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a b s t r a c t 

As of June 02, 2020. The number of people infected with COVID-19 virus in Brazil was about 529,405, 

the number of death is 30046, the number of recovered is 211080, and the number is subject to increase. 

This is due to the delay by a number of countries in general, and Brazil in particular, in taking preven- 

tive and proactive measures to limit the spread of the COVID-19 pandemic. So, we propose to study an 

optimal control approach with delay in state and control variables in our mathematical model proposed 

by kouidere et al. which describes the dynamics of the transmission of the COVID-19. That the time with 

delay represent the delay to applying preventive precautions measures. Pontryagin’s maximum principle 

is used to characterize the optimal controls and the optimality system is solved by an iterative method. 

Finally, some numerical simulations are performed to verify the theoretical analysis using MATLAB. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

On December 31, 2019, the Chinese authorities announced a 

angerous virus outbreak in the Chinese city of Wuhan. The virus 

as temporarily called the novel Coronavirus nCoV-19, then the In- 

ernational Virus Classification Committee named it (SARS-CoV-2) 

19,20] . This virus belongs to Corona viruses COVID-19 that infect 

he human respiratory system from seasonal colds. The danger of 

he novel Coronavirus 2019 lies in the fact that the infected person 

oes not show symptoms of the disease in the incubation period, 

hich ranges from two days to 14 days. The person then shows 

ild symptoms such as sneezing, a slight rise in temperature, then 

evere fatigue, a dangerous rise in temperature, difficulty breath- 

ng, and failure to breathe that leads to death, especially if the per- 

on suffers from a chronic disease such as diabetes, cancer, or HIV 

isease. 

According to the World Health Organization [1–3] . The novel 

oronavirus COVID-19 belongs to the strains of Coronaviruses, 
∗ Corresponding author. 
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hich are transmitted from animals to humans and between hu- 

ans. The most prominent of these is the SARS virus [21] , which 

lso appeared for the first time in China and infected about 8098 

eople and caused the death of 774 people. The source of this 

irus was bats. Another virus of this strain is the Middle East Syn- 

rome virus (MERS) [4–7] , which infected about 2498 people and 

esulted in the death of 858 people. The source of this virus was 

amels. 

Compared to the rest of the Coronaviruses, COVID-19 virus is 

onsidered the most dangerous and the fastest in spread. Up to 

une 02, 2020, this virus caused about 6,400,055 infected cases, 

78,069 deaths and 2,930,682 recovered cases. Following this huge 

pread around the world [13,14,24] . The WHO declared a state of 

mergency. 

Globally, the number of infected people. In USA, about the 

nfected individuals reached 1,859,772 and the deaths reached 

06929. In Brazil, 529,405 people were infected and 30,046 died. 

n Russia, about 423,741 people were infected and 5037 died. Ac- 

ording to the last stats declared on June 02, 2020. The epidemic 

as moved from China to Europe and to USA and now to South 

merica, which has become the main epidemic area according to 

he World Health Organization. 

https://doi.org/10.1016/j.chaos.2020.110438
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110438&domain=pdf
mailto:kouidere89@gmail.com
https://doi.org/10.1016/j.chaos.2020.110438
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On February 26, 2020, Brazilian authorities announced the first 

ase of COVID-19, the first case recorded in South America, of a 

razilian national from Italy. The spread of the COVID-19 virus was 

nitially stable. Then in recent weeks, where the spread of the 

irus has experienced tremendous acceleration, reaching in June 

2, 2020, 3 months after the registration of the first case, approxi- 

ately 529,405 infected, 30,046 deaths. Brazil has become the sec- 

nd country in the world in terms of infected, after the United 

tates of America. 

Where he recorded in State of S ao Paulo about 109,698 in- 

ected, followed by State of Rio de Janeiro about 53,388 infected, 

nd in State of Ceará about 4 8,4 89 infected, and in State of Ama- 

onas about 41,378 infected. 

A large number of mathematical models have been developed 

o simulate, analyse and understand the Corona virus. In a related 

esearch work, Tian-Mu Chen et al. [8] proposed a mathematical 

odel for simulating the phase-based transmissibility of a novel 

oronavirus, and Zhi-Qiang Xia et al. [9] Early dynamics of trans- 

ission and control of COVID-19: a mathematical modeling study. 

unhwa Choi and Moran Ki proposed [8] Estimating the reproduc- 

ive number and the outbreak size of Novel Coronavirus disease 

COVID-19) using mathematical model in the Republic of Korea 

22] Also, many researches have focused on this topic and other 

elated topics [16,17,25–28,33,40] . They have found the basic re- 

roduction number R 0 and discussed the stability analysis of their 

odel using the basic reproduction number. They found that the 

odel is locally asymptotically stable at disease free equilibrium 

 0 when R 0 < 1 and when R 0 > 1 , endemic equilibrium exists and

ecomes stable. In their research, equilibrium points are also glob- 

lly asymptotically stable under certain conditions. Besides these, 

any mathematical models were formulated to investigate the dy- 

amics of infectious diseases with control (For example: [30–32] ). 

But they did not take into account delay in applying precaution- 

ry and preventive measures which may cause a delay in response 

o the potential threats. 

Delay in applying precautionary and preventive measures, such 

s: 

• The delay in schools closure in the affected countries. 
• The delay in closing airports and ports in a timely manner. 
• The delay in suspending air, land and navigation travels from 

and to the affected countries. 
• The delay in applying precautionary, preventive and strict mea- 

sures when receiving travelers. 
• The delay in diagnosis of the infected cases, given that symp- 

toms do not appear in the disease’s incubation period. 
• The tolerance of others in the passage of passengers through 

airports in some countries. 
• The delay in diagnosis of infected cases, especially as symptoms 

do not appear in the disease’s incubation period. 
• The delay in imposing quarantine among patients increases the 

spread of the disease. 

Perhaps the delay in applying the aforementioned precaution- 

ry measures was the main reason that Western Europe turned 

nto the main focus of the global pandemic. This led to panic as the 

umber of the infected individuals and deaths keep rising. Thou- 

ands of infected cases and hundreds of deaths are recorded daily 

n Italy, Spain, Germany, the United States of America and France. 

n Italy, on Saturday, 21 March 2020, a record number of deaths 

eached nearly 800 deaths, and more than 60 0 0 infected. The pan- 

emic focus shifted from China to Western Europe and that led to 

he ease of transmission and spread of the disease in the neigh- 

oring countries and the countries of North Africa. 

In addition, most of the previous research has focused on con- 

inuous modeling. In this research, the statistical data are collected 

t the time (day, week, month, and year). Treatment and vacci- 
2 
ation of some patients are also given at the same time. Conse- 

uently, it is more direct, more practical, and more precise to de- 

cribe a phenomenon using continuous temporal modeling. Thus, 

ifferential equations appear like a more natural way of describing 

pidemiological models. In addition, numerical solutions are used 

or the discretionary differential equations, which encourages us to 

se the differential equations directly. and therefore can be easily 

mplemented by mathematicians. 

To make the modeling of this phenomenon more realistic, we 

onsider an optimal control problem governed by a system of dif- 

erential equations with time to delay. We study an optimal control 

roblem with time to delay in the state and control variable in a 

athematical model SI W 

ICHR of kouidere et al. [25] and a time de- 

ay representing delay in applying preventive precaution and mea- 

ures. 

The paper is organized as follows: In Section 2 , we represent 

ur mathematical model SI W 

ICHR , analysis of a mathematical mod- 

ling of transmission of novel coronavirus “COVID-19”. In Section 3 , 

 mathematical modeling with optimal control startegy of trans- 

ission of novel coronavirus “COVID-19”. In Section 4 , we present 

 optimal control problem with multiple delays in our proposed 

odel where we give some results concerning the existence of the 

ptimal control and we caracterize the optimal controls using the 

ontryagin’s maximum principle. Numerical simulations through 

ATLAB are given in Section 5 . Finally we conclude the paper in 

ection 6 . 

. Mathematical model 

We consider a mathematical model SI W 

ICHR of kouidere et al., 

hat describes the of transmission of novel coronavirus “COVID-19”. 

e divide the population denoted by N into six compartments: 

usceptible population Brazil S, the infected without symptoms I W 

, 

he infected with symptoms I, the infected with complications C, 

he number of people who have been quarantined in hospitals H

nd recovered R. 

Hence, we present the COVID-2019 mathematical model is gov- 

rned by the following system of differential equation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS(t) 

dt 
= � − μ S(t) − β1 

S(t) I W 

(t) 

N 

− β2 
S(t) I(t) 

N 

dI W 

(t) 

dt 
= β1 

S(t) I W 

(t) 

N 

+ β2 
S(t) I(t) 

N 

− ( μ + α1 + α2 ) I W 

(t) 

dI(t) 

dt 
= α1 I W 

(t) − (α3 + θ1 + μ) I(t) 

dC(t) 

dt 
= α2 I W 

(t) + α3 I(t) − (θ2 + μ + δ1 ) C(t) 

dH(t) 

dt 
= θ1 I(t) + θ2 C(t) − (μ + σ + δ2 ) H(t) 

dR (t) 

dt 
= σH(t) − μR (t) 

(1) 

here S(0) ≥ 0 , I W 

(0) ≥ 0 , I(0) ≥ 0 , C(0) ≥ 0 , H(0) ≥ 0 and

 (0) ≥ 0 are the initial state. 

