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Abstract: Agro-byproducts can be utilized as effective and low-cost nutrient sources for microbial
fermentation to produce a variety of usable products. In this study, wheat bran powder (WBP)
was found to be the most effective carbon source for xylanase production by Streptomyces thermo-
carboxydus TKU045. The optimal media for xylanase production was 2% (w/v) WBP, 1.50% (w/v)
KNO3, 0.05% (w/v) MgSO4, and 0.10% (w/v) K2HPO4, and the optimal culture conditions were
50 mL (in a 250 mL-volume Erlenmeyer flask), initial pH 9.0, 37 ◦C, 125 rpm, and 48 h. Accordingly,
the highest xylanase activity was 6.393 ± 0.130 U/mL, 6.9-fold higher than that from un-optimized
conditions. S. thermocarboxydus TKU045 secreted at least four xylanases with the molecular weights
of >180, 36, 29, and 27 kDa when cultured on the WBP-containing medium. The enzyme cocktail
produced by S. thermocarboxydus TKU045 was optimally active over a broad range of temperature
and pH (40–70 ◦C and pH 5–8, respectively) and could hydrolyze birchwood xylan to produce
xylobiose as the major product. The obtained xylose oligosaccharide (XOS) were investigated for
2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and the growth effect of lactic acid bacteria.
Finally, the solid waste from the WBP fermentation using S. thermocarboxydus TKU045 revealed the
high adsorption of Congo red, Red 7, and Methyl blue. Thus, S. thermocarboxydus TKU045 could be a
potential strain to utilize wheat bran to produce xylanases for XOS preparation and dye adsorbent.

Keywords: agro-byproducts; dye adsorption; antioxidant; prebiotic; Streptomyces thermocarboxydus;
xylanase; xylo-oligosaccharide

1. Introduction

Hemicellulose, cellulose, and lignin are the three major types of polymers that compose
the plant cell-wall [1,2]. The reserve of hemicellulose is extremely abundant, only after
cellulose in the plant biomass. One of the primary components of hemicellulose is xylan,
a polysaccharide that comprises β-1,4-linked xylose units with side chains of α-glucuronic
acids and α-arabinofuranose [3]. Thus, the complete depolymerization of hemicellulose
may require the contribution of xylan-degrading enzymes such as endo-xylanase, exo-
xylanase, feruloyl xylan esterase, α-glucuronidase, arabinase, acetyl xylan esterase, and
α-L-arabinofuranosidase [4,5]. Among them, endo-xylanase, and exo-xylanase are the most
important contributors to xylan depolymerization. Until now, vast applications of xylanase
have been extensively explored based on its ability in xylan degradation, for example,
biofuels production [6–8], pulp and paper bleaching [9–11], bioactive compounds [12–14],
animal feed [15,16], and baking [17–19].

Microorganisms, such as bacteria [20–23], actinomycetes [24,25], and fungi [26–29]
are the primary sources for xylanase production. Among these, xylanases are produced by
various strains of Streptomyces [30–38]. However, many of those studies used commercial
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xylan as the carbon source for xylanase production [32–36]. As a result, the high price
of commercial xylan may increase the cost of enzyme production and thus limit the ap-
plications of xylanase. This issue can be solved to some extent by using cheap nutrient
sources as the alternative for the fermentation processes [39]. Among cheap materials,
by-products are cheaper and abundant in supply, therefore, are preferred as potential
sources for microbial fermentation. Accordingly, various kinds of byproducts, which con-
tain a significant amount of proteins and carbohydrates, have been used as carbon and
nitrogen sources for microbial fermentation to produce several bioactive compounds, in-
cluding enzymes [40–48]. Some of the agro-byproducts that could give a high-efficiency in
xylanase production via microbial fermentation include wheat bran, rice bran, rice straw,
sugarcane bagasse, sawdust, and wheat husk [39,49]. This leads to the idea of using agro-
byproducts as economically effective nutritional supplements for the synthesis of xylanase
by Streptomyces strains.

In this study, wheat bran powder (WBP), an inexpensive agro-byproduct was utilized
as the sole carbon source to produce xylanases by S. thermocarboxydus TKU045. This strain
produced at least four xylanases on medium which contains wheat bran. Further, the con-
ditions for xylanase production via S. thermocarboxydus TKU045 were explored and the
enzyme cocktail obtained from those conditions was characterized. To determine the
potential use, the xylan hydrolysate obtained from the hydrolysis of birchwood xylan
using the enzyme cocktail was evaluated for 2,2-diphenyl-1-picrylhydrazyl (DPPH) rad-
ical scavenging activity and the effect on lactic acid bacterial growth. Finally, the dye
adsorption ability was examined from the solid waste from the WBP fermentation using
S. thermocarboxydus TKU045.

