear–elastic behavior (Zone I). This stage is based on
the iso-strain elastic response of the two phases of core and the skin and terminates by the
formation of the first crack designated as the limit of proportionality (LOP). In Zone II, the
nonlinear response is due to the formation of multiple cracks in both skin and core and
terminates when the cracking is saturated. Finally, in Zone III, the response is characterized
by damage localization, as the diagonal tension failure is observed in the core. There are
two cases that may occur with brittle and ductile core materials. In TRC-AAC, brittle core,
a shear dominated response, was observed as presented by softening deflection. Due to
the presence of polypropylene fiber reinforcement in the Ductile TRC-FRAC, it was able to
prevent premature shear failure in the core and exhibited strain hardening in zone III, as
shown in Figure 4b, and tensile stiffening in skin face. The damage mechanism in these
sandwich composites cannot be explained by a single mode of failure, but the dominant
failure modes can be identified. The details of failure mechanisms are presented in the
previous by Dey et al. [13] and the follow up sections.
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The addition of TRC layers to the core significantly increased the toughness by a
factor of 22 and 18 in TRC-AAC 50 × 50 and TRC-AAC 50 × 100, respectively. These
measurements were compared to the plain AAC cores at deflection limit of 5 mm. The
drastic increase in toughness in the case of TRC-AAC can be explained by the fact that the
delamination of ARG stress skin was delayed due to multiple cracking in the core, while
the use of fibers converted the brittle core to a ductile composite. Toughness of TRC-FRAC
50× 50 and TRC-FRAC 50× 100 increased by a factor 12 and 2, with respect to plain FRAC
core [3]. It can be seen in Figure 4b that plain FRAC 50 × 50 shows deflection softening
response after LOP, but FRAC 50 × 100 demonstrates a significant increase in the flexural
load capacity and deflection hardening behavior, as observed in Figure 4d. The moderate
toughness improvement in sandwich composites with FRAC core can be explained by
the different failure mechanisms that are in effect. As mentioned earlier, shear failure is
the governing failure mode for FRAC 50 × 50. It can be speculated that additional TRC
skin layers in TRC-FRAC 50 × 50, which can prevent the composite from premature shear
failure. The small span to depth ratio of FRAC 50 × 100 is enough to prevent shear failure
and promotes crack bridging mechanism, thus enhancing energy absorption [14].

3.2. Comparison of Deflection Measurement with DIC Approach

Figure 5 shows the time–history curve of the midspan deflection of sandwich compos-
ite (TRC-AAC-B) specimen tested using a kinetic energy of 10.4 and 20.9 J corresponding to
75 and 150 mm drop height. Results from both the DIC analysis and the measurement by
the LVDT are shown. The deflection signal by LVDT is lagging behind the impact force in
the ascending response. There are also differences in the ascending and descending rates
and maximum value between the deflections obtained by the LVDT and DIC methods.
This is attributed to the frequency response of the conditioning system, which may be
unable to capture the initial ascending rate and cracking; therefore, stiffness measurements
may not be accurate from the LVDT signals.
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Three main parameters explain the observed differences between the measurements
in terms of the frequency response of time and amplitude lag by (a) high-frequency signals,
(b) spurious deformations associated with the mechanical measurement of the displace-
ment, and (c) relative vs. global nature of displacement measurement. The DIC based
deformation is relative to the local deformation, while the LVDT deformation records the
overall specimen deformation and the supports and thus includes the rigid body motion.
The deflection obtained by the DIC method is considered more accurate than the LVDT
and is therefore used for further analysis in Section 4.
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The TRC skin increases the dynamic capacity several folds, as shown in Figure 6. The
response of plain core is compared with sandwich composites at two depths of Type A
(50 mm) and Type B (100 mm) with 150 mm drop height, respectively. The TRC layers
facilitate the formation of multiple cracking and shear cracks and thus increase the load
capacity due to the increases in section depth between the type A and B specimens. The
response of the plain AAC core is quite brittle with little or no recorded deflection. However,
sandwich composites show large deformations due to multiple cracking, delamination, and
shear cracks. Size effect is observed between the two samples as the depth of the section is
increased. Type A specimens show a steady state resistance at around 1500 N, whereas, in
Type B samples, the load plateau increases up to 2500 N, representing an increase of 67%
compared to the plain samples of similar size. The ductility of sandwich composites is at
least two orders of magnitude higher.
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3.3. Impact Process Analysis

