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Abstract: Mesenchymal stem cells (MSCs) are the main cell players in tissue repair and thanks to their
self-renewal and multi-lineage differentiation capabilities, they gained significant attention as cell
source for tissue engineering (TE) approaches aimed at restoring bone and cartilage defects. Despite
significant progress, their therapeutic application remains debated: the TE construct often fails to
completely restore the biomechanical properties of the native tissue, leading to poor clinical outcomes
in the long term. Pulsed electromagnetic fields (PEMFs) are currently used as a safe and non-invasive
treatment to enhance bone healing and to provide joint protection. PEMFs enhance both osteogenic
and chondrogenic differentiation of MSCs. Here, we provide extensive review of the signaling
pathways modulated by PEMFs during MSCs osteogenic and chondrogenic differentiation. Particular
attention has been given to the PEMF-mediated activation of the adenosine signaling and their
regulation of the inflammatory response as key player in TE approaches. Overall, the application of
PEMFs in tissue repair is foreseen: (1) in vitro: to improve the functional and mechanical properties of
the engineered construct; (2) in vivo: (i) to favor graft integration, (ii) to control the local inflammatory
response, and (iii) to foster tissue repair from both implanted and resident MSCs cells.

Keywords: mesenchymal stem cells; pulsed electromagnetic fields; osteogenic differentiation; chon-
drogenic differentiation; tissue engineering; adenosine receptors

1. Introduction

Mesenchymal stem cells (MSCs) are multipotent stromal cells with the ability to self-
renew and to differentiate towards osteoblasts, chondrocytes, and adipocytes [1]. Due to
their multilineage differentiation potential, MSCs represent an attractive cell source for
regenerative medicine approaches. In recent years, tissue engineering (TE) based on the
use of MSCs has gained significant attention as an alternative approach to treat bone and
cartilage defects. Bone grafts using MSC-based TE approaches have been proposed in a
wide array of clinical settings to augment bone repair and regeneration. Likewise, cartilage
engineering repair strategies relying on differentiation of MSCs represent an attractive
candidate to treat cartilage lesions.

In addition to their multilineage differentiation potential, MSCs have the ability to
migrate to injured sites in response to environmental signals and promote tissue regen-
eration by either directly replacing damaged tissue or interacting with resident cells to
promote endogenous repair. The therapeutic effects of MSCs also depend on their abil-
ity to control tissue homeostasis: MSCs can modulate the immune response, promote
cell survival, and induce angiogenesis through the secretion of growth factors, cytokines,
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and extracellular vesicles [2]. The ability of MSCs to suppress the immune response is
particularly interesting for their clinical application, reducing the chances of rejection by
the host immune system after transplantation. Moreover, MSCs are the ideal cellular
candidate for TE approaches since they can be easily collected from accessible sources with
minimally invasive procedures (e.g., bone marrow, peripheral blood, adipose tissue) and
can be rapidly expanded in vitro for clinical use [3]. A recent review from Hassan et al.
extensively analyzed the different in vitro expansion protocols for MSCs isolated from
different sources: the authors reported that expansion up to 20-fold can be achieved for
adipose-derived MSCs (ADMSCs) and bone marrow MSCs (BM-MSCs) without compro-
mising cell viability and differentiation potential, with bioreactor and multi-layered flask
being the most effective bioprocessing strategies [4].

Several studies attempted to exploit MSCs in tissue engineering and regenerative
medicine approaches; however, in most cases, rates of engraftment were low, engrafted cells
were short-lived and failed to fully differentiate into functional terminally differentiated
cells. Furthermore, the inflammation frequently characterizing the site of damage further
undermines the success of the treatment.

Results from several in vitro and in vivo studies, suggesting that MSCs have the
potential to increase bone repair and osteogenesis, have fostered the activation of several
registered clinical trials to investigate the role of MSCs in bone defect healing; however,
so far, only a few of them have reported their results [5]. The lack of published results
causes the effectiveness of these therapeutic approaches to remain controversial.

The application of TE and regenerative medicine approaches to the repair of artic-
ular cartilage lesions appear even more complex: although repair strategies that rely on
the chondrogenic differentiation of MSCs are attractive, existing methods fail to provide
reliable long-term clinical results [6]. Impaired tissue formation, lacking the biological
and mechanical properties of the native tissue, together with difficulties in the integration
of the engineered construct into the surrounding tissue, have been reported [7]. Conse-
quently, the clinical use of MSCs for cartilage repair, especially for heavy damage such as
osteoarthritis, is still debated.