2. Materials and Methods

2.1. Materials

S. thermocarboxydus TKU045 was isolated and described in the previous study [50]. Wheat
bran and rice bran were collected from Miaoli (Miaoli City, Taiwan). Nutrient broth (NB)
and DeMan, Rogosa, and Sharpe broth (MRS) were obtained from Himedia (Mumbai, India).
Birchwood xylan and xylose were purchased from Sigma Chemical Corporation (P.O. Box
14508, Saint Louis, MO, USA). Xylobiose (CAS 6860-47-5) and xylopentaose (cat. no. OXPE)
were purchased from TCI, Toshima, Kita-Ku, Tokyo, Japan, and Megazyme, respectively.
Xylotriose (TRC-X750405) and xylotetrose (TRC-X750410) were obtained from Toronto Research
Chemicals (TRC), Canada. Lactobacillus rhamnosus BCRC 16000, Bifidobacterium bifidum BCRC
14615, L. paracasei subsp. paracasei BCRC 14023, and L. rhamnosus BCRC 10940, were obtained
from the Bioresource Collection and Research Center (Hsinchu, Taiwan). All other chemicals
were of the highest possible quality.

2.2. Xylanase Assay

Xylanase activity was performed by the dinitrosalicylic acid (DNS) method [51] with
some modifications. In short, the mixture of the sample (50 µL) and 1% (w/v) birchwood
xylan solution (200 µL) in phosphate buffer (50 mM, pH 7) was incubated at 37 ◦C for
30 min allowing depolymerization of xylan. The reaction was stopped by adding 1500 µL
DNS reagent and then the mixture was heated at 100 ◦C for 10 min allowing the color-
forming reaction. The intensity of red-brown color was measured at 515 nm on a microplate
reader to estimate the concentration of reducing sugar in the reaction system. One xylanase
unit was defined as the amount of enzyme needed for the liberation of one µM of reducing
sugar (xylose) in one minute.

2.3. Agro-Byproducts as the Sole Carbon Source for Xylanase Production

A basic medium with 0.05% (w/v) MgSO4, and 0.10% (w/v) K2HPO4 [52] was used
to investigate the optimum carbon source for xylanase production by S. thermocarboxydus
TKU045. One percent (w/v) of each carbon source, including rice bran powder (RBP),
wheat bran powder (WBP), spent coffee grounds (SCG), coffee husk powder (CHP), xy-
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lan from birchwood, and carboxymethyl cellulose (CMC) were added separately to the
medium. The culture conditions were 37 ◦C, and 150 rpm and the xylanase activity of the
culture medium was estimated every day. The best carbon source was then investigated
for the optimum concentration for xylanase production. The effect of the concentration of
carbon source was investigated in a range of 0.25–3% (w/v).

2.4. Effects of Nitrogen Sources on Xylanase Production

The medium with 2% WBP, 0.05% (w/v) MgSO4, and 0.10% (w/v) K2HPO4 was used
to optimize the nitrogen source for xylanase production. Different nitrogenous materials
such as yeast extract, peptone, beef extract, KNO3, and NH4NO3 were supplemented to
the medium at the same concentration of 1% (w/v). The culture conditions were 37 ◦C,
and 150 rpm and the xylanase activity of the culture medium was estimated every day.
The best nitrogen source was then examined for the optimum concentration for xylanase
production. The effect of nitrogen source concentration was investigated in a range of
0–2% (w/v).

2.5. Effects of Culture Conditions on Xylanase Production

The WBP-containing medium was used to optimize the culture condition for the
xylanase production by S. thermocarboxydus TKU045. The medium included 2% WBP,
1% KNO3, 0.05% (w/v) MgSO4, and 0.10% (w/v) K2HPO4. The effect of the initial pH,
incubation temperature and shaking speed was examined in the range of pH 7–10, 30–50 ◦C,
and 0 rpm–175 rpm, respectively. The effect of culture medium was investigated in a range
of 50–150 mL in a 250 mL flask. After every one day, 1 mL of culture medium was
withdrawn to test the xylanase activity. Finally, all the optimum conditions were applied to
confirm the efficiency of the optimization process.

2.6. Determination of Molecular Weight (MW) of the Xylanases

The MW of xylanases was determined using the sodium dodecyl sulfate (SDS)-
polyacrylamide gel electrophoresis (PAGE) method [53] with some modifications. Briefly,
the 10% resolving gel was co-polymerized with 0.05% birchwood xylan (w/v). The culture
medium and crude enzyme samples were mixed with the sample buffer and then 5 µL
of each sample was loaded on the prepared gel and electrophoresis was conducted at
114 V, and 4 ◦C. Then, residual SDS was removed by washing the gel in 2% Triton X-100
(prepared in phosphate buffer, 50 mM, pH 7), and then in phosphate buffer alone. The xy-
lanolytic reaction was carried out by incubating the gel in phosphate buffer for 1 h at 37 ◦C.
The staining step was conducted by dipping the gel in 0.01% (w/v) Congo red solution for
30 min, and then the gel was washed by 1 M NaCl solution. The xylanase activity appeared
as a clear band against the red background of the gel.

2.7. Effects of Temperature and pH

The optimal temperature of the crude enzyme cocktail was explored by immedi-
ately incubating it with substrate solution at different temperatures (from 10 to 100 ◦C)
for 30 min. The thermal stability of the crude enzyme cocktail solution was explored by
pre-treating at different temperatures (10–100 ◦C) for 30 min and the residual xylanase
activity was measured. The optimal pH of the crude enzyme cocktail was determined by
adjusting the pH of the reaction solution. The buffer systems explored were citrate buffer
(pH 3–7), phosphate buffer (pH 6–8.5), and carbonate buffer (pH 8.5–11). The pre-treated
crude enzyme solution in different pH for 30 min at 4 ◦C, was then adjusted to pH 7
and its residual xylanase activity was measured to explore the pH stability of the crude
enzyme cocktail.