With 

- �: Denote the incidence of susceptible in Brazil. 

- μ: natural mortality 

- β1 : The rate of people who were infected with the virus by 

ontact with the infected patients without symptoms 

- β2 : The rate of people who were infected with the virus by 

ommunicating with the infected patients with symptoms 

- α1 : The rate of people become normaly infected with symp- 

oms 
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Fig. 1. Accumulated cases of COVID-19 in Brazil after 4 months. 
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- α2 : The rate of people have developed a rapid and dangerous 

evelopment of the disease due to immunodeficiency, old age or 

hildren. 

- α3 : The rate of people have severe complications such as pul- 

onary failure. 

- θ1 : The rate of people with symptoms of mild virus who have 

een quarantined. 

- θ2 : The rate of people with serious complications who have 

een quarantined. 

- σ : The rate of people who recovered from the virus. 

- δ1 : Mortality rate due to complications. 

- δ2 : The rate of people who died under quarantine in hospi- 

als. 

Fig. 1 shows that, if Brazil does not apply preventive precau- 

ions to reduce the spread of the COVID-19 pandemic, the number 

f COVID-19 infected cases is likely to reach millions. 

.1. Model basic properties 

.1.1. Positivity of solutions 

heorem 1. If S(0) ≥ 0 , I W 

(0) ≥ 0 , I(0) ≥ 0 , C(0) ≥ 0 , H(0) ≥ 0

nd R (0) ≥ 0 , the solutions S(t ) , I W 

( t ) , I ( t ) , C ( t ) , H ( t ) and R (t) of

ystem (15) are positive for all t ≥ 0 . 

roof. It follows from the first equation of system (15) that 

dS(t) 

dt 
= �1 − μ S(t) − β1 

S(t) I W 

(t) 

N 

− β2 
S(t) I(t) 

N 

≥ −μ S(t) − β1 
S(t) I W 

(t) − β2 
S(t) I(t) 
N N 

3 
dS(t) 

dt 
+ 

(
μ + β1 

I W 

(t) 

N 

+ β2 
I(t) 

N 

)
S(t) ≥ 0 

here F (t) = μ + β1 
I W 

(t) 
N + β2 

I(t) 
N . The both sides in last inequality 

re multiplied by exp ( 
t ∫ 

0 

F (s ) ds ) . 

We obtain 

xp 

( 

t ∫ 
0 

F (s ) ds 

) 

. 
dS(t) 

dt 
+ F (t) exp 

( 

t ∫ 
0 

F (s ) ds 

) 

.S(t) ≥ 0 

hen 

d 
dt 

(
S(t) exp ( 

t ∫ 
0 

F (s ) ds ) 

)
≥ 0 

Integrating this inequality from 0 to t gives: 

t 
 

0 

d 

ds 

( 

S(s ) exp 

( 

t ∫ 
0 

(μ + β1 
I W 

(s ) 

N 

+ β2 
I(s ) 

N 

) ds 

) ) 

ds ≥ 0 

hen 

(t) ≥ S(0) exp (−
t ∫ 

0 

(
μ + β1 

I W 

(s ) 

N 

+ β2 
I(s ) 

N 

)
ds ) 

�⇒ S(t) ≥ 0 . 

Similarly, we prove that I W 

( t ) ≥ 0 I ( t ) ≥ 0 , C ( t ) ≥ 0 , H ( t ) ≥ 0

and R (t) > 0 . �

.1.2. Boudedness of the solutions 

heorem 2. The set � = 

{
( S, I W 

, I, C, H, R ) ∈ R 

6 + / 0 ≤ S + I W 

+ I + C 

+ H + R ≤ �
μ

}
positively invariant under system (15) with initial 

onditions S(0) ≥ 0 , I W 

(0) ≥ 0 , I(0) ≥ 0 , C(0) ≥ 0 , H(0) ≥ 0 and

 (0) ≥ 0 . 

roof. Also, one assumes that: 

dN 

dt 
= � − μN − δ1 C ≤ � − μN 

�⇒ N (t) ≤ �

μ
+ N (0) e −μt 

If we take limit t → ∞ we have 0 ≤ N(t) ≤ �
μ . 

It implies that the region � is a postivily invariant set for the 

ystem (15) . �

.1.3. Exictence of solutions 

heorem 3. The system (15) that satisfies a given initial condition 

( S ( 0 ) , I W 

( 0 ) , I ( 0 ) .C ( 0 ) , H ( 0 ) , R (0) ) has a unique solution. 

roof. Let X = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

S ( t ) 
I W 

( t ) 
I ( t ) 
C ( t ) 
H ( t ) 
R (t) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

and ϕ ( X ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

dS(t) 
dt 

dI W 

( t ) 
dt 

dI ( t ) 
dt 

dC ( t ) 
dt 

dH ( t ) 
dt 

dR (t) 
dt 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

so the system 

15) can be rewritten in the following form: 

(X ) = AX + B (X ) (2) 
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here 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

−μ 0 −0 0 

0 −( μ + α1 + α2 ) 0 0 

0 α1 −(α3 + θ1 + μ) 0 

0 α2 α3 −(θ2 + μ + 

0 0 θ1 θ2 

0 0 0 0 

nd 

 ( X ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

� − β1 
S ( t ) I W ( t ) 

N 
− β2 

S ( t ) I ( t ) 
N 

β1 
S ( t ) I W ( t ) 

N 
+ β2 

S ( t ) I ( t ) 
N 

0 

0 

0 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

he second term on the right-hand side of (8) satisfies 

| B (X 1 ) − B (X 2 ) | = 2 

∣∣∣β1 
S 1 (t) I W. 1 (t) 

N + β2 
S 1 (t) I 1 (t) 

N − β1 
S 2 (t) I W. 2 (t) 

N 

−β2 
S 2 (t) I 2 (t) 

N 

∣∣∣
= 2 

∣∣∣∣β1 
S 1 (t) I W. 1 (t) 

N + β1 
S 1 (t) I W. 2 (t) 

N − β1 
S 1 (t) I W. 2 (t) 

N − β2 
S 1 (t) I 1 (t) 

N 

+ β2 
S 1 (t) I 2 (t) 

N − β2 
S 1 (t) I 2 (t) 

N − β1 
S 2 (t) I W. 2 (t) 

N + β2 
S 2 (t) I 2 (t) 

N 

∣∣∣∣
≤ 2 

⎛ 

⎝ 

∣∣∣β1 S 1 (t) 
N 

∣∣∣| I W. 1 (t) − I W. 2 (t) | + 

∣∣∣β1 I W. 2 (t) 
N 

∣∣∣| S 1 (t) − S 2 (t) | 
+ 

∣∣∣β2 S 1 (t) 
N 

∣∣∣| I 1 (t) − I 2 (t) | + 

∣∣∣β2 I 2 (t) 
N 

∣∣∣| S 1 (t) − S 2 (t) | 

⎞ 

⎠ 

≤ 2 Z μ

⎛ 

⎝ 

∣∣∣β1 
N 

∣∣∣| I W. 1 (t) − I W. 2 (t) | + 

∣∣∣β1 
N 

∣∣∣| S 1 (t) − S 2 (t) | 
+ 

∣∣∣β2 
N 

∣∣∣| I 1 (t) − I 2 (t) | + 

∣∣∣β2 
N 

∣∣∣| S 1 (t) − S 2 (t) | 

⎞ 

⎠ 

≤ M ( | X 1 (t) − X 2 (t) | ) 
Where M = 2 Z μ

(∣∣∣β1 
N 

∣∣∣+ 

∣∣∣β2 
N 

∣∣∣; ∣∣∣β1 
N 

∣∣∣+ 

∣∣∣β2 
N 

∣∣∣) then 

 

ϕ(X 1 ) − ϕ(X 2 ) ‖ 

≤ V. ‖ 

X 1 − X 2 ‖ 

here V = max (M, ‖ A ‖ ) < ∞ . 

Thus, it follows that the function ϕ is uniformly Lipschitz con- 

inuous, and the restriction on S ( t ) ≥ 0 , I W 

( t ) ≥ 0 I ( t ) ≥ 0 , C ( t ) ≥
 , H ( t ) ≥ 0 and R (t) ≥ 0 , we see that a solution of the system ex-

sts [18] . �

. Stability analysis and sensitivity of the model parameters 

In this section, we will study the stability behavior of system 

1) at an Disease Free Equilibrium point is denoted by E 0 and an 

ndemic Equilibrium point is denoted by E ∗. The first three equa- 

ions in system (1) are independent of the variables C, H and R . 

ence, the dynamics of equation system (1) is equivalent to the 

ynamics of the equation system: 

 

 

 

 

 

 

 

 

 

 

 

dS(t) 

dt 
= � − μS(t) − β1 

S(t) Iw (t) 

N 

− β2 
S(t) I(t) 

N 

dIw (t 

dt 
= β1 

S(t) Iw (t) 

N 

+ β2 
S(t) I(t) 

N 

− (μ + α1 + α2 ) Iw (t) 

dI(t) 

dt 
= α1 I W 

(t) − (α3 + θ1 + μ) I(t) 

(3) 

.1. Equilibrium point 

.1.1. The disease free equilibrium 

To find the disease free equilibrium point, we equated the right 

and side of model (1) to zero, evaluating it at I w 

= I= 0 and solv-

ng for the noninfected and noncarrier state variables. Therefore, 

he disease free equilibrium point E 0 = ( �μ , 0 , 0) . 
4 
0 0 

0 0 

0 0 

0 0 

−(μ + σ + δ2 ) 0 

σ −μ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

.1.2. The endemic equilibrium 

The endemic equilibrium point E ∗ = (S ∗, I ∗w 

, I ∗) it occurs when

he disease persists in the community. To obtain it, we equate all 

he model Eq. (1) to zero. then we obtain 

S ∗ = 

�
μR 0 

I ∗w 

= 

�(R 0 −1) 
(μ+ α1 + α2 ) R 0 

I ∗ = 

α1 �(R 0 −1) 
(α3 + θ1 + μ)(μ+ α1 + α2 ) R 0 

where R 0 is the basic reproduction 

umber given by: 

R 0 = 

β1 (α3 + θ1 + μ)+ β2 α1 
(α3 + θ1 + μ)(μ+ α1 + α2 ) 

.2. The basic reproductive number 

In our work, the basic reproduction number R 0 is defined as 

he average number of secondary infections produced by an in- 

ected individual in a completely susceptible population. To obtain 

he basic reproduction number, we used the next-generation ma- 

rix method formulated in Bentout et al. [34] , Bani-Yaghoub et al. 