Figure 7a shows the representative time history of force and deflection response of
TRC-FRAC sandwich composite under impact loading with four stages of deformation.
Stage I is the linear elastic range up to the limit of proportionality (LOP) represented by
point A in Figure 7a. In this stage, the deformation increases slowly as the contact is
made and then rapidly into a linear response. In stage II, multiple cracks form in the
tension TRC skin, and the bridging effect of the microfiber in the core element results in the
hardening response as the force increases to the ultimate point (B). Stage III is characterized
by damage localization at point (C) as the deflection increases in the softening range due
to propagation and widening of cracks. Stage IV is due to the lack of failure in the textile
as rebound occurs by the release of elastic energy stored in the TRC skin as referred to
by point D. Alternatively, one can observe for several specimens the formation of shear
cracks and their propagation. This case occurs when the kinetic energy of the hammer
sufficiently exceeds specimens ductility, resulting in a flexural crack through both phases.
The post-impact stage V is characterized by total failure, and free vibration is observed.
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3.4. Dynamic Response

The impact force-deflection response of sandwich composites for different heights
is shown in Figure 8. The responses are similar for the TRC-ACC-B and TRC-FRAC-B
specimens at each energy level. The dynamic flexural strength is calculated using the beam
flexure equations [39] with the mean and standard deviation of three replicate samples
presented in Table 2. Toughness values are calculated by the area under the impact force-
deflection curve. Compared to TRC-AAC-B beams, the effect of drop height on the dynamic
flexural strength and toughness is more significant for the TRC-FRAC-B beams, as the
dynamic flexural strength and toughness increases from 2.3–3.9 MPa and 4.51–20.65 J with
an increase in drop height from 75–300 mm, respectively. When the drop height is 300 mm,
the dynamic flexural strength of the TRC-FRAC-B beam increases up to 3.9 (±0.7) MPa,
which is 11.4% than TRC-AAC-B beams. Similarly, toughness for TRC-FRAC-B beams is
20.65 (±1.06) J, which is 7.2% greater than TRC-ACC-B beams.
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Table 2. Results of flexural impact tests on sandwich composite beams.

ID
Drop

Height
Potential

Energy [39]
Strain

Rate [39]
Max Impact

Force
Flexural
Strength

Deflection at
Max Force

Max
Deflection Toughness

mm J sec−1 N MPa mm mm J

TRC-AAC-A
75 10.4 5 1690 7.2 1.52 12.8 8.77
150 20.9 1 2117 9.3 3.96 14.42 25.82

TRC-FRAC-A
75 10.4 0.6 1946 8.1 1.12 9.89 9.75
150 20.9 18 1653 6.7 0.77 19.3 16.95

TRC-AAC-B
75 10.4 0.1 2363 2.5 1.88 1.90 3.22
150 20.9 0.7 3213 3.7 3.86 4.05 8.26
300 41.8 3.1 3112 3.5 5.20 7.85 19.3

TRC-FRAC-B
75 10.4 0.2 2137 2.3 1.03 2.52 4.51
150 20.9 0.5 2886 3.2 3.15 3.27 6.87
300 41.8 3.0 3442 3.9 6.05 8.02 20.6

Figure 9 shows the impact force-crack width response of sandwich composites. The
high-speed camera captures the midspan zone of the specimen, which fails by the diagonal
tension. Note that the shear crack width near the bottom of the specimen could not be
obtained by the DIC, and the ultimate crack width may be larger than the reported values.
For samples tested with the drop heights of 75 and 150 mm, the main flexural crack occurs
near the center of the span with the maximum crack width less than 0.5 mm. With the
drop height at 300 mm, shear cracks dominate the response, and the dominant crack is
near the specimen support. The crack opening due to shear is sufficiently large due to the
delamination of the TRC skin and core-skin debonding.
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3.5. Failure Modes

The failure modes and cracking patterns for both types of sandwich composites at
300 mm drop height are compared in Figure 10. The shear failure mode dominates the
sandwich response in high energy events with the diagonal tension cracks connecting the
impact point and the supports. Local crush zones near the loading point and support as
well as the interlaminar cracks between the core and skin are also observed. The tension
TRC skin shows saturated lateral cracks and spalling regions. While there is debonding
between the textile and matrix, rupture of textile yarns is not observed. Compared to TRC-
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ACC, the width and length of cracks of TRC-FRAC specimens are larger, and TRC-FRAC
specimens show more flexural and shear cracks due to the bridging effect of the fibers in
the core section of TRC-FRAC specimens. Failure modes are identified as fiber debonding
and pullout, compression failure, delamination, flexural and shear cracks, cracks, and
crushing at the support. These are labeled in Figure 10a,b with Roman numerals as specific
modes of (I) compression failure and delamination, (II) intermediate crack, (III) shear crack,
(IV) debonding, (V) flexural cracks, (VI) crushing at the support, (VII) delamination, (VIII)
debonding and pullout.
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4. Flexural Modeling of Sandwich Response
4.1. Idealized Constitutive Relations of Core and Skin and Stress Distributions