2.8. Effect of Divalent Metal Ions, Surfactants, and Ethylenediaminetetraacetic Acid (EDTA)

Five millimolar and 10 mM concentrations of divalent metal ions (Ba2+, Ca2+, Cu2+,
Fe2+, Mn2+, Mg2+, and Zn2+) were prepared, and the other chemicals such as EDTA,
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SDS, Tween 20, Tween 40, Triton X-100 and SDS were prepared at 5% and 10%. At first,
an equivalent volume of the crude enzyme cocktail and each of those chemicals were mixed
in a glass tube at 4 ◦C for 30 min and then the residual xylanase activities of the crude
enzyme cocktail were then measured by xylanase assay (as mentioned above).

2.9. Xylan Hydrolysis

The hydrolysis solutions of 1% (w/v) birchwood xylan with crude enzyme cocktail were
analyzed at 1:4 in ratio at 0, 0.5, 1, 2, 3, 4, 5, 6, and 22 h by thin-layer chromatography (TLC,
silica gel 60, F254, Aluminum TLC plate, Merck). The mixture of propanol/ammonia solu-
tion/water (7/1/2, v/v/v) was used as the mobile phase. Finally, the TLC plate was sprayed
with 10% H2SO4 in ethanol and heated at 180 ◦C [54]. A mixture of xylo-oligosaccharides
including of xylose (X1), xylobiose (X2), xylotriose (X3), xylotetraose (X4), and xylopentose
(X5) were used as the standard.

2.10. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity Assay

DPPH radical scavenging activity assay was carried out according to an earlier pub-
lished report [55].

2.11. Growth Effect Assay

The effect of xylose oligosaccharide (XOS) was checked on the growth of L. rham-
nosus BCRC 16000, B. bifidum BCRC 14615, L. paracasei subsp. paracasei BCRC 14023,
and L. rhamnosus BCRC 10940. XOS was added to MRS medium at different concentra-
tions (0.01%, 0.05%, and 0.10%, w/v). The bacterial strains were grown at 37 ◦C for 24 h.
For B. bifidum BCRC 14615, 0.05% (w/v) cysteine was added to the medium, and the culture
was carried out in anaerobic mode. To measure the relative growth cell of the bacteria on
MRS culture containing XOS, A600 nm of the culture MRS medium was used as the control.

2.12. Dye Adsorption Assay

The dye adsorption ability of solid waste obtained from the WBP fermentation by
S. thermocarboxydus TKU045 was investigated using ten dyes, including Red 6, Yellow 4,
Red 40, Red 7, Green 3, Yellow 5, Blue 1, Blue 2, Congo red, and Methyl blue. The mixture
of 100 mg of adsorbent and 5 mL of dye solution (0.02%, w/v) was shaken for 60 min,
and then the color intensity of the final solution was measured by a spectrophotometer.
The adsorption rate (%) was calculated by using the formula:

Adsorption rate (%) = (AC − AS)/AC

where AC is the absorbance of the control solution (original dye solution), and AS is the
absorbance of the experimental group.

2.13. The Fourier-Transform Infrared Spectroscopy (FTIR) Analysis

FTIR spectra of unloaded and loaded dye samples were measured in the presence
of KBr over the range of 4000–400 cm−1 on Nicolet iS5 FTIR spectrophotometer (Thermo,
Waltham, MA, USA) [56].

2.14. Statistical Analysis

For the statistical analysis of the results, the data on the experiments were analyzed
by Microsoft Excel 2016.

3. Results and Discussion

3.1. Agro-Byproducts as the Sole Carbon Source for the Xylanase Production

Various carbon sources were investigated for the preparation of an optimum culture
medium for the production of xylanase by S. thermocarboxydus TKU045. These included
RBP, WBP, SCG, CHP, birchwood xylan, and CMC. As shown in Figure 1a, the highest
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xylanase activity was observed in the culture supernatant using xylan or WBP as the carbon
source (0.952 ± 0.088 U/mL and 0.975 ± 0.085U/mL, respectively) followed by using CHP
(0.788 ± 0.047 U/mL) on the 5th day. In contrast, much lower xylanase activity was
detected when CMC, RBP, and SCG were used as carbon sources. Xylan is known to be the
most effective carbon source for the synthesis of xylanase by Streptomyces [32–36,38,57–59].
However, the high price of xylan may be a deterrent to its use in the production of xylanase.
Therefore, the utilization of agro-byproducts can be an effective alternative. Accordingly,
various substances have been indicated in the literature as suitable carbon sources for
producing xylanase, such as rice bran [37], wheat bran [60–62], rice straw [33], and sugar
cane bagasse [49]. In this study, WBP exhibited the highest enzyme activity among the
tested byproducts and was thus chosen as the most suitable carbon source for xylanase
production by S. thermocarboxydus TKU045.
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Figure 1. Screening of the carbon source (a) and amount of wheat bran powder (WBP) (b) for the production of xylanase by
Streptomyces thermocarboxydus TKU045.