35] , Driessche and Watmough [36] . 

Through the model equations system (2) , then by the principle 

f next generation matrix, we obtained: 

 = 

⎛ 

⎜ ⎜ ⎝ 

−β1 
S(t) Iw (t) 

N 

− β2 
S(t) I(t) 

N 

β1 
S(t) Iw (t) 

N 

+ β2 
S(t) I(t) 

N 

0 

⎞ 

⎟ ⎟ ⎠ 

 = 

( −� + μS(t) 
(μ + α1 + α2 ) Iw (t) 

(α3 + θ1 + μ) I (t) − α1 I w (t) 

) 

here 

 = 

( 

0 −β1 −β2 

0 β1 β2 

0 0 0 

) 

 = 

( 

μ 0 0 

0 (μ + α1 + α2 ) 0 

0 −α1 (α3 + θ1 + μ) 

) 

The inverse of V is given by 

 

−1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 

μ
0 0 

0 

1 

(μ + α1 + α2 ) 
0 

0 

α1 

(μ + α1 + α2 )(α3 + θ1 + μ) 

1 

(α3 + θ1 + μ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

hen 

V 

−1 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 −( 
β1 

μ + α1 + α2 

+ 

β2 α1 

(μ + α1 + α2 )(α3 + θ1 + μ) 
) 

−β2 

α3 + θ1 + μ

0 ( 
β1 

μ + α1 + α2 

+ 

β2 α1 

(μ + α1 + α2 )(α3 + θ1 + μ) 
) 

β2 

α3 + θ1 + μ
0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 
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Fig. 2. COVID-19 model with a disease-free equilibrium. 
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Finally, we have 

R 0 = ρ(F V −1 ) = 

β1 (α3 + θ1 + μ) + β2 α1 

(μ + α1 + α2 )(α3 + θ1 + μ) 

.3. Local stability of disease free equilibrium 

heorem 4. The disease free equilibrium point E 0 is locally asymp- 

otically stable if R 0 < 1 and unstable if R 0 > 1 . 

roof. The Jacobian matrix of system (3) at the disease free equi- 

ibrium point E 0 as follows: 

(E 

0 ) = 

( −μ −β1 −β2 

0 −(μ + α1 + α2 − β1 ) β2 

0 α1 −(α3 + θ1 + μ) 

) 

From the jacobian matrix J(E 0 ) we obtained a characteristic 

olynomial: 

p(λ) = (μ + λ)(λ2 + aλ + b) = 0 with 

a = 

(α3 + θ1 + μ) 2 + β2 α1 

α3 + θ1 + μ
+ (μ + α1 + α2 )(1 − R 0 ) 

b = (μ + α1 + α2 )(α3 + θ1 + μ)(1 − R 0 ) we see that the charac-

eristic equation p(λ) of J(E 0 ) has an eigenvalue λ1 = −μ is neg- 

tive. So, in order to determine the stability of the E 0 , we discuss

he roots of the following equation λ2 + aλ + b = 0 . 

By Routh-Hurwitz criterion, system (2) is locally stable if a > 0 

nd b > 0 . 
5 
Obviously we see that a and b to be positive, (1 − R 0 ) must be

ositive, which leads to R 0 < 1 . 

So E 0 is stable if R 0 < 1 and unstable if R 0 > 1 . �

.4. Numerical simulation 

In this section, we present some numerical solutions of sys- 

em (1) for different values of the parameters. The resolution of 

ystem (1) was created using the Gauss-Seidel-like implicit finite- 

ifference method developed by LaSalle [37] , presented in Gumel 

t al. [38] and denoted the GSS1 method. We use the different ini- 

ial values for each variable of state, and we use the following 

arameters: � = 8 , 5 . 10 5 μ = 0 . 02 , α1 = 0 . 8 , α2 = 0 . 2 , α3 = 0 . 2 ,

1 = 0 . 12 , β2 = 0 . 1 , θ1 = 0 . 1 , we have the Disease free Equilib-

ium point E 0 = (375 . 10 6 , 0 , 0 , 0 , 0) . and R 0 = 0 . 6059 < 1 . In this

ase, we obtained the following remarks: Over time, we notice that 

he number of susceptible people is close to 375 . 10 6 . We also note 

hat the number of the people infected without symptoms and the 

umber of the people infected with symptoms, are close to zero 

see Fig. 2 ). 

We start by a graphic representation of the COVID-19 disease- 

ree equilibrium E 0 and we use the same parameters and different 

nitial values in table1. R 0 = 0 . 6059 < 1 R 0 < 1 . From these figures,

sing the different values of initial variables S 0 , I W 0 and I 0 we ob-

ained the following remarks: The number of potential individu- 

ls increases and approaches the number S = 1536 (see Fig. 2 ): 
0 
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Fig. 3. COVID-19 model with an epidemic equilibrium. 
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Table 1 

The sensitivity of indices. 

Parameter symbol Value Sensitivity indexes 

μ 0.02 −0.0672 

α1 0.8 −0.3273 

α2 0.2 −0.2667 

α3 0.2 −0.4947 

β1 0.35 0.7383 

β2 0.3 0.2613 

θ1 0.1 −0.2473 
lso, the number of the asymptomatic infected cases or cases with 

ild symptoms decreases and converges to zero (see Fig. 2 ). The 

umber of the infected people with symptoms and carriers of the 

irus increases at first, after that it decreases and approaches zero 

see Fig. 2 ). Therefore, the solution curves to the equilibrium E 0 = 

S 0 , 0 , 0) when R 0 < 1 . Hence, model (1) is stable. 

According to theorem (3) , the Disease free equilibrium point E 0 

f system (1) is stable on �. 

Also, for the different initial values for each variable of state, 

nd the following parameters: � = 8 , 5 . 10 5 , μ = 0 . 02 , α1 = 0 . 8 ,

2 = 0 . 2 , α3 = 0 . 2 , β1 = 0 . 35 , β2 = 0 . 3 , θ1 = 0 . 1 , we have the

ndemic Equilibrium point E ∗ = (1 . 7 . 10 8 , 1 . 504 . 10 6 , 3 . 5 . 10 6 ) and

 0 = 1 . 8734 > 1 . In this case, we obtained the following remarks:

ver time, we notice that the number of susceptible people is close 

o 1 , 7 . 10 8 . We also note that the number of the people infected

ithout symptoms is close to 1 . 504 . 10 6 , and the number of the

eople infected with symptoms are close to 3 . 5 . 10 6 (see Fig. 3 ). 

Therefore the solution curves to the equilibruim point E ∗ when 

 0 > 1 . 

.5. Sensitivity analysis of model parameters 

we performed a sensitivity analysis, On the basic parameters. 

o help us to know the parameters that have a high impact on the 

reeding number of base R 0 . 

To achieve a sensitivity analysis of the model (1) , we followed 

he technique described by Karrakchou et al. [39] . 
6 
This technique develops a formula to obtain the sensitivity in- 

ex of all the basic parameters, defined as � 

R 0 
x = 

x 
R 0 

∗ ð R 0 
ð x , for x 

epresents all the basic parameters. The sensitivity index of R 0 with 

espect to the remaining parameters are computed as follows: 

� 

R 0 
μ = 

μ
R 0 

∗ ð R 0 
ð μ = −μ

[ 
1 

(μ+ α1 + α2 ) 
+ 

β2 α1 
(α3 + θ1 + μ)(β1 (α3 + θ1 + μ)+ β2 α1 ) 

] 
� 

R 0 
α1 

= 

α1 
R 0 

∗ ð R 0 
ð α1 

= 

α1 [ β2 (μ+ α2 ) −β1 (μ+ α3 + θ1 ) 
2 ] 

(μ+ α1 + α2 )(α3 + θ1 + μ)[ β1 (α3 + θ1 + μ)+ β2 α1 ] 

� 

R 0 
α2 

= 

α2 
R 0 

∗ ð R 0 
ð α2 

= 

−α2 
μ+ α1 + α2 

� 

R 0 
α3 

= 

α3 
R 0 

∗ ð R 0 
ð α3 

= 

−α1 β2 
(α3 + θ1 + μ)[ β1 (α3 + θ1 + μ)+ β2 α1 ] 

� 

R 0 
β1 

= 

β1 
R 0 

∗ ð R 0 
ð β1 

= 

β1 (μ+ α3 + θ1 ) 
β1 (μ+ α3 + θ1 )+ β2 α1 

� 

R 0 
β2 

= 

β2 
R 0 

∗ ð R 0 
ð β2 

= 

β2 α1 
β1 (α3 + θ1 + μ)+ β2 α1 

� 

R 0 
θ1 

= 

θ1 
R 0 

∗ ð R 0 
ð θ1 

= 

−θ1 β2 α1 
(μ+ α3 + θ1 )[ β1 (μ+ α3 + θ1 )+ β2 α1 ] 

are obtained and 

valuated at ( Table 1 ). 
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Their sensitivity indices are in Table 1 . 