It is therefore clear the need to improve current available TE technologies in order to
develop effective tissue substitutes endorsing long-lasting clinical benefits. Along with
TE approaches, therapies aimed at either improving the endogenous regenerative capac-
ity of resident MSCs or recruiting to the damaged site repair-competent cells need to be
pursued. Treatments capable of improving the performance of MSCs, acting both on their
repair/regenerative capacity and their ability to modulate the immune/inflammatory
response, will bring significant value to current regenerative medicine and tissue repair ap-
proaches.

2. Pulsed Electromagnetic Fields

Pulsed electromagnetic fields (PEMFs) are currently applied in the orthopedic field to
promote reparative osteogenesis and to provide joint protection [8]. The first report describ-
ing the successful application of PEMFs to treat non-union fractures dates back to 1974 [9]
and in 1979 the FDA approved PEMFs as a safe and effective treatment for nonunions,
congenital pseudoarthrosis, and failed fusions. The scientific bases of PEMFs stimulation
for bone healing lie on the identification of the relationship between electrical activity and
bone formation in response to applied mechanical load by Fukada and Bassett [10,11].

PEMFs are low frequency magnetic fields, with a specific waveform and amplitude,
characterized by a constant variation of the magnetic field amplitude over time. The pulsed
magnetic field induces a secondary electric field in the exposed tissue similar to the one
naturally generated during the transduction of mechanical energy into electrical energy [12].
In the last 20 years, investigation methodologies adopted from pharmacology have been
systematically applied to study the biological effects exerted by PEMFs exposure leading to
the development of the physical dynamics, i.e., the science studying the precise combination
of physical parameters needed to reach the desired biological effect.
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Evidence in the literature shows that the efficacy of a PEMFs stimulation device
depends on the physical characteristics of the electromagnetic signal employed. In a survey
of the literature, Massari et al. searched for clinical studies evaluating the effectiveness
of PEMF treatment. The survey showed that several PEMF devices are available on the
market, however only a few PEMF signals are supported by clinical evidence: these
signals are either trapezoidal or saw-tooth waves, with magnetic field peak intensity
spanning from 1.2 mTesla (mT) to 2 mT and signal repetition frequencies between 15 Hz
and 75 Hz [13]. Currently, these devices are used in the clinic to safely promote and
accelerate bone fracture healing: PEMFs stimulation has been shown to be effective in
promoting the healing of nonunions [14] and delayed unions [15]. Also fresh fractures
at risk of nonunion can be successfully treated with PEMFs: Faldini et al., in femur
neck fractures, reported 94% healing rate in the PEMFs group compared to 69% in the
placebo group [16]. Since the early 2000s, thanks to the results of a large translational
research project (Cartilage Repair and Electromagnetic Stimulation: C.R.E.S. study), PEMFs
stimulation is also successfully applied to early stage of osteoarthritis, post-traumatic joint
pathology, and after surgical treatment of the joints to control inflammation and protect
articular cartilage from degeneration [8].

Due to the central role of MSCs in the natural events leading to tissue differentia-
tion and repair and as the cellular components in TE approaches for both bone [17] and
cartilage [6], in the last years several efforts have been oriented towards uncovering the
electromagnetic fields (EMFs) effects on MSC osteogenic and chondrogenic differentiation
as well as the signaling pathways involved. As detailed below, results obtained have shown
that PEMFs control inflammatory microenvironment and favor MSC differentiation thus
playing a pro-osteogenic and chondrogenic role. In this field, the identification of PEMFs
membrane targets, and the specific intra- and extra-cellular pathways involved, allows
the rational application of PEMFs to clinical conditions characterized by the disruption of
those specific pathways.

3. Adenosine Agonist Effect Induced by Pulsed Electromagnetic Fields

Adenosine is a purine endogenous nucleoside with many physiopathological func-
tions involved in cancer, pain, inflammation, and neurodegenerative diseases. Adenosine is
primary synthesized from the dephosphorylation of ATP, ADP, and AMP, by the combined
action of two hydrolyzing enzymes denominated ectonucleoside triphosphate diphos-
phohydrolase (CD39) and ecto-5'-nucleotidase (CD73) [18]. Intracellular adenosine levels
are maintained low thanks to the conversion to AMP by adenosine kinase. When en-
ergy demand rises, for example during inflammation or in hypoxic/ischemic conditions,
extracellular adenosine concentration increases [19]. Adenosine functions are mediated
by its interaction with four G-protein coupled receptors (GPCRs), namely A1, Apa, Aggp,
and A3ARs. In particular, A; and AzARs are coupled to Gi protein and they inhibit adeny-
late cyclase (AC) reducing the cAMP levels. Conversely, Aya and Ay ARs are coupled to Gs
protein and their activation leads to an increase of cAMP [18]. ARs modulation is strongly
implicated in the regulation of inflammatory processes suggesting their involvement in
different pathologies resulting from inflammation, including many joint diseases [20].