To examine the effect of WBP concentration on the production of xylanase, the amount
of WBP in the medium was adjusted in a range of 0.25–3% (w/v). As shown in Figure 1b,
WBP at 2% was the most effective (2.288 ± 0.198 U/mL) in the production of xylanase,
followed by 1.50% and 1% concentration (1.972 ± 0.003 U/mL, and 1.249 ± 0.021 U/mL
respectively) on the 5th day. A lower xylanase activity was detected using WBP at other
concentrations (0.25%, 0.50%, 2.50%, and 3%). Thus, the optimum carbon source used for
xylanase production by S. thermocarboxydus TKU045 was 2% (w/v) WBP.

3.2. Effects of Nitrogen Source on Xylanase Production

Different nitrogen sources such as yeast extract, peptone, beef extract, KNO3, and NH4NO3
were supplemented to the WBP-containing medium to assess the suitable nitrogen source for
xylanase production by S. thermocarboxydus TKU045. Besides, NB medium supplemented with
2% WBP was also used in this investigation. Interestingly, only KNO3 showed a positive effect
on xylanase production, whereas all other nitrogen sources had a negative impact (Figure 2a).
The highest xylanase activity was observed on the 4th day using KNO3 as the nitrogen source
(4.271 ± 0.131 U/mg). This result was 2.34-folds higher than the xylanase activity of liquid
supernatant of the control group (1.820 ± 0.211 U/mL) on the 5th day. Also, the cultivation
time to achieve the maximum xylanase productivity using KNO3 was shorter (4 days) than
that of other nitrogen sources. Chi et al. (2013) reported that the best xylanase production for
S. thermocarboxydus MW8 was observed using soytone as the nitrogen source [32]. However,
Sinjaroonsak et al. (2019) found that yeast extract was the most suitable nitrogen source for
xylanase production by S. thermocoprophilus TC13W [63].
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The effect of KNO3 concentration on the xylanase production was studied by adding
0–2% KNO3 into the WBP-containing medium. As shown in Figure 2b, the maximal xylanase
activity of medium with KNO3 at 0%, 0.50%, 1%, 1.50%, and 2% was 1.840± 0.013 U/mL
(day 5), 4.251± 0.206 U/mL (day 4), 4.300± 0.357 U/mL (day 4), 4.476± 0.393 U/mL (day 4),
5.563± 0.137 (day 3), and 5.037± 0.045 U/mL (day 4), respectively. This result indicates that
KNO3 at 1.50% concentration was the most suitable for xylanase production by S. thermocar-
boxydus TKU045.

3.3. Effects of Culture Conditions on Xylanase Production

The effect of initial pH on xylanase production was studied by adjusting the pH of
WBP containing medium to pH 7, 8, 9, and 10. The medium without pH adjustment
(at pH 7.4) was also studied. As shown in Figure 3a, the highest xylanase activity was
observed on the 4th day at 4.765 ± 0.185 U/mL (pH 7), 4.884 ± 0.290 U/mL (pH 7.4),
5.190 ± 0.326 U/mL (pH 8), 5.785 ± 0.252 U/mL (pH 9), and 5.710 ± 0.133 U/mL (pH 10).
An increase in the initial pH of the medium seemed to promote more xylanase production.
At pH 9 and 10, the maximum xylanase activity of medium was significantly higher than
that at pH 7 and 7.4. However, the maximum enzyme activity of medium at pH 8 was
not significantly different than that at other pH values. This indicated that xylanase is
produced media over a wide range of pH (pH 7–10). The optimum pH of the medium for
xylanase production was different from that of other Streptomyces strains. Some reports
indicated that the optimum pH for the xylanase production was pH 8–9 using strains
including Streptomyces sp. RCK-2010 [60], S. cyaneus SN32 [62], and S. griseorubens LH-
3 [64]. In contrast, other strains like Streptomyces sp. B6 [35], S. thermocarboxydus MW8 [32],
S. olivaceoviridis E-86 [58], and S. rameus L2001 could produce xylanase at optimum levels
in the range of pH 6–7.2 [65].



Polymers 2021, 13, 287 7 of 18
Polymers 2021, 13, x FOR PEER REVIEW 7 of 18 
 

 

  
(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 3. Effects of culture conditions, initial pH (a), temperature (b), shaking speed (c), culture 
medium (d), and incubation time (e) for xylanase production by S. thermocarboxydus TKU045. 

Temperature is one of the key factors that significantly impacts microbial growth and 
enzyme production. In this study, we investigated a temperature range of 30–50 °C for the 
optimal temperature for xylanase production by S. thermocarboxydus TKU045. This strain 

Figure 3. Effects of culture conditions, initial pH (a), temperature (b), shaking speed (c), culture medium (d), and incubation
time (e) for xylanase production by S. thermocarboxydus TKU045.