. The optimal control problem 

.1. Problem statement 

As of today June 02, 2020, there is no cure or vaccine for the 

isease. So, we suggest the following strategies: there are four con- 

rols u (t) , v (t) , w (t) and z(t) for t ∈ [ 0 , T ] , that represent consec-

tively the awareness program through sensitization and preven- 

ion, quarantine and health monitoring, diagnosis, monitoring and 

he last is treatment and psychological support with follow-up at 

ime t. In order to have a realistic and logic model, we need to 

ake in consideration that the movement of controlled individuals 

rom the compartment of Infected without symptoms ( I W 

) to quar- 

ntined in hospitals ( H), and transition by the contact between In- 

ected without symptoms (Respectively Infected with symptoms) 

ith susceptible to susceptible, and the transition of Infected with 

ymptoms (Respectively Infected with complications) to quaran- 

ined in hospitals, and the transition of quarantined in hospitals to 

ocovered is subject to a delay. Thus, the time delay is introduced 

nto the system as follows: at the moment,Thus, the delay is intro- 

uced into the system as follows: in time, only a percentage of in- 

ividuals ( I W 

, C, I, H) that have been treated and controlled τi time

nit ago, that is to say that at the time k − τi with i ∈ { 1 , 2 , 3 , 4 } ,
re removed to other compartments. 

So, the mathematical system with time delay in state and con- 

rol system of variables is given by the nonlinear retarded system 

f differential equations: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS(t) 

dt 
= � − μS(t) − β1 

S(t) I W 

(t) 

N 

− β2 
S(t) I(t) 

N 

+ β1 u (t − τ1 ) 

S(t − τ1 ) I W 

(t − τ1 ) 

N 

+ β2 u (t − τ1 ) 
S(t − τ1 ) I(t − τ1 ) 

N 

dI W 

(t) 

dt 
= β1 (1 − u (t )) 

S(t ) I W 

(t ) 

N 

+ β2 (1 − u (t )) 
S(t ) I(t ) 

N 

−(μ + α1 + α2 ) I W 

(t) − w (t ) I W 

(t ) 

dI(t) 

dt 
= α1 I W 

(t) − (α3 + θ1 + μ) I(t) − v (t ) I(t ) 

dC(t) 

dt 
= α2 I W 

(t) + α3 I(t) − (θ2 + μ + δ1 ) C(t) − v (t ) C(t ) 

dH(t) 

dt 
= θ1 I(t) + θ2 C(t) − (μ + σ + δ2 ) H(t) + w (t − τ3 ) I W 

(t − τ3 ) + v (t − τ2 )(I(t − τ2 ) + C(t − τ2 )) − z(t ) H(t ) 

dR (t) 

dt 
= σH(t) − μR (t) + z(t − τ4 ) H(t − τ4 ) 

(4) 

In addition, for biological reasons, we assume, for ϕ ∈ [ −τ, 0 ] , 

hat S ϕ , I W ϕ , I ϕ , C ϕ , H ϕ and R ϕ are nonnegative continuous func-

ions and u ϕ = 0 , v ϕ = 0 , w ϕ = 0 and z ϕ = 0 . 

.2. Model basic properties 

.2.1. Boudedness of the solutions 

heorem 5. The set � = 

{
( S, I W 

, I, C, H, R ) ∈ R 

6 + / 0 ≤ S + I W 

+ I + C 

+ H + R ≤ �
μ

}
is positively invariant under system (4) with initial 

onditions, S(0) ≥ 0 , I W 

(0) ≥ 0 , I(0) ≥ 0 , C(0) ≥ 0 , H(0) ≥ 0 and

 (0) ≥ 0 . 

roof. By adding the equations of system (4) we obtain 

dN = � − μN − δ1 C ≤ � − μN 
dt 

7 
�⇒ N (t) ≤ �

μ
+ N (0) e −μt 

If we take limit t → ∞ we have 0 ≤ N(t) ≤ �
μ . 

It implies that the region � is a postivily invariant set for the 

ystem (4) . �

.2.2. Existence of solutions 

heorem 6. The controlled system (4) that satisfies the given initial 

ondition 

( S ( 0 ) , I W 

( 0 ) , I ( 0 ) , C ( 0 ) , H ( 0 ) , R (0) ) has a unique solution. 

roof. Let X = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

S ( t ) 
I W 

( t ) 
I ( t ) 
C ( t ) 
H ( t ) 
R (t) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

and ϕ ( X ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

dS(t) 

dt 
dI W 

( t ) 

dt 
dI ( t ) 

dt 
dC ( t ) 

dt 
dH ( t ) 

dt 
dR (t) 

dt 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

So the system (4) can be rewritten in the following form: 

(X ) = AX + B (X ) + C(X τ ) (5) 

here 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−μ 0 −0 0 0 0 

0 A 1 0 0 0 0 

0 α1 A 2 0 0 0 

0 α2 α3 A 3 0 0 

0 0 θ1 θ2 A 4 0 

0 0 0 0 σ −μ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

here A 1 = −( μ + α1 + α2 + w (t)) , A 2 = −(α3 + θ1 + μ +
 (t)) , A 3 = −(θ2 + μ + δ1 + v (t)) and A 4 = −(μ + σ + δ2 + z(t))

nd 

 (X ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

� − β1 
S(t ) I W 

(t ) 

N 

− β2 
S(t ) I(t ) 

N 

β1 (1 − u (t )) 
S(t ) I W 

(t ) 

N 

+ β2 (1 − u (t )) 
S(t ) I(t ) 

N 

0 

0 

0 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

nd 

(X τ ) 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

β1 u (t − τ1 ) 
S(t − τ1 ) I W 

(t − τ1 ) 

N 

+ β2 u (t − τ1 ) 
S(t − τ1 ) I(t − τ1 ) 

N 

0 

0 

0 

w (t − τ3 ) I W 

(t − τ3 ) + v (t − τ2 )(I(t − τ2 ) + C(t − τ2 )) 
z(t − τ4 ) H(t − τ4 ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

he second term on the right-hand side of (5) satisfies 

 

B (X 1 ) − B (X 2 ) | ≤ M 1 . ‖ 

X 1 − X 2 ‖ 

nd 

 

C(X 1 τ ) − C(X 2 τ ) | ≤ M 2 . ‖ 

X 1 τ − X 2 τ‖ 

here M 1 and M 2 are some positive constants, independent of the 

tate variables S ( t ) , I W 

( t ) , I ( t ) , C ( t ) , H ( t ) and R (t) . 

Then 

 

ϕ(X 1 ) − ϕ(X 2 ) ‖ 

≤ V. ‖ 

X 1 − X 2 ‖ 
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here V = max (M 1 , M 1 , ‖ A ‖ ) < ∞ . 

Thus, it follows that the function ϕ is uniformly Lipschitz con- 

inuous, From the definition of the controls u (t) , v (t ) , w (t ) and

(t) and the restriction on S ( t ) ≥ 0 , I W 

( t ) ≥ 0 I ( t ) ≥ 0 , C ( t ) ≥ 0 ,

H ( t ) ≥ 0 and R (t) ≥ 0 , we prove that a solution of the system ex-

sts [18] . �

.3. The optimal control: existence and characterization 

The problem is to minimize the objective functional 

(u, v , w, z) = I(T ) + C(T ) + I W 

(T ) + H(T ) + 

T ∫ 
0 [

I(t) + C(t) + I W 

(t) + H(t) + 

A 

2 

u 

2 (t) + 

B 

2 

v 2 (t) 

+ 

G 

2 

w 

2 (t) + 

K 

2 

z 2 (t) 
] 

dt (6) 

here A, B, G and K are the cost coefficients. They are selected to 

eigh the relative importance of u (t) , v (t) , w (t) and z(t) at time

, T is the final time. 

In other words, we seek the optimal controls u ∗, v ∗, w 

∗ and z ∗

uch that 

(u 

∗, v ∗, w 

∗, z ∗) = min 

(u, v ,w,z) ∈ U 
J(u, v , w, z) (7)

here U is the set of admissible controls defined by 

 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

( u, v , w, z ) / 0 ≤ u min ≤ u (t) ≤ u max ≤ 1 0 

≤ v min ≤ v (t) ≤ v max ≤ 1 

0 ≤ w min ≤ w (t) ≤ w max ≤ 1 and 0 ≤ z min ≤ z(t) 
≤ z max ≤ 1 , t ∈ [ 0 , T ] 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(8) 

.3.1. Existence of an optimal control 

In this section we introduce a result concerning the existence 

f optimal control. 

heorem 7. Consider the control problem with system (4) . 