The multi-linear parameterized tension and compression models for TRC and AC
are shown in Figure 11. The properties are defined by a single term, the first crack tensile
strength of the core as σcr = εcrE, that is defined by two intrinsic parameters of the first
crack tensile strain and elastic Young’s modulus (εcr, E) as shown in Figure 11a. To use
a minimum number of variables, every other parameter is defined as normalized non-
dimensional variables through a series of control points defined as following: the applied
strain at the tensile fiber interface is defined as the only independent variable in the model
represented as β defined as ε = β εcr such that elastic range is defined as 0 ≤ β ≤ 1 and
post cracking as β > 1. After cracking in the tensile domain, a constant residual strength
defined by σult = µσcr is used, with µ < 1 representing the non-dimensional residual
tensile strength. The limit of tensile strains is defined with the variable εult = βultεcr
where 1 ≤ βult ≤ ∞. The following non-dimensional parameters with the exception of
tensile core strength (σcr, εcr, E) will be defined as: the first subscript of each parameter
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corresponds to the type of the stress (tensile (t) or compressive (c)), the second subscript to
the domain (core (c), or skin (s)), and the third subscript to the stress/strain regime (1, 2
or ultimate(ult)).
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sions of the core as “b”, and “h” and skin thickness parameterized using variable “ρ“ as 
“ρh”. The composite interface between skin and core is assumed to be sufficiently strong 
in shear [16,17]. Assuming that the section has a linearized strain distribution along with 
the depth as shown in Figure 12b, the location of the neutral axis is “kh”, where k repre-
sents a non-dimensional depth. Piecewise linear properties of core and skin materials as 
elastic-hardening or perfectly plastic [41] in both tension and compression, as shown in 
Figure 11, are used. The internal force and moment can be computed as a function of k 
using the integration of forces and couples in non-dimensional terms: 

Figure 11. Constitutive models (a) and (b) elastic–perfectly plastic in tension and compression core (c) and (d) bilinear
tension and elastic–perfectly plastic compression skin model.

The core compression stress–strain is defined through the normalized variables for
stiffness and compressive strength of core as γcc and ωcc,1 and defined as Ecc = γccE,
εcc,1 = ωcc,1εcr, and σcc,ult = ωcc,1γccσcr, as shown in Figure 11b. A similar approach
is adopted for representing the parametric tension and compression properties of skin
sections. It is assumed that skin and core are perfectly bonded and no delamination is
present with a uniform strain at the interface of skin and core. Furthermore, it is assumed
that due to the small thickness, the state of stress in the skin is uniform and constant.
The skin parameters are defined as multilinear strain hardening for both tension and
compression, as shown in Figure 11c,d. Tensile stiffness and strains are defined as follows.
First cracking strain in tension is defined as εts,1 = βts,1εcr, followed by the characteristic
damage state [40] defined at strain εts,2 = βts,2εcr and terminated at εts,ult = βts,ultεcr.
Compressive skin strain is εcs,1 = ωcs ,1εcr and terminated at εcs,ult = ωcs,ultεcr. The skin
elastic modulus is Ets = γtsE and Ecs = γcsE, and the reduction in the skin stiffness after
first cracking is ηts,1 and ηts,2 for tension and ηcs,1 for compression, which is positive for
strain hardening and negative for strain softening.

The normalized stress–strain model for core and skin are listed next. Core materials
compression and tension constitutive response are defined as a function of normalized
strain, β.