Temperature is one of the key factors that significantly impacts microbial growth and
enzyme production. In this study, we investigated a temperature range of 30–50 ◦C for the
optimal temperature for xylanase production by S. thermocarboxydus TKU045. This strain
gave the highest xylanase activity of 4.330 ± 0.114 U/mL at 37 ◦C (Figure 3b). Thus,
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37 ◦C was selected at the most suitable temperature for the xylanase production by
S. thermocarboxydus TKU045. Several studies have shown that an optimum temperature
≥ 40 ◦C for xylanase production by S. thermocarboxydus MW8 [32], Streptomyces sp. RCK-
2010 [60], S. cyaneus SN32 [62], S. thermovulgaris TISTR1948 [66], and S. variabilis MAB3 [67].
However, some Streptomyces strains such as Streptomyces spp. SKK1-8 (30 ◦C) [57], and
Streptomyces sp. P12-137 could also produce xylanase at a lower temperature (28 ◦C) [68].

The shaking speed of the fermentation flask plays an important role in microbial fer-
mentation as it involves oxygen dissolution and substance transfer in the culture medium.
As shown in Figure 3c, S. thermocarboxydus TKU045 exhibited the highest xylanase activity
at the shaking speed of 125 rpm (4.803 ± 0.099 U/mL), whereas a lower activity was
observed at higher or lower shaking speed. Too high shaking speed may cause higher shear
stress, resulting in the decline in enzyme production while too low shaking speed may cause
less homogenous mixing and low dissolved oxygen. Several studies have indicated im-
proved production of xylanase by Streptomyces at a higher shaking speed (140 rpm–200 rpm)
unlike that of S. thermocarboxydus TKU045 observed in this study [33,34,38,60,62–65].

The effect of medium volume on xylanase production was studied by adjusting
the volume of WBP containing medium to 50, 75, 100, 125 and 150 mL. As shown in
Figure 3d, the highest xylanase activity was observed on the 3rd day (5.934 ± 0.279 U/mL)
in 50 mL medium, and less activity was observed in 75 mL, and 100 mL medium on
the 4th day (5.189 ± 0.071, and 4.308 ± 0.075 U/mL, respectively), and in 125 mL and
150 mL medium on the 5th day (4.905 ± 0.0195, and 3.447 ± 0.253 U/mL, respectively).
Thus, 50 mL was selected as the optimum medium volume for xylanase production by
S. thermocarboxydus TKU045.

The optimum components of medium and culture conditions to obtain the highest
xylanase productivity by S. thermocarboxydus TKU045 were explored. The medium com-
ponents were 2% WBP, 1.50% KNO3, 0.05% MgSO4, and 0.10% K2HPO4, and the culture
conditions were 50/250 mL, pH 9.0, 37 ◦C, and 125 rpm. To evaluate the efficiency of the
optimization process, S. thermocarboxydus TKU045 was cultured at conditions before and
after optimization. The conditions before optimization included the medium components
(1% xylan, 0.05% MgSO4, and 0.10% K2HPO4), and culture conditions (100/250 mL, pH 8.0,
37 ◦C, 150 rpm). The time course of xylanase production by S. thermocarboxydus TKU045
in the conditions before and after optimization is shown in Figure 3e. The maximum
xylanase productivity of S. thermocarboxydus TKU045 was 6.393 ± 0.130 U/mL (at 48th h)
at the optimized conditions, and 0.932 ± 0.088 U/mL (at 120th h) in the original condi-
tion. The results indicated that S. thermocarboxydus TKU045 could increase the xylanase
productivity in the optimized conditions by 6.9-fold than that in the original conditions.
Moreover, the incubation time for maximum xylanase productivity was shortened from
5 days to about 48 h. To date, an optimal incubation time of 48 h has been reported for
only a few Streptomyces strains for xylanase production, (for example Streptomyces sp. RCK-
2010 [60], and S. cyaneus SN32 [62]), while many strains required a longer fermentation
period such as Streptomyces sp. SWU10 (3 days) [33], S. thermocarboxydus MW8 (4 days) [32],
S. matensis DW67 (5 days) [34], S. chartreusis L1105 (7 days) [38], and Streptomyces spp.
SKK1-8 (10 days) [57]. The longer fermentation period may increase the production cost,
therefore, a shorter fermentation is more advantageous. Besides, wheat bran is a cheap
and largely available agro-byproduct, suggesting that it is a suitable carbon source for
microbial fermentation processes on a larger scale. Taken together, the conversion of wheat
bran by S. thermocarboxydus TKU045 could be considered as a cheap and efficient way in
the xylanase production process.

3.4. Molecular Weight Determination of the Xylanases

To determine the expression pattern of the xylanases, the secretome of S. thermocarboxy-
dus TKU045 over WBP-containing medium was analyzed by SDS-PAGE containing 0.05%
xylan. As shown in Figure 4, at least four different xylanases with >180, 36, 29, and 27 kDa
of MW were observed indicating that TKU045 produced multiple xylanases into the culture