There exists an optimal control (u ∗, v ∗, w 

∗, z ∗) ∈ U such that 

(u 

∗, v ∗, w 

∗, z ∗) = min 

(u, v ,w,z) ∈ U 
J(u, v , w, z) (9)

roof. The existence of the optimal control can be obtained using 

 result by Fleming and Rishel [12] , checking the following steps: 

• The set of controls and corresponding state variables is 

nonempty. To prove this condition we use a simplified version 

of an existence result of Boyce and DiPrima ( [15] , Theorem 7.1.1) 
• J is convex in U . 
• The control set U is convex and closed by definition. Take any 

controls u, v ∈ U and λ ∈ [0 , 1] . then 0 ≤ λu + (1 − λ) v 
Additionally, we observe that λu ≤ λ and (1 − λ) v ≤ (1 − λ) 

then λu + (1 − λ) v ≤ λ + (1 − λ) = 1 

Hence, 0 ≤ λu + (1 − λ) v ≤ 1 , for all u, v ∈ U and λ ∈ [0 , 1] . 
• The right hand sides of equations of system (4) are continuous, 

bounded above by linear function in the state and controls vari- 

able. 
• The integrand L (I, . . . , H, u, v , w, z) of the objective functional is

clearly convex on U . 

There exists constants ζ1 , ζ2 , and β > 1 such that The inte- 

grand in the objective functional satisfies 

L (I, . . . , H, u, v , w, z) ≥ ζ1 + ζ2 ( | u | 2 + | v | 2 + | w | 2 + | w | 2 ) 
β

2 

Indeed 

I(t) + C(t) + I W 

(t) + H(t) + 

A 
2 u 

2 (t) + 

B 
2 v 

2 (t) + 

G 
2 w 

2 (t) + 

K z 2 (t) ≥ ζ1 + ζ2 ( | u | 2 + | v | 2 + | w | 2 + | w | 2 ) β2 . 
2 

8 
The state variables being bounded, let ζ1 = 

4 inf 
t∈ [0 ,T ] 

( I(t) + C(t) + I W 

(t) + H(t) ) , ζ2 = inf 
(

A 
2 , 

B 
2 , 

G 
2 , 

K 
2 

)
and 

β = 2 

Therfore, from Fleming and Rishel [12] , we conclude that there 

exists an optimal control. 

�

.3.2. Characterization of the optimal control 

In order to derive the necessary conditions for the optimal con- 

rol, we apply Pontryagin’s maximum principle [11] we have the 

amiltonian 

∧ 
H 

at time t defined by 

∧ 
 

(t) = I(t) + C(t) + I W 

(t) + H(t) + 

A 

2 

u 

2 (t) + 

B 

2 

v 2 (t) + 

G 

2 

w 

2 (t) 

+ 

K 

2 

z 2 (t) + 

6 ∑ 

i =1 

λi ( t ) f i (S, I W 

, I, C, H, R ) (10) 

here f i, is the right side of the difference equation of the i th state 

ariable. 

heorem 8. Given the optimal controls (u ∗, v ∗, w 

∗, z ∗) and the solu-

ions S ∗, I W 

∗ I ∗, C ∗, H 

∗ and R ∗ of the corresponding state system (4) ,

here exists adjoint variables λ1 , λ2 , λ3 , λ4 , λ5 and λ6 satisfying: 

λ′ 
1 = λ1 ( μ + β1 

I W 

(t) 

N 

+ β2 
I(t) 

N 

) 

−λ2 

(
β1 ( 1 − u (t) ) 

I W 

(t) 

N 

+ β2 ( 1 − u (t) ) 
I(t) 

N 

)
+ χ[ 0 ,T −τ1 ] (t) λ1 (t + τ1 ) 

( β1 u (t + τ1 ) 
I W 

(t + τ1 ) 

N 

+ β2 u (t + τ1 ) 
I(t + τ1 ) 

N 

) 

′ 
2 = −1 + λ1 β1 

S(t) 

N 

−λ2 

(
β1 (1 − u (t )) 

S(t ) 

N 

− μ − α1 − α2 − w (t) 

)
− λ3 α1 − λ4 α2

−χ[ 0 ,T −τ3 ] (t) λ5 (t + τ3 ) w (t + τ3 ) 

′ 
3 = −1 + λ1 β1 

S(t) 

N 

−λ2 

(
β2 (1 − u (t )) 

S(t ) 

N 

) + λ3 (α3 + θ1 + μ + v (t) 

)
− λ4 α3 

−χ[ 0 ,T −τ2 ] (t) λ5 (t + τ2 ) v (t + τ2 ) 

′ 
4 = −1 + λ4 ( θ2 + μ + δ1 + v (t) ) − λ5 θ2 

−χ[ 0 ,T −τ2 ] (t) λ5 (t + τ2 ) v (t + τ2 ) 

′ 
5 = −1 + λ5 ( μ + σ + δ2 − z(t) ) − λ6 σ

−χ[ 0 ,T −τ4 ] (t) λ6 (t + τ4 ) H(t + τ4 ) 

′ 
6 = λ6 μ

here 

[ 0 ,T −τi ] = I (t) = 

{
1 i f t ∈ I 
0 i f t / ∈ I 

With the transversality conditions at time T f : λ1 

(
T f 
)

= 

 , λ2 

(
T f 
)

= −1 , λ3 

(
T f 
)

= −1 , λ4 

(
T f 
)

= −1 , λ5 

(
T f 
)

= 0 and

6 

(
T f 
)

= 0 . 
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Furthermore, for t ∈ [ 0 , T ] , the optimal controls u ∗, v ∗, w 

∗ and z ∗

re given by 

 

∗ = min 

(
1 , max 

(
0 , 

λ2 

A 

(
β1 

S(t) I W 

(t) 

N 

+ β2 
S(t) I(t) 

N 

)
− χ[ 0 ,T −τ1 ] (t) 

λ1 (t + τ1 ) 

A 

(
β1 

S(t + τ1 ) I W 

(t + τ1 ) 

N 

+ β2 
S(t + τ1 ) I(t + τ1 ) 

N 

)))
(11) 

 

∗ = min (
1 , max 

(
0 , 

λ3 I(t) + λ4 C(t) − χ[ 0 ,T−τ2 ] (t) λ5 (t + τ2 )(I(t + τ2 ) + C(t + τ2 )) 

B 

))
(12) 

 

∗ = min 

(
1 , max 

(
0 , 

λ2 (t) I W 

(t) − χ[ 0 ,T −τ3 ] (t) λ5 (t + τ3 ) I W 

(t + τ3 ) 

G 

))
(13) 

 

∗ = min 

(
1 , max 

(
0 , 

λ5 (t) H(t) − χ[ 0 ,T −τ4 ] (t) λ6 (t + τ4 ) H(t + τ4 ) 

K 

))
(14) 

roof. The Hamiltonian 

∧ 
H 

is defined as follows: 
∧ 
H 

(t) = I(t) + C(t) + S(t) + I W 

(t) + 

A 
2 u 

2 (t) + 

B 
2 v 

2 (t) + 

G 
2 w 

2 (t) + 

6 ∑ 

 =1 

λi ( t ) f i (S, I W 

, I, C, H, R ) where: 

f 1 (S, I W 

, I, C, H, R ) = � − μ S(t) − β1 
S(t) I W 

(t) 
N − β2 

S(t) I(t) 
N + 

1 u (t − τ1 ) 
S(t−τ1 ) I W 

(t−τ1 ) 
N + β2 u (t − τ1 ) 

S(t−τ1 ) I(t−τ1 ) 
N 

f 2 (S, I W 

, I, C, H, R ) = β1 (1 − u (t)) 
S(t) I W 

(t) 
N + β2 (1 − u (t)) S(t) I(t) 

N −
μ + α1 + α2 ) I W 

(t) − w (t ) I W 

(t ) 

f 3 (S, I W 

, I, C, H, R ) = α1 I W 

(t) − (α3 + θ1 + μ) I(t) − v (t ) I(t ) 

f 4 (S, I W 

, I, C, H, R ) = α2 I W 

(t) + α3 I(t) − (θ2 + μ + δ1 ) C(t) −
 (t) C(t) 

f 5 (S, I W 

, I, C, H, R ) = θ1 I(t) + θ2 C(t) − (μ + σ + δ2 ) H(t) 

+ w (t − τ3 ) I W 

(t − τ3 ) + v (t − τ2 )(I(t − τ2 ) + C(t − τ2 )) 

−z(t) H(t) 

f 6 (S, I W 

, I, C, H, R ) = σH(t) − μR (t) 

For t ∈ [ 0 , T ] , the adjoint equations and transversality condi- 

ions can be obtained by using Pontryagin’s maximum principle 

5,10,23] such that 

′ 
1 = −∂ 

∧ 
H 

(t) 

∂S(t) 
− χ[ 0 ,T −τ1 ] (t) 

∂ 
∧ 
H 

(t + τ1 ) 

∂S(t − τ1 ) 
= λ1 μ + β1 

I W 

(t) 

N 

+ β2 
I(t) 

N 

) − λ2 

(
β1 ( 1 − u (t) ) 

I W 

(t) 

N 

+ β2 ( 1 − u (t) ) 
I(t) 

N 

)

+ χ[ 0 ,T −τ1 ] (t) λ1 (t + τ1 ) 

(
β1 u (t + τ1 ) 

I W 

(t + τ1 ) 

N 

+ β2 u (t + τ1 ) 
I(t + τ1 ) 