It is well-known that adenosine and its metabolites are important factors in MSC
growth and differentiation but they are not always comprised as part of the MSCs secre-
tome [21,22]. Data present in the literature report that adenosine regulates MSCs differ-
entiation stimulating both chondrogenesis and osteogenesis, through Ays and AypARs
activation respectively [23]. The activation of Ay5 ARs by endogenous adenosine controls
the cartilage matrix homeostasis in physiological conditions [24]. The loss of A5 ARs
or CD73, in knockout mice, causes spontaneous osteoarthritis with modified cartilage
composition and cartilage thinning [25,26]. Furthermore, it has been reported that Ays ARs
downregulate osteogenic differentiation and that Aps ARs expression is reduced in differ-
entiated osteoblasts, while the contrary occurs during chondrogenesis accompanied by a
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reduction of CD73. This suggests that changes in Ays ARs/CD73 may direct cells toward
osteogenic differentiation rather than the chondrogenic one [27].

Similarly to Apa ARs, A3ARs knockout mice also develop spontaneous osteoarthri-
tis [25,28]. Stimulation of A3ARs counteracts inflammation by promoting infiltrating
inflammatory cell death and averting chondrocytes apoptosis [29]. In human chondrocytes,
A3ARs stimulation leads to downregulation of pro-catabolic pathways thus preventing
cartilage degeneration [30].

The first report describing the effect of PEMFs on ARs dates back to 2002, when
Varani et al. reported the upregulation of Ay ARs induced by PEMFs exposure in human
neutrophils [31]. Later, studies conducted on articular cells—such as chondrocytes and
synoviocytes—reported that PEMFs treatment upregulates Ays and A3ARs expression
(Figure 1) while having no effects on other AR subtypes [32]. The co-treatment with PEMFs
and Ajp and A3AR selective agonists, CGS21680 and CI-IB-MECA respectively, showed
an enhanced effect on the cAMP production in comparison to the agonist treatment alone.
This suggests that PEMFs act as modulators able to enhance adenosine agonist activity.
This effect was abrogated by using selective Ay5 and A3AR antagonists (SCH 58261 and
MRE 3008F20) confirming that the observed effect was due to the activation of Ay and
A3ARs and not to an alteration of AC functionality [32]. The PEMFs treatment influences
also the cellular growth of bovine chondrocytes and fibroblast-like synoviocytes: the co-
treatment with CGS21680 and PEMFs significantly increases cell proliferation [32]. Other
studies showed that A;s and A3ARs stimulation, in the presence of PEMFs, have anti-
inflammatory effects decreasing PGE2 release and cyclooxygenase type 2 (COX-2) expres-
sion in bovine synovial fibroblasts [33]. As mentioned above, Ayp and A3ARs have a
prominent role in inflammation: treatment with A;s and A3AR agonists results in de-
creased release of pro-inflammatory cytokines such as tumor necrosis factor o (TNF-«),
interleukin (IL) 8, PGE2, and IL-6 and increased production of the anti-inflammatory cy-
tokine IL-10 (Figure 1) [34,35]. In vitro studies conducted on T/C-28a2 and hFOB 1.19 cell
lines, human chondrocytes and osteoblasts respectively, confirmed previous data obtained
in bovine cells revealing that PEMFs exposure leads to augmented expression of Ay and
A3ARs, as corroborated by RT-PCR, western blotting analysis, and saturation binding
experiments [36]. The PEMFs-induced upregulation of A4 and A3ARs may reinforce
the compensatory mechanism of the body to counteract inflammation. Even in human
chondrocytes and osteoblasts, the co-treatment with CGS21680 and PEMFs enhances cell
proliferation. Furthermore, both CGS21680 and Cl-IB-MECA showed anti-inflammatory
potential decreasing the release of inflammatory cytokines and other mediators implicated
in joint inflammation and bone diseases [36]. On the other side, in hFOB 1.19 osteoblasts,
PEMEF exposure determined an increase of osteoprotegerin (OPG) production (Figure 1).
OPG hinders the binding between receptor activator of NF-«B ligand (RANKL) and RANK
hampering osteoclasts differentiation and activation [36], thus inhibiting osteolysis.
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Figure 1. Effect of PEMFs on human osteoblasts and chondrocytes (no PEMFs: left panel, PEMFs
exposure: right panel). PEMF stimulation induces an increase of Ayy and A3ARs expression.