Polymers 2021, 13, 287 9 of 18

medium to effectively degrade the complex substance such as wheat bran. Interestingly,
(NH4)2SO4, a common chemical for enzyme concentration, could only precipitate the
29 and >180 kDa xylanases. The SDS-PAGE zymography result of the crude enzyme in
Figure 4 reveal only >180 and 29 kDa bands of xylanase activity, whereas 36 and 27 kDa
bands not present. The production of multiple xylanases has also been observed in several
Streptomyces strains for example Streptomyces sp. SWU10, Streptomyces sp. B-12-2, S. actuosus
A-151, Streptomyces sp. P12-137, and S. olivaceoviridis E-86 (Table 1). In general, the MW
of xylanase from Streptomyces strains is in the range of 15–50 kDa. Thus, the >180 kDa
xylanase produced by TKU045 in this study may be an exception. Furthermore, the MW of
TKU045 xylanases was remarkably different from that obtained from S. thermocarboxydus
HY-5 (43.962 Da) and S. thermocarboxydus MW8 (52 kDa). Therefore, these results might be
considered as a novel observation towards xylanase production from Streptomyces.
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Figure 4. SDS-PAGE zymography of the culture supernatant and crude enzyme after (NH4)2SO4

precipitation step. 1, Culture supernatant; 2, crude enzyme; M, protein markers. S. thermocarboxydus
TKU045 was cultured in the optimized medium at optimal conditions. Then, the culture medium
was centrifuged at 13,000 rpm to collect the culture supernatant.

Table 1. Production of xylanase by different Streptomyces strains.

Strain name Carbon and
Nitrogen Sources Culture Conditions MW of Xylanase(s) Ref.

S. thermocarboxydus
TKU045 2% WBP, and 1.50% KNO3

50/250 mL, pH 9.0, 37 ◦C,
125 rpm, 48 h

>180, 36, 29,
and 27 kDa this study

S. thermocarboxydus
HY-5 43.962 Da [31]

S. thermocarboxydus
MW8

1% soytone, 0.50%
birchwood xylan pH 7.0, 40 ◦C, 4 d 52 kDa [32]

Streptomyces sp. SWU10 1% ground rice straw, and
0.20% NaNO3

1/3 L, 37 ◦C, 200 rpm, 3 d 31 and 44 kDa [33]

S. matensis DW67
1.50% corncob xylan, 0.40%

yeast extract, and 0.80%
tryptone

50/250 mL, 30 ◦C,
150 rpm, and 5 d 21.2 kDa [34]

Streptomyces sp. B6 0.20% beechwood xylan,
and 0.02% peptone pH 7.2, 5–7 d 48 and 33 kDa [35]
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Table 1. Cont.

Strain name Carbon and
Nitrogen Sources Culture Conditions MW of Xylanase(s) Ref.

Streptomyces sp. B-12-2 1% oat spelt xylan 40.5, 36.2, 36.2, 26.4,
and 23.8 kDa [36]

S. actuosus A-151 5% rice bran 45, 30, 26, and 20 kDa [37]

S. chartreusis L1105
2.50% corncob xylan,
0.50% yeast extract,

and 1% tryptone

50/250 mL, pH 6, 40 ◦C,
140 rpm, and 7 d 34.2 kDa [38]

Streptomyces sp.
RCK-2010

2.50% wheat bran, 1.20%
(N2 equivalent) beef

extract, and 0.20% (N2
equivalent) peptone

pH 8.0, 40 ◦C,
200 rpm, 48 h [60]

Streptomyces sp. CS428 wheat bran 37 kDa [61]

Streptomyces spp.
SKK1-8

1% yeast extract, 10.30%
sucrose, and 0.50%
birchwood Xylan

30 ◦C, 140 rpm, and 10 d 15.21, 16.8,
and 13.8 kDa [57]

S. olivaceoviridis E-86 1.50% corncob xylan,
and 1.50% Tryptone

100/500 mL, pH 6.0,
30 ◦C, 140 rpm, and 5 d 23 and 47 kDa [58]

S. cyaneus SN32 3% wheat bran, and 1%
peptone

250 mL flask, 50 mL,
pH 9.0, 42 ◦C,
200 rpm, 48 h

20.5 kDa [62]

Streptomyces sp. S38 1% oat-spelleds xylan 24.5, 37.5, and 38 kDa [59]

Streptomyces sp.
P12-137

1% wheat bran, 1% KNO3,
and 0.50% xylose

50/250 mL, pH 7.2,
28 ◦C, and 120 h [68]

S. thermocoprophilus
TC13W

1% pretreated oil palm
empty fruit bunch, and

0.50% yeast extract

pH 6.5, 150 rpm,
40 ◦C, and 120 h [63]

S. variabilis MAB3 2% birchwood xylan pH 8.2, 46.5 ◦C, and 68 h 50 kDa [67]

S. thermovulgaris
TISTR1948

2.70% rice straw, and 0.56%
yeast extract

50/250 mL, pH 7.09,
50.01 ◦C, and 4 d 46.2 kDa [66,69]

S. rameus L2001 2.50% corncob xylan, and
0.50% yeast extract

50/250 mL, 140 rpm,
40 ◦C, pH 6, 7 d 21.1 kDa [65]

S. griseorubens LH-3 3% bagasse semi-cellulose,
and 3% yeast extract

50/250 mL, pH 8, 37 ◦C,
160 rpm, and 96 h 45.5 kDa [64]