N 

)

′ 
2 = −∂ 

∧ 
H 

(t) 

∂ I W 

(t) 
− χ[ 0 ,T −τ3 ] (t) 

∂ 
∧ 
H 

(t + τ3 ) 

∂ I W 

(t − τ3 ) 
= −1 + λ1 β1 

S(t) 

N 

−λ2 

(
β1 (1 − u (t )) 

S(t ) 

N 

− μ − α1 − α2 − w (t) 

)
−λ3 α1 − λ4 α2 − χ[ 0 ,T −τ3 ] (t) λ5 (t + τ3 ) w (t + τ3 ) 

λ′ 
3 = −∂ 

∧ 
H 

(t) 

∂ I(t) 
− χ[ 0 ,T −τ2 ] (t) 

∂ 
∧ 
H 

(t + τ2 ) 

∂ I(t − τ ) 
= −1 + λ1 β1 

S(t) 

N 
2 

9 
−λ2 

(
β2 (1 − u (t )) 

S(t ) 

N 

)
+ λ3 ( α3 + θ1 + μ + v (t) ) − λ4 α3 

−χ[ 0 ,T −τ2 ] (t) λ5 (t + τ2 ) v (t + τ2 ) 

′ 
4 = −∂ 

∧ 
H 

(t) 

∂C(t) 
− χ[ 0 ,T −τ2 ] (t) 

∂ 
∧ 
H 

(t + τ2 ) 

∂C(t − τ2 ) 
= −1 

+ λ4 ( θ2 + μ + δ1 + v (t) ) − λ5 θ2 − χ[ 0 ,T −τ2 ] (t) 

λ5 (t + τ2 ) v (t + τ2 ) 

′ 
5 = −∂ 

∧ 
H 

(t) 

∂H(t) 
− χ[ 0 ,T −τ4 ] (t) 

∂ 
∧ 
H 

(t + τ4 ) 

∂H(t − τ4 ) 
= −1 

+ λ5 ( μ + σ + δ2 − z(t) ) − λ6 σ − χ[ 0 ,T −τ4 ] (t) 

λ6 (t + τ4 ) H(t + τ4 ) 

′ 
6 = −∂ 

∧ 
H(t) 

∂R (t) 
= λ6 μ

For t ∈ [ 0 , T ] , the optimal controls u ∗, v ∗, w 

∗ and z ∗ can be

olved from the optimality condition, 

∂ 
∧ 
H 

(t) 

∂u (t) 
− χ[ 0 ,T −τ1 ] (t) 

∂ 
∧ 
H 

(t + τ1 ) 

∂u (t − τ1 ) 
= 0 

∂ 
∧ 
H 

(t) 

∂v (t) 
− χ[ 0 ,T −τ2 ] (t) 

∂ 
∧ 
H 

(t + τ2 ) 

∂v (t − τ2 ) 
= 0 

∂ 
∧ 
H 

(t) 

∂w (t) 
− χ[ 0 ,T −τ3 ] (t) 

∂ 
∧ 
H 

(t + τ3 ) 

∂w (t − τ3 ) 
= 0 

∂ 
∧ 
H 

(t) 

∂z(t) 
− χ[ 0 ,T −τ4 ] (t) 

∂ 
∧ 
H 

(t + τ4 ) 

∂z(t − τ4 ) 
= 0 

That are
 

 

 

 

 

 

 

 

 

 

 

 

 

u (t) = 

λ2 

A 

(
β1 

S(t) I W (t) 
N 

+ β2 
S(t) I(t) 

N 

)
−χ[ 0 ,T −τ1 ] (t) λ1 (t+ τ1 ) 

A 

(
β1 

S(t+ τ1 ) I W (t+ τ1 ) 
N 

+ β2 
S(t+ τ1 ) I(t+ τ1 ) 

N 

)
v (t) 

= 

λ3 I(t)+ λ4 C(t) −χ[ 0 ,T−τ2 ] 
(t) λ5 (t+ τ2 )(I(t+ τ2 )+ C(t+ τ2 )) 

B 
w (t) 

= 

λ2 (t) I W (t) −χ[ 0 ,T−τ3 ] 
(t) λ5 (t+ τ3 ) I W (t+ τ3 ) 

G 

z(t) = 

λ5 (t) H(t) −χ[ 0 ,T−τ4 ] 
(t) λ6 (t+ τ4 ) H(t+ τ4 ) 

K 

(15) 

By the bounds in U of the controls, it is easy to obtain u ∗, v ∗,
 

∗ and z ∗ are given in (11) –(14) the form of system (4) . �

. Numerical simulation 

In this section, we present the results obtained by numerically 

olving the optimality system. In our control problem, we have ini- 

ial conditions for the state variables and terminal conditions for 

he adjoints. That is, the optimality system is a two-point boundary 

alue problem with separated boundary conditions at times step 

 = t 0 and i = t f . We solve the optimality system by an iterative

ethod with forward solving of the state system followed by back- 

ard solving of the adjoint system. We start with an initial guess 

or the controls at the first iteration and then before the next itera- 

ion, we update the controls by using the characterization. We con- 

inue until convergence of successive iterates is achieved. A code is 

ritten and compiled in Matlab using the following data. 

Different simulations can be carried out using various values of 

arameters. In the present numerical approach, we use the follow- 

ng parameters values taken from [13] : 
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Table 2 

Parameter values used in numerical simulation. 

Paramter Description Value in d −1 

μ Natural mortality 0.02 

β1 The rate of people who were infected by contact with the infected without sympt 0.2 

β2 The rate of people who were infected by contact with the infected with sympt 0.1 

α1 The rate of people become normaly infected with symptoms 0.8 

α2 The rate of people have developed a rapid development of the disease 0.4 

α3 The rate of People have severe complications such as pulmonary failure. 0.2 

θ1 The rate of people with symptoms of mild virus who have been quarantined. 0.1 

θ2 The rate of people with serious complications who have been quarantined 0.2 

δ1 Mortality rate due to complications. 0.3 

δ2 The rate of people who died under quarantine in hospitals. 0.08 

σ The rate of people who recovered from the virus 0.08 

� Denote the incidence of susceptible. 2,000,000 

Table 3 

Population values used in numerical simulation Since control and state func- 

tions are on different scales, the weight constant value is chosen as follows: 

A = 10 , 0 0 0 , B = 10 , 0 0 0 , F = 10 , 0 0 0 and G = 10 , 0 0 0 . 

Popoluation Description Value 

S(0) Population in Brazil 3 ×10 8 

I W (0) Infected without symptoms 3 × 10 5 

I(0) Infected with symptoms 100,000 

C(0) Infected with complications 10,000 

H(0) Infected who have been quarantined in hospitals 60,000 

R(0) Recovered people 20,000 
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Fig. 4. The evolution of the number of Recovered and infected in quarantine with 

and without control u (t) and with delay. 
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Table 2 and 3 below we will discuss only the negative impact 

f delay on the evolution of potential people and recovered people 

rom the disease and their response to precautionary and preven- 

ive measures. 

The proposed control strategy in this work helps to achieve sev- 

ral objectives. 

.1. Strategy A: sensitization and prevention 

For This strategy we use only the optimal control u (t) . 

From Fig. 4 and Table 2 and 3 , Delays in implementing the 

trategy to guide, educate and protect against COVID-19 in Brazil 

ad very serious consequences after the outbreak of the epidemic 

fter the initial settlement. This has resulted in a large and recently 

ccelerated spread of more than 370,0 0 0 cases of COVID 19 virus, 

nd its results will be a delay in early detection, which reduces the 

umber of people healed and has significantly increased the num- 

er of deaths in Brazil. 

This delay is not taking into account advice and measures of 

revention in a real and serious way: 

• Not taking the disease seriously in Brazil. 
• Not to wearing medical masks while keeping the hand clean, 

while reducing handshake. 
• Some consider this a regular virus, just like any other seasonal 

flu. 
• Not leaving a safe distance between him and the affected per- 

son. 

In Fig. 2 shows that the number of recovered from the disease 

ecreased negatively, we notice that after 100 days the number of 

ecovered decreased From 1 . 01 × 10 4 to 8 . 11 × 10 3 after the delay

f 10 days, while the decrease in the number of suscepetible in- 

reased from 1 . 01 × 10 4 to 6 . 29 × 10 3 after the delay of 50 days. 

.2. Strategy B: diagonsis and treatment 

In his strategy, we combined two optimal controls w (t) and 

(t) . 
10 
In Fig. 5 and Tables 2 and 3 showed that the number of recov- 

red from the disease decreased negatively, we noticed that after 

00 days the number of recovered decreased From 1 . 01 × 10 4 to 

 . 11 × 10 3 after the delay of 10 days, while the decreased in the

umber of suscepetible increased from 1 . 01 × 10 4 to 6 . 29 × 10 3 af-

er the delay of 20 days. We explained these results by the fol- 

owing: whenever the delay in the application of the strategy of 

urveillance and diagnosis of expatriates in Brazil from endemic 

ountries such as Italy is a model of the fact that the first in- 

ected with Brazilian citizen came from Italy, with a diagnosis of 

is health and placing it under sanitary control for a period of at 

east 14 days. This has led to the massive spread of the virus in all

egions of Brazil. 
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Fig. 5. The evolution of the number of Recovered and infected in quarantine with 

and without control w (t) and z(t) and with delay. 
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Fig. 6. The evolution of the number of Recovered and infected in quarantine with 

and without control v (t) and z(t) and with delay. 
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.3. Strategy C: quarantine and treatment 

For This strategy we combined two controls v (t) and z(t) . 