σcc(β)

Eεcr
=

{
γccβ 0 ≤ β ≤ ωcc,1

γccωcc,1 ωcc,1 < β ≤ ωult

σtc(β)

Eεcr
=

{
β 0 ≤ β ≤ 1 (k = 1

2 )
µ 1 < β ≤ βtc,ult

(1)
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Skin material’s compression and tension constitutive responses are:

σcs(β)
Eεcr

=

{
γcsβ 0 ≤ β ≤ ωcs,1

ωcs,1γcs + ηcs,1γcs(β−ωcs,1) ωcs,1 < β ≤ ωcs ,ult

σts(β)
Eεcr

=


γtsβ 0 ≤ β ≤ βts,1

βts,1γts + ηts,1γts(β− βts,1) βts,1 < β ≤ βts,2

βts,1γts + ηts,1γts(βts,2 − βts,1 ) + ηts,2γts(β− βts,2) βts,2 < β ≤ βts,ult

(2)

The cross-sectional geometry of the sandwich is shown in Figure 12a with the dimensions
of the core as “b”, and “h” and skin thickness parameterized using variable “ρ“ as “ρh”.
The composite interface between skin and core is assumed to be sufficiently strong in
shear [16,17]. Assuming that the section has a linearized strain distribution along with the
depth as shown in Figure 12b, the location of the neutral axis is “kh”, where k represents a
non-dimensional depth. Piecewise linear properties of core and skin materials as elastic-
hardening or perfectly plastic [41] in both tension and compression, as shown in Figure 11,
are used. The internal force and moment can be computed as a function of k using the
integration of forces and couples in non-dimensional terms:

F =
∫
A

σdA = b
h/2∫
−h/2

σ(y)dy M =
∫
A

σydA = b
h/2∫
−h/2

σ(y)ydy (3)

By expressing stress as piecewise linear, the force and moment components are ob-
tained as quadratic and cubic functions, respectively. Location of the neutral axis, k, is
obtained by solving the quadratic equation of equilibrium of internal forces as earlier work
and used in the calculation of the resultant moment.
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4.2. Moment–Curvature Response of the Sandwich Sections

The sandwich composite response is based on the perfect bonding between the
isotropic core and skin. To generate the moment–curvature relationship in closed form, the
equilibrium, compatibility, and constitutive laws are integrated. The tensile and compres-
sive strain distributions in core and skin are expressed in multi-linear terms of maximum
tensile strain β as shown in Figure 13 and integrated across the depth to obtain the equilib-
rium of internal force. Integration of piecewise linear stress terms involves the computation
of areas of triangles, rectangles, and trapezoidal segments and results in closed-form so-
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lutions to quadratic equations for the position of neutral axis for any given tensile strain
β [42]. The curvature and moment obtained for each strain measure, β is:

φ =
βεcr

(1− k)h
(4)
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Figure 13. Strain–strain block at different stages with uniform stress in the skin.

The combination of various modes of stress distribution depends on the input param-
eters that define the linear segments. The Mi and φi at each stage are obtained for each
strain 0 < β ≤ βtu and expressed by the normalized parameters m′i, and φ′i and cracking
terms Mcr and φcr. For each mode imposed, a different moment–curvature response is
obtained, and the interaction of these responses from different zones are controlled by
the variable limits as shown in Figure 14. Full derivations for the moment, curvature and
neutral axis Mi, φi, and ki as defined in Equation (5) as a function of the material properties
are presented in Pleesudjai [42].

Mi = m′i Mcr; and φi = φ′iφcr
Mcr =

1
6 bh2Eεcr; and φcr =

2εcr
h0

; (5)

Two available approaches for calculation of the load-deflection response include
moment–area method and a closed-form solution using a simplified linearized tri-linear
model [43–45]. The first approach was used by integrating the moment–curvature distribu-
tion over the length of the beam to obtain the rotation and deflection. Multiple cracking
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requires one to use localization zone, Lp, in the flexural deflection calculations and the
specimen depth was used for this parameter [36].
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4.3. Parameter Estimation From Experimental Data

Test results on the tensile and compressive stress–strain response of AAC and FRAC
from Bonakdar et al. [3] were used. The constitutive responses were linearized and shown
in Figure 15a,b, respectively. TRC skin material properties were obtained from [27,34], as
illustrated in Figure 16. The ratio of compressive to tensile strength is quite large to the
order of γccωcc,1 = 28–52; hence, the response in flexure is dominated by tensile strength and
shear. For the compressive response, a simplified bilinear model tends to fit the ultimate
strength, and the plastic range can be overestimated, since the compression ductility is
irrelevant, since even if it is treated as a brittle failure and pore crushing ignored, little
difference in the simulation will be observed. AAC is treated as a brittle material with a
similar elastic modulus as FRAC in tension, and residual tensile strength µ = 0 for AAC
while µ = 1 is used for FRAC. The flexural failure is by the ultimate tensile strength of
skin and core and occurs before reaching a plastic compressive response. The normalized
parameters for the reference study are listed in Table 3 for core and skin elements. The
shear effects are however not considered since the formulation would be different [46,47].
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Table 3. A normalized parameters for simulation of tensile and compressive response. b normalized parameters for
simulation of tensile and compressive response of Skin for ARG-TRC.