3.5. Biochemical Characterization of Crude Enzyme Cocktail

The optimum temperature and pH of S. thermocarboxydus TKU045′s crude enzyme
cocktail were determined using birchwood xylan as the substrate. The optimum tem-
perature range of the crude enzyme was determined to be between 40–70 ◦C (Figure 5a).
At temperatures beyond this range, the activity of the crude enzyme was significantly
lower than that of optimum temperatures. The crude enzyme was thermally stable up
to 60 ◦C, indicating that S. thermocarboxydus TKU045′s crude enzyme cocktail had high
thermo-activity and thermo-stability. Thermo-activity and -stability are the common fea-
tures of xylanases from Streptomyces. Liu et al. (2020) reported that two xylanases from
Streptomyces sp. B6, XynST10 and XynST11, have a high thermo-activity (60 ◦C, and 60–
90 ◦C, respectively) and thermo-stability (50 and 60 ◦C, respectively) [35]. The highest
xylanase activity of S. thermocarboxydus TKU045′s crude enzyme cocktail was measured
at pH 7 (in phosphate buffer). However, more than 80% of the enzyme activity was also
observed at pH 5, 6, and 8, indicating the activity of enzyme cocktail over a broad optimum
pH from pH 5–pH 8. Likewise, the enzyme cocktail was the most stable in the range of
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pH 5–pH 8 (Figure 5b). The broad optimal pH and pH stability may provide the enzyme
a greater ability to act at various pH conditions, as was observed in the enzyme cocktail
from S. thermocarboxydus TKU045.
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The effect of metal ions on the activity of S. thermocarboxydus TKU045′s crude enzyme
cocktail was also studied by adding the respective metal salts in the reaction mixture as
described in the method section. As shown in Figure 5c, there was no significant effect of all
the tested ion metals (Ba2+, Ca2+, Cu2+, Fe2+, Mn2+, Mg2+, and Zn2+) on the xylanase activity
of crude enzyme cocktail at 5 mM and 10 mM concentrations. In contrast, Ca2+, Cu2+, Fe2+,
Mn2+, Mg2+, and Zn2+ were reported to inhibit S. thermocarboxydus MW8 xylanase [32].
Likewise, Kim et al. (2010) reported that Cu2+ strongly inhibited S. thermocarboxydus HY-5
xylanase [31]. EDTA showed no apparent effects on the activity of S. thermocarboxydus
TKU045′s crude enzyme cocktail, indicating that the xylanases do not need metal ions as
the cofactor. Nonionic surfactants (Tween 20, Tween 40, and Triton X-100) did not show
any significant effect on the xylanase activity of crude enzyme cocktail at 5% and 10%
concentrations. However, SDS, an anionic surfactant strongly inhibited the enzyme activity.

The hydrolysis of xylan by S. thermocarboxydus TKU045 xylanases was analyzed by the
TLC method. As shown in Figure 5d, the products of the process could be observed after
30 min of the initiation of hydrolysis, which revealed the highest intensity of the band of
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xylose dimer, followed by the band of xylose trimer. This indicates that the enzymes rapidly
degrade xylan to release xylobiose and xylotriose. The occurrence of xylose oligomers
with DP ≥ 3 was attributed to endo-type xylanase, whereas the occurrence of xylobiose
was attributed to exo-type xylanase. Over time, the intensity of spots of xylose oligomers
with DP ≥ 3 decreased and the spot of xylose appeared from 1 h of the initiation of
hydrolysis. These results indicate that the cocktail of S. thermocarboxydus TKU045 xylanases
has the exo-type activity, which could degrade xylose oligosaccharides with DP ≥ 3 to
xylose and xylobiose [5]. Besides, the intensity of xylobiose did not deteriorate during the
reaction period, suggesting that the exo-type enzyme(s) of TKU045 xylanases could not
act on xylobiose to release xylose monomer. In short, a mixture of xylose oligosaccharides,
with DP = 2 as the main component, could be obtained from the xylan hydrolysis catalyzed
by the cocktail of S. thermocarboxydus TKU045 xylanases.

3.6. Antioxidant Activity and the Growth Effect on Lactic Acid Bacteria of Xylan Hydrolysate

Natural materials have recently been shown to be a very promising source of an-
tioxidants, for example, peptides [53], chitosan-oligosaccharides [70], polyphenols [71],
flavonoids [72], and others [71,72]. In the search for a potential antioxidant, XOS was
found to possess a good free radical scavenging capacity and thus could be considered as a
potential source [73]. In this study, the XOS obtained from the hydrolysis of birchwood
xylan with S. thermocarboxydus TKU045’s crude enzyme cocktail was studied by the DPPH
radical scavenging activity. As shown in Figure 6a, the DPPH radical activity of the XOS
was dose-dependent at 1 mg/mL–20 mg/mL of XOS and the maximum scavenging activity
was 87–91% at 20 mg/mL–50 mg/mL XOS. Huang et al. (2019) reported that XOS from
Moso bamboo prehydrolyzate could achieve 86% DPPH radical scavenging activity [74].
Likewise, the birchwood xylan XOS prepared by Bacillus amyloliquifaciens NRRL B-14393
xylanase exhibited the maximum DPPH radical scavenging activity of 87% [75]. However,
the DPPH radical scavenging activity of corncob XOSs prepared by B. aerophilus KGJ2
xylanase could only reach the maximum value of 74.2% [73].
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Figure 6. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical activity (a) and growth effect on Bifidobacterium bifidum BCRC 14615
(b) of xylo-oligosaccharide obtained from the hydrolysis of birchwood xylan with S. thermocarboxydus TKU045’s crude
enzyme cocktail.