The PEMF-induced upregulation enhances the anti-inflammatory downstream receptors signaling by
decreasing NF-«B activation and the release of inflammatory mediators, such as IL-6, IL-8, and PGE2.
Besides, PEMF-induced modulation of Ay, and A3ARs results in a reduced VEGF release and
increased cell proliferation and OPG production.

4. Chondrogenic Effects and Pathways Activated by Pulsed Electromagnetic Fields

MSCs are endowed with chondrogenic differentiation potential and represent an
attractive cell source for cartilage tissue engineering [1]. Based on their above mentioned
pro-chondrogenic and anti-inflammatory effects, PEMFs stimulation could represent an
adjuvant strategy to enhance rate and quality of chondrogenic differentiation and to
improve the functionality of the repaired tissue ultimately improving the outcome after
TE approaches.

PEMFs have been shown to actively promote chondrogenic differentiation of MSCs
isolated from different sources. Mayer-Wagner et al. reported for the first time the ef-
fect of PEMFs stimulation on the chondrogenic differentiation of human BM-MSCs [37].
In the presence of chondrogenic-inductive growth factors, the exposure to PEMFs in-
duced increased collagen type II (Col2) expression and glycosaminoglycan (GAG) content.
Chen et al. reported that PEMFs stimulation enhanced the chondrogenic differentiation
of human ADMSCs in both two-dimensional (2D) and three-dimensional (3D) cultures.
PEMFs significantly increased the expression of chondrogenic genes (SOX9, collagen type
II, and aggrecan) and the deposition of cartilaginous matrix (sulphated GAG) [38]. In hu-
man umbilical cord-derived MSCs, Esposito et al. showed that PEMFs enhanced cellular
proliferation and chondrogenic differentiation [39]. These results have been confirmed by
Kavand et al. in rabbit adipose-derived MSCs cultured in 3D: PEMFs exposure (1.6 mTesla
(mT) at 25 or 50 Hz, 8 h/day, over 21 days) increased Col2 expression and extracellular
matrix deposition [40]. More recently, Chen et al. showed that PEMFs are effective in pro-
moting the chondrogenesis of superparamagnetic iron oxide nanoparticles (SPIO)-labeled
MSCs in a rat model of cartilage defects via activation of the transforming growth factor
beta (TGF-f3)/SMAD signaling pathway [41].

On the contrary, Wang et al. in rat BM-MSCs reported that PEMFs at 1, 2, and 5 mT
inhibit the maintenance of the cartilaginous phenotype and increase cartilage-specific
extracellular matrix degradation in the late stage of chondrogenic differentiation [42].

The reported effects of PEMFs on the chondrogenic differentiation of MSCs show a
wide variety of responses, from stimulation [37,38] to inhibition of chondrogenesis [42]
(Table 1). Significant differences in the PEMFs signal parameters (i.e., waveform, magnetic
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field peak intensity, frequency, and hours of stimulation) are likely responsible for such
discrepancies. In order to overcome this issue, Parate et al. tested the effects of PEMFs
exposure on human MSC chondrogenic differentiation by varying magnetic field peak
amplitude, exposure duration and dosage. Optimal chondrogenic differentiation was
achieved in response to a single 10 min exposure at 2 mT PEMFs: significant upregulation of
Sox9, Col2, and aggrecan mRNA expression was reported, which translated into increased
chondrogenic ECM deposition after 21 days of culture [43]. The authors also took a
significant effort to identify the signaling pathways regulating the response to PEMFs:
a time, intensity, and dose-dependent upregulation of both transient receptor potential
(TRP) cation channels V4 and C1 (TRPV4 and TRPC1) was detected. The TRP channels have
been implicated in cellular mechanotransduction, regulating Ca2+ influx in response to
mechanical stimuli. Ca2+ influx is a key event in initiating chondrogenesis, and both TRPV4
and TRPC1 have been involved in chondrogenic differentiation [44] and early chondrocyte
expansion [45]. Thus, PEMFs, by recruiting TRP channels, increase intracellular Ca2+
concentration and enhance chondrogenesis.

Table 1. Effects of pulsed electromagnetic fields on the chondrogenic potential of mesenchymal stem cells (MSCs).