a

Core E MPa εcr µε µ βult γcc ωcc,1

AAC 108 1040 0 30 64 0.8
FRAC 108 1040 1 30 48 0.6

b

γts βts,1 βts,2 βts,ult ηts,1 ηts,2 γcs ωcs,1 ηcs,1

17 1.2 1.2 24 1 0.46 17 1.2 0.46

Ets
MPa

εts,1
µε

εts,2
µε

εts,ult µε
Ets,1
MPa

Ets,2
MPa

Ecs
MPa

Ecs,1
µε

Ecs,1
MPa

1885 1264 1264 25,000 1885 868 1885 1264 868

4.4. Model Validation with Experimental Sandwich Composites

Static flexural experimental data obtained from Dey et al. [30] were simulated using
the proposed model. The original testing program was focused on evaluating two primary
studies, the effect of core materials, TRC-FRAC vs TRC-AAC, as well as the effect of section
depth, 50 and 100 mm. To validate the numerical model, both TRC-FRAC and TRC-AAC
are simulated for both dimensions, and the efficiency of the sandwich enhancements
are compared with the plain core flexural specimens. Both sets of results are shown in
Figures 17 and 18. When the sandwich composite is considered, the material response
changes significantly with the change in thickness. The skin materials have a much higher
stiffness than the core by definition of parameters γts and γcs, and their ratio was around
17, as reported in Table 3. Hence, the skin carries a major part of the internal force while
the core resists the shear.

The effect of skin is shown after stage B in TRC-AAC (see Figure 17) and beyond the
flexural load of 500 N in TRC-FRAC (see Figure 18). The load-deflection response matches
the initial deflection region when the flexural cracks are dominant. For TRC-AAC, after
flexural load passes stage B, the core loses capacity. At this stage, the load transfer from the
composite to the skin layers is shown by gradual reduction of the load, while shear crack
propagation appears in DIC between stages B and C as shown in Figure 17. From stage
C to stage D, the specimen maintains equilibrium with increasing load as the skin is the
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primary carrier, and the bond results in successive stable cracks in the core. Additional
load results in cracks that coalesce, and at the stage from D to E, a diagonal tension crack
travels through the core depth leading to failure. TRC-FRAC specimens show a better
fit before point C, with dominant flexure deformations. The FRAC core seems to control
diagonal tension cracks better using the residual tensile strength as shown in Figure 15a.
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(50 × 100 × 200 mm), (b) DIC analysis on nominal longitudinal strain at various stages.

Crack distribution depends on the magnitude of tensile and bond stresses, as multiple
cracking in core materials demonstrate the function of the skin in distributing the forces
and nonuniform strain through the tensile layer. The crack width reduction due to the
reinforcing fibers in the core contributes to a more homogeneous strain distribution [36].
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The characteristic length for the average curvature in the localized zone is crack spacing
multiplied by the number of cracks Lp = nS [48]. Gradual crack formation and stiffness
reduction can be replicated using parameters for sequential crack formation.

Figures 18 and 19 show the relationship between the number of cracks and the stiff-
ness reduction in TRC-FRAC specimens. As multiple cracks form, the gradual stiffness
reduction is documented by successive curves, and the load-deflection response follows
the experimental data. The deviation of the flexural cracking model and the experiments
points to the ultimate failure by the diagonal tension cracking. The shear response can be
modeled by similar approaches; however, it is beyond the scope of the present work.
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4.5. Simulation of Flexural Impact Response

The present model can be used to address the response of sandwich composites
subjected to impact by changing the constitutive properties. The strain rate in the core and
skin is assumed to experience the same general response. However, major flexural cracks
along the depth were followed up to the point where delamination was observed; at that
point, due to the lack of shear strength failure criteria, the model is unable to switch over
and predict the shear failure.