XOSs have been described as a potential prebiotic and are gradually being widely
recognized. However, in several reports, XOS also show antimicrobial activity. In this
study, the growth effect of XOS from the hydrolysis of birchwood xylan with S. thermo-
carboxydus TKU045’s crude enzyme cocktail was examined on four lactic acid bacterial
strains, including B. bifidum BCRC 14615, L. rhamnosus BCRC 16000, L. rhamnosus BCRC
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10940, and L. paracasei subsp. paracasei BCRC 14023 at the concentration of 0.01–0.10% of
XOS. Notably, 0.10% XOS exhibited a growth-inhibiting effect (52%), and 0.01% XOS had a
growth-enhancing effect (115%) on B. bifidum BCRC 14615 (Figure 6b), indicating that the
growth effect of the XOS may depend on its concentration. In contrast to the prebiotic activ-
ity, the antibacterial activity of XOS has been rarely reported. Christakopoulos et al. (2002)
reported that acidic XOSs produced from birchwood xylan showed antimicrobial activity
against Staphylococcus aureus, B. cereus, Micrococcus flavus, Escherichia coli, and Helicobacter
pylori [76]. Likewise, Kallel et al. (2014) reported that XOS from garlic straw-extracted xylan
had high antimicrobial activity against Pseudomonas aeruginosa, B. thuringiensis, Enterococcus
faecalis, and Klebsiella pneumoniae [77]. In contrast, in the concentration range of 0.01–0.10%,
the XOS did not show a significant effect on the growth of L. rhamnosus BCRC 16000,
L. rhamnosus BCRC 10940, and L. paracasei subsp. paracasei BCRC 14023 (data not shown).
This indicates that the XOS obtained from the hydrolysis of birchwood xylan with S. thermo-
carboxydus TKU045’s crude enzyme cocktail showed the selective growth-enhancing effect
on a limited number of microbes such as Bifidobacterium. Similar results of the selectively
growth-enhancing effect of XOSs were reported in other studies [78–80].

3.7. Utilization of Solid Waste from the WBP Fermentation as a Dye Adsorbent

Solid waste (SW) obtained from the WBP fermentation contained residual WBP and
biomass of S. thermocarboxydus TKU045. The high dye adsorption efficiency of wheat
bran and Streptomyces biomass [81–84] inspired us to utilize the solid waste from the WBP
fermentation as a dye adsorbent. As shown in Figure 7a, SW showed the highest adsorption
rate of Congo red (89 ± 4%), Red 7 (88 ± 1%), and Methyl blue (88 ± 1%), whereas < 30%
of adsorption rate was observed for Red 6, Red 40, Green 3, Yellow 4, Yellow 5, Blue 1,
and Blue 2. Thus, SW holds great potential in removing Congo red, Red 7, and Methyl blue
from wastewater. As shown in Figure 7b, the maximum Congo red, Red 7, and Methyl
blue adsorption rates of SW were calculated to be 100%, 89%, and 100%, respectively.
Further by adding 200 mg of the adsorbent, the Red 7 adsorption rate of SW reached 94%
(data not shown). The FTIR spectrum profile reveals several peaks indicating that SW is
composed of numerous functional groups that potentially support its binding to the dye
(Figure 7c). SW exhibited a broad and strong absorption peak at 3400 cm−1, corresponding
to the associated hydroxyl and phenolic hydroxyl groups in the cellulose. The peaks at
2930 and 2850 cm−1 were attributed to C-H vibrations. The peak at 1740 cm−1 was a
carbonyl stretching vibration peak, probably due to the presence of hemicellulose, or lignin.
The peak at 1648 cm−1 was attributed to -NH stretching, whereas, the peak at 1550 cm−1

indicated C–N stretching. The peak at 1460 cm−1 indicated the presence of C–H bending,
and the peak at 1250 cm−1 was due to the C–O group. The broad peaks at 1160 cm−1 and
1050 cm−1 were assigned to C–O stretching from C–O–H and C–O–C bonds. The FTIR
spectrum profiles of dye-loaded SWs showed a similar pattern to that of the original SW
except for some slight changes in the intensity, suggesting that the adsorption mechanism
of SW belonged to physical adsorption. As such, this finding provides a potential use of
the waste from WBP fermentation as a low-cost and efficient sorbent.
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4. Conclusions

In this study, a medium containing WBP as the sole carbon source was optimized for
xylanase production by S. thermocarboxydus TKU045. From the WBP-containing medium,
four xylanases of MW > 180, 36, 29 and 27 kDa were explored. The enzyme cocktail ob-
tained by growing S. thermocarboxydus TKU045 on the optimal conditions was characterized.
The enzyme cocktail generated xylobiose as the primary product. The xylan hydrolysate
displayed DPPH radical scavenging activity and affected the growth of B. bifidum BCRC
14615. Finally, the solid waste from the WBP fermentation revealed the dye adsorption
ability on Congo red, Red 7, and Methyl blue. Therefore, WBP fermentation by S. thermo-
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carboxydus TKU045 may have potential applications in food, medicinal, and wastewater
treatment. Furthermore, purification and characterization of xylanolytic enzymes from
S. thermocarboxudus TKU045 will be further investigated.
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