Cell Source

PEMF Parameters PEMF Effects

75Hz, 1-5 mT Inhibit the maintenance of the cartilaginous

Rat BM-MSCs 3 h/day for 4 weeks. Chengdu Miracle henotype [42]
Chemical device. p yp
Rabbit ADMSCs 75 Hz, 1.8 mT, 8 h/day for 21 days Increase collagen type Il expression and ECM
deposition [40]
. . . Trapezoidal wave, 75 Hz, 1.5 mT, Counteract the IL-1B-induced inhibition of
Bovine MSCs from synovial fluid 3-5 weeks. IGEA device. chondrogenesis [46]
Increase collagen type II expression and
glycosaminoglycan
Human ADMSCs 3 Sipt}sc(i)ida; V5va7vi) 1dT, (GAG) content [38]
un/cay, ays. Enhance chondrogenic differentiation in 2D
and 3D cultures [38]
Trapezoidal wave, 75 Hz, 1.5 mT, 8 h/day, Enh 1lul liferation [39
Human umbilical cord-derived MSCs P 21 days. Y nhance cellular proliferation [39]
IGEA device. Increase chondrogenic differentiation [39]

Human BM-MSCs

Sinusoidal wave, 15 Hz, 5 mT, 45 min
every 8 h, for 21 days. Increase chondrogenic differentiation [37]
TNeue Magnetodyn device.

Upregulate Sox9, Col2 and aggrecan mRNA
expression [43]

15 Hz, 1-4 mT, 5-60 min, single and
multiple exposures. Increase chondrogenic ECM deposition [43]

Upregulate TRPV4 and TRPC1 [43]
Promote MSC migration [47]

Intracellular Ca2+ increase [47]

Sinusoidal wave, 7.5-75 Hz, 1 mT, 24 h. FAK activation [47]
Naval University of Engineering.

enhanced Rho GTPase activity [47]

increased F-actin network formation [47]

Perpendicular PEMFs enhance chondrogenic
differentiation in MSCs cultured on
randomly oriented scaffolds [48]

15 Hz, 0-3 mT, 5-30 min, single and
multiple exposures.

Enhance paracrine function of MSCs for

15 Hz, 0.5-4 mT, 10 min. cartilage regeneration [49]

Abbreviations: hours, h; minutes, min; Hertz, Hz; interleukin 1 beta, IL-1, Focal Adhesion Kinase, FAK.
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Increased intracellular Ca2+ concentration has also been involved in the regulation of
MSC migration in response to PEMFs [47]. PEMFs exposure (1 mT, 50 Hz, 24 h) was shown
to promote MSC migration in an intracellular calcium-dependent manner. PEMFs-induced
intracellular Ca2+ increase in turns activates focal adhesion kinase (FAK) signaling, leading
to enhanced Rho GTPase activity and increased F-actin network formation promoting
cytoskeleton reorganization and cell migration.

Directionalities of the magnetic field have also been shown to impact on MSC chon-
drogenic differentiation [48]. Celik et al. reported that chondrogenic differentiation was
enhanced when MSCs were cultured on randomly oriented scaffolds and exposed to
perpendicular PEMFs. This effect was a result of a complex interplay of focal adhesion
dynamics, cytoskeleton remodeling, and mitochondrial responses.

PEMFs have also been shown to modulate the MSC secretome, evaluated as condi-
tioned medium (CM) harvested from PEMFs-exposed MSCs [49]. In this study, the au-
thors reported that CM harvested from PEMFs-exposed MSCs (PCM) has increased pro-
chondrogenic activity in comparison to medium derived from unexposed cells. In fact,
it promoted cartilage formation with superior hyaline phenotype, and showed higher
anti-inflammatory potential, protecting cartilage from adverse inflammatory conditions
within the articular environment. Moreover, migration of both chondrocytes and MSCs
was enhanced by PCM, suggesting its potential to chemotactically attract chondrocytes or
MSCs and promote endogenous cartilage regeneration.

The anti-inflammatory effect of PEMFs exposure has been extensively described above.
Of particular interest are the results from Ongaro et al. who investigated the effects of
PEMFs stimulation during chondrogenic differentiation of bovine synovial MSCs in pres-
ence of IL-1(3 [46]. The authors reported that PEMFs stimulation alone or in presence of
chondrogenic-induction medium had a limited effect in promoting chondrocyte differenti-
ation. However, in presence of IL-1(3, PEMFs stimulation counteracted the IL-1p3-induced
inhibition of chondrogenesis, restoring proteoglycan synthesis, and preserving aggrecan
and Col2 mRNA expression. These data suggest that PEMFs stimulation sustains and
promotes chondrogenic differentiation also under inflammatory conditions.

In agreement with these findings, Veronesi et al. showed that PEMFs stimulation fa-
vors osteochondral regeneration in rabbit osteochondral lesions treated with a collagenous
scaffold and BM concentrate [50]. In particular, PEMFs exposure significantly improved
cartilage cellularity and matrix GAG content, and the macroscopic appearance and per-
centage of cartilage under the tidemark. More recently, Stefani et al. assessed the effects
of PEMFs exposure on the structural and functional quality of tissue-engineered cartilage
grafts [51]. The authors reported that PEMFs stimulation promotes the formation of a
uniform hyaline-like repaired tissue and reduces the levels of pro-inflammatory cytokines
within the joint environment.