Simulation of the response of TRC-AAC and TRC-FRAC under different hammer
drop heights is presented in Figures 20 and 21, respectively. The strain-rate sensitivity of
individual materials and their fracture energy in TRC-FRAC is higher than the TRC-AAC,
which is less strain-rate sensitive. One can define a dynamic increase factor (DIF) on both
unreinforced and reinforced matrices [49,50]. Additional simulations are needed to address
the strain-rate sensitivity of bond-strength between fiber-matrix and skin-core systems.
For DIF of plain concrete strength, it can be observed that tensile properties are the most
sensitive to the impact load. As a result, this simulation attempts to address the tensile
parameters, while keeping compressive and skin’s material properties in the same range as
static stimulation in Table 3.
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the proposed model with the experimental data for TRC-FRAC flexural impact.

To simulate impact response, components of piecewise linear variables were estimated
using the inverse analysis approach. Young’s modulus in both sandwich composite present
higher than the static test, ranging from 148 to 202 MPa, and cracking strain was observed
two times higher, at 2080 µε. For TRAC-FRAC, residual tensile strength remains within a
similar range of the static model at around 0.12 MPa. Moreover, the results show that peak
tensile strength in TRC-AAC slightly decreases by 9% with increased drop height, whereas
the peak tensile strength in TRC-FRAC increases by 9% and 17%, respectively. However,
the most sensitive factor in the simulation model is observed in the tensile toughness as
listed in Table 4. The tensile toughness in TRC-FRAC is around 230–500% of TRC-AAC at
the corresponding drop height.
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Table 4. Tensile parameters for impact testing.

Ref. Data
Tensile Parameters Maximum

Tensile
Strength (MPa)

Tensile
Toughness

(MPa × 10−3)E (MPa) εcr (µε) µ βtu

TRC-AAC

Drop height 75 mm 162 2080 0 24 0.34 3.2

Drop height 150 mm 148 2080 0 43 0.31 8.0

Drop height 300 mm 148 2080 0 63 0.31 10.0

TRC-FRAC

Drop height 75 mm 162 2080 0.33 30 0.33 15.8

Drop height 150 mm 175 2080 0.33 40 0.36 20.7

Drop height 300 mm 202 2080 0.33 50 0.42 29.8

5. Conclusions

Flexural experiments on textile-reinforced aerated concrete sandwich panels were
conducted under quasi-static and low-velocity impact loads. Plain and fiber-reinforced
aerated concrete were used as core and AR-glass textile concrete was used as the skin
element. Specimen responses were characterized as ductile skin with ductile and brittle
cores. A parametric model was proposed to simulate the contribution of the core and skin
phases. Closed-form moment–curvature relationship was obtained by the integration of
section equilibrium, strain compatibility, and piecewise linear constitutive law. The interac-
tion of the material properties in terms of strain capacity and stiffness of each phase were
addressed by a parametric model for the individual core and skin. The model was used
for the back-calculation of the tensile response in the core as a function of the drop height.
This approach allows parameter estimation as well as a standard procedure to analyze and
design sandwich composites. The key experimental findings are summarized below:

1. The addition of TRC layers significantly increased the toughness of AAC sandwich
panels by a factor of 22 and 18 for specimen depths of 50 and 100 mm, respectively, as
compared to plain AAC. At deflection limit of 5 mm, the toughness of TRC-FRAC
increased by a factor 12 and 2, for specimen depths of 50 and 100 mm, respectively,
when compared to plain FRAC specimens.

2. In high energy events, the shear failure mode dominated the sandwich response, with
the diagonal tension cracks defining the ultimate strength point. The tension TRC
skin carries a significant amount of load and provides the strength and ductility to the
composite. The damage mechanism of the sandwich composite is characterized by
saturated lateral cracks and localized spalling in the TRC skin, as well as debonding
between the textile and matrix layers within the skin.

3. Increase in drop height from 75–300 mm correlated with an increase in the dynamic
flexural strength and toughness, which increased from of 2–8 MPa and 4–21 J for
TRC-FRAC, respectively. Whereas for the similar range of drop height the increase
in flexural strength and toughness for TRC-AAC increase from 2–9 MPa and 3–26
J, respectively.

4. The simulation of flexural response by the proposed model correlated with the DIC
deflection measurements. The difference between the LVDT and DIC was due to three
main parameters: (a) frequency response of the signals, (b) spurious deformation of
the mechanical measurement of the displacement, and (c) differential displacement
by DIC vs. global displacement by LVDT.

5. The interaction of the material properties in terms of strain capacity and stiffness of
each phase can be addressed by the parametric model and used for the optimization
of the composite property.
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6. Simulation of the flexural response depends on the length of localization zone, which
is used to match the sequence of cracking obtained from the DIC analysis.

7. The shear failure criteria is an important aspect of the core failure mode.
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