In Fig. 6 and Tables 2 and 3 and showed that the number of re-

overed from the disease decreased negatively, we notice that af- 

er 100 days the number of recovered decreased From 8 . 1 × 10 4 

o 4 . 08 × 10 5 after the delay of 10 days, while the decreased in

he number of suscepetible increased from 8 . 1 × 10 5 to 6 . 72 × 10 3 

fter the delay of 50 days. We clarify these results by the follow- 

ng: The delay in implementing the quarantine strategy for infected 

ith COVID-19, whether inside hospitals or at home in Brazil, and 

as led to a spread widespread in all regions of Brazil, where the 

umber of people infected now exceeds 370,0 0 0 cases of infection 

f COVID-19. 

.4. Strategy D: quarantine and diagnosis and monitoring with 

reatment 

To use this optimal strategy, we combine between the optimal 

ontrols v (t) , w (t) and z(t) 

From Fig. 7 , and depending on the values in Table 2 , we note

hat the longer the delay in serious use and rapid interaction to re- 

uce the spread of the virus. Fig. 4 shows that the number of peo-

le recovering from the disease decreased negatively and we no- 

ice that after 150 days the number of people recovered decreased 

rom 4 . 56 × 10 5 to 3 . 17 × 10 5 after the delay of 10 days, while the

ecrease in the number of people recovered increased from 4 × 10 5 

o 3 . 57 × 10 3 after the delay of 50 days. 

This decrease is due to several factors, including ( Figs. 6 and 7 ):
11 
• The delay in schools closure in Brazil. 
• The delay in closing airports and ports in a timely manner in 

Brazil. 
• The delay in suspending air, land and sea travels from Brazil to 

affected countries. 
• The delay closure of schools, universities in Brazil. 
• The delay in applying precautionary, preventive and strict mea- 

sures when receiving travelers to Brazil. 
• The tolerance of others in the passage of passengers through 

airports in some countries 
• The delay in diagnosis of infected cases, especially as symptoms 

do not appear in the disease’s incubation period. 
• The delay in applying total quarantine among patients increases 

the spread of the disease in all over Brazil. 

.5. Cost-effectiveness analysis 

In this section, we analyze the profitability of the previous three 

cenarios and strategies by comparing these two control strategies 

o determine the most profitable strategy. Following the method 

pplied in several studies [29–31] , we assess costs using the differ- 

ntial cost-effectiveness (ICER). This ratio used compare the differ- 

nces between costs and health outcomes of two competing inter- 

ention strategies. 

The ICER is defined as the quotient of the difference in costs in 

trategies i and j, by the difference in infected averted in strategies 

 and j(i, j ∈ { 1 , 2 , 3 , 4 } ) . 
Given two competing strategies (1) and (2), where strategy 

2) has higher effectiveness than strategy (1) (T A (2) > T A (1) ), the
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Fig. 7. The evolution of the number of recovered and hospitalization with and 

without controls with delay. 
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Table 4 

Total costs and total averted infections for strategies 1–4. 

Strategy Total averted infections (TA) Total cost (TC) 

4 5 . 24 × 10 7 1 . 94 × 10 6 

3 4 . 85 × 10 7 3 . 05 × 10 6 

2 4 . 82 × 10 7 1 . 57 × 10 6 

1 4 . 52 × 10 7 5 . 92 × 10 5 
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CER values are calculated as follow: 

C ER (1) = 

T C (1) 

T A (1) 

C ER (2) = 

T C (2) − T C(1) 

T A (2) − T A (1) 

here the total costs (T C) and the total cases averted (T A ) are

efined, during a given period for strategy i for i = 1 , 2 , 3 , 4 by: 

 C(i ) = 

T ∫ 
0 

(
β1 u (t) 

S(t) E(t) 

N 

+ β2 u (t) 
S(t) I(t) 

N 

+ v (t)(I(t) + D (t)) + z(t) H(t) 

)
dt 

 A (i ) = 

T ∫ 
0 

( E(t) + I(t) + C(t) + H(t)) 

−(E ∗(t) + I ∗(t) + C ∗(t) + H 

∗(t)) ) dt 

hile (E ∗(t) + I ∗(t) + C ∗(t) + H 

∗(t)) is the optimal solution asso-

iated to the optimal control ( u ∗, v ∗, w 

∗, Z ∗) Using the simulation 

esults and we ranked, in the Table 3 our control strategies in or- 

er of increased numbers of averted infections. 

Strategy I is compared with strategy J with respect to increased 

ffectiveness, in reference to Table 4 . So ( Table 4 ): 

C ER (2) = 

T C (2) 

T A (2) 
= 

1 . 57 × 10 

6 

4 . 82 × 10 

7 
= 0 . 032 

C ER (3) = 

T C (3) − T C(2) 

T A (3) − T A (2) 
= 

3 . 05 × 10 

6 − 1 . 57 × 10 

6 

4 . 85 × 10 

7 − 4 . 82 × 10 

7 
= 4 . 93 
12 
Since ICER (2) < ICER (3) , then strategy 3 is less effective than 

trategy 1. Therefore, strategy 2 is excluded from the set of alter- 

atives. 

Next, strategy 2 is compared to strategy 4. The ICER values for 

trategy 4 and strategy 2 are calculated below: 

C ER (2) = 

T C (2) 

T A (2) 
= 

1 . 57 × 10 

6 

4 . 82 × 10 

7 
= 0 . 032 

C ER (4) = 

T C (4) − T C(2) 

T A (4) − T A (2) 
= 

1 . 94 × 10 

6 − 1 . 57 × 10 

6 

5 . 24 × 10 

7 − 4 . 82 × 10 

7 
= 0 . 08 

Since ICER (2) < ICER (4) , then strategy 4 is less effective than 

trategy 2. Therefore, strategy 2 is excluded from the set of alter- 

atives. 

Next, strategy 2 is compared to strategy 1. The ICER values for 

trategy 2 and strategy 1 are calculated below: 

C ER (2) = 

T C (2) 

T A (2) 
= 

1 . 57 × 10 

6 

4 . 82 × 10 

7 
= 0 . 032 

C ER (1) = 

T C (1) − T C(2) 

T A (1) − T A (2) 
= 

5 . 92 × 10 

5 − 1 . 57 × 10 

6 

4 . 52 × 10 

7 − 4 . 82 × 10 

7 
= 32 . 6 

Since ICER (2) < ICER (1) , then strategy 1 is less effective than 

trategy 2. Therefore, strategy 2 is excluded from the set of alter- 

atives. 

Therefore, the conclusion is that strategy 1 (awarness cam- 

aigns to protect potential individuals infected with the virus, pre- 

ent contact with people infected with COVID-19 and with hospital 

uarantine for the infected) is the most effective strategy as previ- 

usly mentioned by the proportions. 

. Conclusion 

In this paper, we introduced a mathematical model SI W 

ICHR 

f kouidere et al, that described the spread of COVID-19 virus in 

razil. We divided the population denoted by N into six compart- 

ents, susceptible population Brazil S, the infected without symp- 

oms I W 

, the infected with symptoms I, the infected with com- 

lications C, the number of people who have been quarantined in 

ospitals H and recovered R . We analyzed a mathematical model 

nd the local and the global stability of COVID-19 free equilibrium 

nd COVID-19 endemic equilibrium are obtained. We also studied 

he sensitivity analysis of the model parameters to know the pa- 

ameters that have a high impact on the reproduction number R 0 . 

n addition, in order to minimize the number of infected and in- 

ected with several complications and number of people in guar- 

ntine. We also introduced four controls which, respectively, rep- 

esent sensitization, prevention, quarantine, diagnosis, monitoring, 

reatment and psychological support with follow-up. We also stud- 

ed the optimal control with delay which represents measuring the 

xtent of interaction with the means of treatment or awareness 

ampaigns. that if preventive and proactive measures are imple- 

ented, such as awareness-raising and quarantine campaigns in all 

vere Brazil, the spread of the COVID-19 epidemic will be reduced, 

hus the number of people infected with the virus and the num- 

er of deaths will be reduced. We applied the results of the con- 

rol theory and we managed to obtain the characterizations of the 



A. Kouidere, D. Kada, O. Balatif et al. Chaos, Solitons and Fractals 142 (2021) 110438 

o

s

F

E

D

C

&

e

e

&

A

v

t

R

 

 

[

[

[

[

[

[

[

[

[  

[

[  

[

[  

[  

[

[

[  

[

[

[  

[  

[

ptimal controls. The numerical simulation of the obtained results 

howed the effectiveness of the proposed control strategies. 

unding source 

None. 

thical approval 

Approval was not required. 

eclaration of Competing Interest 

The authors declare that they have no conflict of interests. 

RediT authorship contribution statement 

Abdelfatah Kouidere: Writing - original draft, Writing - review 

 editing. Driss Kada: Writing - original draft, Writing - review & 

diting. Omar Balatif: Writing - original draft, Writing - review & 

diting. Mostafa Rachik: Writing - original draft, Writing - review 

 editing. 

cknowledgments 

The authors thank the editor and the anonymous reviewers for 

ery helpful suggestions and comments that helped us to improve 

he paper. 

eferences 

[1] World Health Organization. who.int/csr/don/12- january- 2020- novel- 
coronavirus-china . 