5. Therapeutic Implications for Cartilage Repair Approaches

The studies discussed above suggest a significant impact of PEMFs stimulation on
different aspects of MSC-based therapies for cartilage repair. First of all, PEMFs exposure
enhances MSC chondrogenic differentiation through both direct activation of chondrogenic
signaling pathways (i.e., TGF- /SMAD) and indirect paracrine mechanism, mediated by
MSC secretome. In this view, PEMFs could be applied as adjuvant therapy to increase
cartilage-specific gene expression and chondrogenic differentiation of MSCs to overcome
the obstacles of using growth factors in vivo.

Second, PEMFs stimulation can also act as a chemotactic signal for MSCs and chon-
drocytes thus favoring cell migration to the site of injury to promote tissue repair. Third,
PEMFs exert a strong anti-inflammatory effect protecting cartilage tissue from the catabolic
activity of pro-inflammatory cytokines. Following cartilage injury or osteoarthritis, the ex-
pression of pro-inflammatory cytokines and catabolic factors are upregulated causing
sustained inflammation, matrix degradation, and chondrocyte apoptosis [52]. Exposure to
PEMFs exerts a direct anti-inflammatory effect through the upregulation of A5 and A3
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adenosine receptors, thus reducing the release of pro-inflammatory cytokines and increas-
ing the release of anti-inflammatory mediators. In addition, PEMFs exposure increases
the anti-inflammatory potential of MSC secretome thus enhancing the therapeutic efficacy
of MSCs in mitigating the cartilage damage and restoring the MSC regenerative capacity
within the inflamed joint environment.

6. Osteogenic Effects and Pathways Activated by Pulsed Electromagnetic Fields

Bone healing is a very complex process including different phases accompanied by the
formation of new tissue that restores the injured bone. Following the inflammatory phase,
it involves MSCs recruitment, their differentiation into osteoblasts and the production of
extracellular bone matrix components. It is now known that all these processes are guided
by a plethora of signals that regulate the activities of bone repairing cells, through the mod-
ulation of signaling pathways. The main signaling pathways involved have been recently
reviewed by Majidinia et al. and include Wnt/3-catenin, Notch, Bone Morphogenetic
Protein (BMP)/TGF-f3, Phosphoinositide 3-kinases/Akt/mammalian Target Of Rapamycin
(PIBK/Akt/mTOR), mitogen-activated protein kinase (MAPK), platelet-derived growth
factor (PDGF), insulin-like growth factor (IGF), fibroblast growth factor (FGF), and Ca2+
pathways [53].

Here, we focus on the most relevant data concerning PEMF-induced stimulation of
MSC osteogenic differentiation with potential therapeutic implications for the treatment
of bone diseases. The EMFs characteristics and effects on osteoblasts and osteoclasts
have been recently reviewed by Zhang B et al. [54]. In one of the first studies analyzing
the osteogenic effects of PEMFs in human MSCs, it was observed that PEMFs exposure
increased the production of osteogenic markers such as alkaline phosphatase (ALP) and
osteocalcin (OC) in the presence of Bone Morphogenetic Protein 2 (BMP-2) only, suggesting
a synergistic action of PEMFs and BMP-2 [55]. Afterwards, several other authors confirmed
that PEMFs stimulate the osteogenic differentiation of MSCs derived from bone marrow or
adipose tissue also in the absence of BMP-2 [56-58]. The PEMF-induced osteogenic effects
have been observed in cells cultured on plastic or other substrates such as nanostructured
titanium surfaces (TiO2) [59] and biomaterials [58,60].

While it is commonly recognized that PEMFs exposure induces osteogenic differentia-
tion of MSCs, the signaling pathways underlying such effects are still subject of intensive
investigation (Table 2).

Table 2. Effects of pulsed electromagnetic fields on the osteogenic differentiation of mesenchymal stem cells (MSCs).

Cell Source

PEMF Parameters PEMF Effects

Increase ALP activity, mineralization,
Runx2, Osx [61]

C3H10T1/2 murine mesenchymal stem 30 Hz, 1 mT, 2 h/day for 20 days. Increase intracellular Ca2+

cell line

EBI device. concentration [61]

Upregulate Wntl1, phospho-Lrp6,
and (3-catenin [61]

Human ADMSCs

Increase ALP, mineralization, COL-I and

26 Hz ELF-PEMF OC gene expression [57]
7 min/day for 14 days. Increase Akt, p70 S6 kinase, S6 ribosomal
Somagen®device. protein, and ERK1/2
phosphorylation [57]
12 MHz microwave and 30 mT PEMF,
frequency range 50-400 Hz, 8 h/day, Increase ALP activity, mineralization,
14 days. ALP and Runx2 gene expression [58]
STRC device.

Increase ALP activity, mineralization,
30 days, MED device. ALP and OSP gene expression [62]

Activate Akt and mTOR pathway [62]
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Table 2. Cont.

Cell Source PEMF Parameters PEMF Effects
Human periodontal ligament stem cells ~ Rectangular wave, 15 Hz, 1.8 or 2.4 mT, Increase ALIl’égII)’(I;L[ginerahzanon,
(hPDLSC) 1h/day.

GHY-III device. Synergistic effect with BMP-9 [63]
Increase Runx-2, COL-I, FN, OSP, Osx,
OC, BMP-2, ALP gene expression; ALP
activity; BMP-2, DCN, COL-I protein in
cells cultured on nano-TiO2 surfaces [59]

Increase L-type voltage gated Ca

channels (VGCCs) expression [59]

Increase ALP, COL-I, OPN,
Trapezoidal wave, 75 Hz, 2 mT, DCN proteins [64]
10 min/day for 28 days.

Increase Ca2+ fluxes by L-type
voltage-gated Ca channels (VGCCs) [65]

Activation of the Ca2+/CaM
pathway [65]

Increase Ca2+ fluxes by L-type
voltage-gated Ca channels (VGCCs) [65]

Activation of the Ca2+/CaM
pathway [65]

Increase ALP activity, OC production,
mineralization, Runx2, DIx5 [66]

Activate SMAD1/5/8 and p38
MAPK [66]

Upregulate BMP-2, BMP-6, BMP type I
receptor [66]

Human BM-MSCs

Increase ALP activity, OC level,
Trapezoidal wave, 75 Hz, 1.5 mT, mineralization, Runx2, DIx5, Osterix gene
28 days. IGEA device. expression [67]

Increase Notch4, D114, Hey1, Hes1 and
Hes5 expression [67]

Increase ALP activity, OC production,
Runx2 and DIx5 gene expression [68]

Increase miR-26a, miR-29b, miR-210
expression or extracellular release [68]

Increase VEGF expression and
release [68]

Asymmetrical hemi-sine wave, 5-ms Upregulate Wntl, Wnt3a, Wnt10b, Fzd9,

pulse every 55, 1 T, 3 min/day, days 1-5. BMF?2 [69]
Oriental Advance Technology device. Downregulate SOST [69]

Increase ALP activity, mineralization [69]

Abbreviations: hours, h; minutes, min; Hertz: Hz; ALP, alkaline phosphatase; COL-I, collagen type I, ELE-PEME, extremely low frequency
pulsed electromagnetic fields; FN, fibronectin; OSP, osteopontin; Runx2, runt-related transcription factor 2; Osx, osterix; DCN, decorin;
DIx5, distal-less homeobox 5; VEGF, vascular-endothelial growth factor.

The primary cellular target of PEMFs has long been considered the cell membrane.
Indeed one of the first discovery concerning PEMFs molecular mechanisms identified
changes in Ca2+ fluxes, mainly due to L-type voltage-gated calcium channels (VGCCs)
and the consequent activation of the Ca2+/CaM pathway [64]. The increase in intracellular
calcium concentration induced by PEMFs has been reported also in hMSCs as an early
event during stimulation of osteogenic differentiation [65]. However, to date, the precise
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mechanism linking PEMFs, calcium and osteogenesis is not completely understood, proba-
bly due to the complex mechanisms regulating calcium influx and the still elusive roles of
calcium flux and L-VGCCs during osteogenic differentiation [70].

Several studies demonstrated that PEMFs stimulation significantly increases the pro-
osteogenic activity of members of the TGF-3 gene family, including BMP-2 and -4. Recently,
in human bone marrow MSCs (hBM-MSCs), Martini et al. confirmed the combined os-
teogenic activity of PEMFs and BMP-2 [55,56,66], in the presence of low doses of BMP-2.
Furthermore, the authors showed that the PEMFs effects were associated to increased
gene expression of several BMP signaling components including BMP-2, BMP-6, BMP type
I receptor, and to the activation of SMAD1/5/8, the main player in the canonical BMP
signaling pathway [66]. Synergistic effects on osteogenic differentiation of periodontal
ligament stem cells (hPDLSCs) have been also observed following combined treatment of
PEMFs and BMP-9, another component of the BMP family [63].