[2] World Health Organization. who.int/emergencies/diseases/novel- 
coronavirus-2019 . 

[3] World Health Organization. who.int/health-topics/coronavirus/ 
laboratory- diagnostics- for- novel- coronavirus . 

[4] Middle east respiratory syndrome coronavirus (MERS-CoV) – the Kingdom of 

Saudi Arabia. 2019. Who.int/csr/don/05-december-2019-mers-saudi-arabia/. 
[5] Kouidere A , Balatif O , Ferjouchia H , Boutayeb A , Rachik M . Optimal control

strategy for a discrete time to the dynamics of a population of diabetics with 
highlighting the impact of living environment. Discrete Dynamics in Nature 

and Society 2019 . Article ID 5949303 
[6] Middle East respiratory syndrome coronavirus (MERS-CoV) Summary of Cur- 

rent Situation 21 July 2017. 

[7] Middle east respiratory syndrome coronavirus (MERS-CoV) – Qatar, 26 decem- 
ber 2019, http://www.who.int/csr/don/26- december- 2019- mers- qatar . 

[8] Chen T., Rui J., Wang Q.. A mathematical model for simulating the phase-based 
transmissibility of a novel coronavirus. infect dis poverty. 2020. 9, 24, doi: 10. 

1186/s40249- 020- 00640- 3 . 
[9] Kucharski A.J.. Early dynamics of transmission and control of COVID-19: a 

mathematical modelling study. PMID: 32171059. doi: 10.1016/S1473-3099(20) 

30144-4 . 
[10] Balatif O, Khajji B, Rachik M. Mathematical modeling, analysis, and optimal 

control of abstinence behavior of registration on the electoral lists. Discrete 
Dyn Nat Soc Vol 2020;Article ID 9738934:12. doi: 10.1155/2020/9738934 . 

[11] Pontryagin LS , Boltyanskii VG , Gamkrelidze RV , Mishchenko EF . The mathe-
matical theory of optimal processes. New York, NY, USA: Wiley; 1962 . 

12] Fleming WH , Rishel RW . Deterministic and stochastic optimal control. New 

York, NY, USA: Springer; 1975 . 

[13] Novel coronavirus (2019-nCoV). https://www.who.int/docs/default-source/ 

coronaviruse/situation-reports/20200315-sitrep-55-COVID-19.pdfsfvrsn= 
33daa5cb _ 8 . 
13 
[14] Novel coronavirus (2019-nCoV) technical guidance: Early investigations. 
who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/ 

early-investigations . 
[15] Boyce WE , DiPrima RC . Elementary differential equations and boundary value 

problems. New York: John Wiley & Sons; 2009 . 
[16] Wang H, Wang Z, Dong Y. Phase-adjusted estimation of the number of coron- 

avirus disease 2019 cases in Wuhan. China Cell Discov 2020;6:10. doi: 10.1038/ 
s41421- 020- 0148- 0 . 

[17] Al-Asuoad N., Rong L., Alaswad S., Shillo M.. Mathematical model and simu- 

lations of MERS outbreak: predictions and implications for control measures. 
2016. 5(2). 

[18] Birkhoff G , Rota GC . Ordinary differential equations. 4th ed. New York: John- 
Wiley & Sons; 1989 . 

[19] The Food and Agriculture Organization of the United Nations (FAO), Coron- 
avirus disease (COVID-19) outbreak, http://www.fao.org/2019-ncov/en/ . 

20] COVID-19 Overview, https://www.coronatracker.com/analytics/ . 2020a. 

21] World health organization. SARS virus. https://www.who.int/ith/diseases/sars/ 
en/ . 

22] Choi S.C., Ki M.. Estimating the reproductive number and the outbreak size of 
novel coronavirus disease (COVID-19) using mathematical model in Republic 

of Korea. PMID: 32164053. doi: 10.4178/epih.e2020011 . 
23] Kouidere A, Labzai A, Khajji B, Ferjouchia H, Balatif O, Boutayeb A, Rachik M. 

Optimal control strategy with multi-delay in state and control variables of a 

discrete mathematical modeling for the dynamics of diabetic population. Com- 
mun Math Biol Neurosci 2020;2020. doi: 10.28919/cmbn/4486 . Article ID 14 

ISSN: 2052-2541 
24] World Health Organization. https://experience.arcgis.com/experience/ 

6 85d0ace52164 8f8a5beeeee1b9125cd . 2020b. 
25] Kouidere A, Khajji B, El A, Balatif O, Rachik M. A mathematical modeling with 

optimal control strategy of transmission of COVID-19 pandemic virus. Commun 

Math Biol Neurosci 2020;2020. doi: 10.28919/cmbn/4599 . Article ID 24 ISSN: 
2052-2541 

26] Lekdee N , Sirisubtawee S , Koonprasert S . Bifurcations in a delayed fractional 
model of glucose-insulin interaction with incommensurate orders. Adv Differ 

Equ 2019;2019:318 . 
27] Li Y , Liu H , Yang R , Tang L . Dynamics in a diffusive phytoplankton-zooplankton

system with time delay and harvesting. Adv Differ Equ 2019;2019:79 . 

28] Sarkar A , Mondal J , Chatterjee S . Controlling self-excited vibration using accel- 
eration feedback with timedelay. Int J Dyn Control 2019;7:1521–31 . 

29] Silva CJ , Maurer H , Torres DFM . Optimal control of a tuberculosis model with
state and control delays. Math Biosci Eng 2017;14(1):321–37 . 

30] Khajji B, Kada D, Balatif O, Rachik M. A multi-region discrete time mathemat- 
ical modeling of the dynamics of COVID-19 virus propagation using optimal 

control. J Appl Math Comput 2020. doi: 10.1007/s12190- 020- 01354- 3 . 

31] Khan MA , Shah SW , Ullah S , Gomez-Aguilar JF . A dynamical model of asymp-
tomatic carrier zika virus with optimal control strategies. Nonlinear Anal Real 

World Appl 2019;50:144–70 . 
32] Bonyah E , Khan MA , Okosun KO , Gomez-Aguilar JF . Modelling the effects of

heavy alcohol consumption on the transmission dynamics of gonorrhea with 
optimal control. Math Biosci 2019;309:1–11 . 

33] Ullah S , Khan MA , Gomez-Aguilar JF . Mathematical formulation of hep- 
atitis B virus with optimal control analysis. Optim Control Appl Methods 

2019;40(3):529–44 . 

34] Bentout S, Chekroun A, Kuniya T. Parameter estimation and prediction for 
coronavirus disease outbreak 2019 (COVID-19) in algeria. AIMS Public Health 

2020;7(2):306–18. doi: 10.3934/publichealth.2020026 . 
35] Bani-Yaghoub M , Gautam R , Shuai Z , van den Driessche P , Ivanek R . Reproduc-

tion numbers for infections with free-living pathogens growing in the environ- 
ment. J Biol Dyn 2012;6(2):923940 . 

36] Driessche PV , Watmough J . Reproduction numbers and sub-threshold endemic 

equilibria for compartmental models of disease transmission. Math Biosci 
2002;180:2948 . 

37] LaSalle JP . The stability of dynamical systems. In: Regional conference series in 
applied mathematics, 25. Philadelphia, PA, USA: SIAM; 1976 . 

38] Gumel AB , Shivakumar PN , Sahai BM . A mathematical model for the dy-
namics of HIV-1 during the typical course of infection. Nonlinear Anal 

2001;47(3):17731783 . 

39] Karrakchou J , Rachik M , Gourari S . Optimal control and infectiology: applica-
tion to an HIV/AIDS model. Appl Math Comput 2006;177(2):807818 . 

40] Chitnis N , Cushing JM , Hyman JM . Bifurcation analysis of a mathematical 
model for malaria transmission. SIAM J Appl Math 2006;67(1):2445 . 

http://www.who.int/csr/don/12-january-2020-novel-coronavirus-china
http://www.who.int/emergencies/diseases/novel-coronavirus-2019
http://www.who.int/health-topics/coronavirus/laboratory-diagnostics-for-novel-coronavirus
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0005
http://www.who.int/csr/don/26-december-2019-mers-qatar
https://doi.org/10.1186/s40249-020-00640-3
https://doi.org/10.1016/S1473-3099(20)30144-4
https://doi.org/10.1155/2020/9738934
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0012
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200315-sitrep-55-COVID-19.pdfsfvrsn=33daa5cb_8
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/early-investigations
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0015
https://doi.org/10.1038/s41421-020-0148-0
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0018
http://www.fao.org/2019-ncov/en/
https://www.coronatracker.com/analytics/
https://www.who.int/ith/diseases/sars/en/
https://doi.org/10.4178/epih.e2020011
https://doi.org/10.28919/cmbn/4486
https://experience.arcgis.com/experience/685d0ace521648f8a5beeeee1b9125cd
https://doi.org/10.28919/cmbn/4599
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0029
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0029
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0029
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0029
https://doi.org/10.1007/s12190-020-01354-3
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0031
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0031
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0031
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0031
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0031
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0033
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0033
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0033
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0033
https://doi.org/10.3934/publichealth.2020026
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0037
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0037
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0038
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0038
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0038
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0038
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0039
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0039
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0039
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0039
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0040
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0040
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0040
http://refhub.elsevier.com/S0960-0779(20)30830-4/sbref0040