Several studies also described the effects of PEMFs stimulation on the Wnt/ 3-catenin
signaling pathway. The involvement of Wnt/ 3-catenin pathway in the osteogenic differen-
tiation of MSCs induced by PEMFs has been observed in different cellular models [61,69].
Lin et al. (2015) showed that single-pulsed EMF induces osteogenic differentiation in hBM-
MSCs by modulating the expression of Wnt signaling pathway components. Specifically,
single-pulsed EMF increased the expression of several Wnt ligands, such as Wntl, Wnt3a,
Wntl0b, Fzd9 while downregulating sclerostin, a known Wnt signaling inhibitor [71].
Recently, in the murine mesenchymal stem cell line C3H10T1/2, PEMFs have been shown
to induce the gene expression and protein synthesis of components of the Wnt/ 3-catenin
pathway, as well as an increase in intracellular Ca2+ concentration, suggesting a link
between Wnt/Ca2+ (non-canonical pathway) and Wnt-f-catenin (canonical pathway)
signaling during PEMFs-induced osteogenic differentiation [61].

Other signaling pathways involved in the osteogenic differentiation induced by PEMFs
include the MAPK/ERK pathway, also known to be involved in the differentiation of bone
cells and bone repair processes. The MAPK signaling pathway includes a class of protein
kinases which, through a cascade reaction, activates transcription factors and regulates
gene expression and differentiation [53,72]. Several studies have shown the involvement
of the MEK/ERK cascade in the osteogenic differentiation induced by PEMFs in human
MSCs [57,66]. In hADMSC, Poh et al. reported increased levels of phosphorylated Akt,
p70 S6 kinase, S6 ribosomal protein, and ERK1/2 shortly after PEMF exposure, suggesting
that a combination of ERK and Akt activation in response to extremely low frequency
pulsed electromagnetic fields (ELF-PEMFs) promoted hADMSC growth and survival [57].
On the other side, the activation of p38 MAPK, largely investigated for its role in the
modulation of the osteogenic master gene Runx2 [72], has been recently reported during
the differentiation of hBM-MSCs induced by PEMFs [66].

Furthermore, activation of PI3K/ Akt signaling in hMSCs under PEMFs osteogenic
induction has been reported. Zhang et al. described increased levels of phosphorylated Akt,
phosphorylated GSK34, and nuclear (3-catenin and indicated the Akt/GSK3[/3-catenin
axis involved in osteogenic differentiation induced by PEMFs [54]. Akt involvement has
been also reported in hADMSC osteogenic differentiation induced by ELF-PEMFs signals,
by using the PathScan Intracellular Signaling Array [57]. In the same cellular model,
Akt upregulation has been implicated in the activation of the mTOR pathway identified
during PEMFs-induced osteogenic differentiation in both physiological and inflammatory
conditions [62].

Notch signaling is another relevant signaling pathway investigated during PEMFs-
stimulated osteogenic differentiation [67]. This highly evolutionary conserved pathway
is known to be involved in bone healing [73]. In hBM-MSCs, Bagheri et al. showed that
PEMFs-enhanced osteogenic differentiation is associated to increased expression of several
components of the Notch pathway, such as Notch4, D14, Hey1, Hes1, and Hes5. Further-
more, the treatment with Notch inhibitors reduced PEMFs effects, suggesting that activation
of Notch pathway is required for PEMF-stimulated osteogenic differentiation [67].
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Finally, of particular interest are data reporting the ability of PEMFs to modulate
relevant epigenetic regulators such as miRNAs during PEMF-induced osteogenic differen-
tiation of hBM-MSCs. Specifically, De Mattei et al. showed that PEMFs could increase the
expression and the extracellular release of miR-26a, miR-29b, miR-218, previously involved
in both osteogenesis and angiogenesis [68].

7. Therapeutic Implications for Bone Healing

Emerging evidence shows that PEMFs stimulation represents a safe non-invasive
approach to favor bone repair and optimize bone tissue engineering. The studies reported
above investigated the molecular mechanisms underlying PEMFs effects on MSCs. Globally,
the results of these studies show that PEMFs act by modulating signaling pathways with
well-established roles in bone repair [53] and open several new perspectives for bone repair
therapeutic approaches.

First of all, it appears especially relevant the observation that PEMFs modulate BMP
signaling and increase the osteogenic effects of low BMP-2 doses [66]. In fact, as BMP-2
treatment is currently approved for bone therapy, these results support the idea that the
combined use of PEMFs and BMP-2 may be useful in orthopedic treatments, with the
potential advantage of limiting BMP-2 clinical side effects, probably related to the high
BMP-2 doses used, as well as of lowering BMP-2 therapy costs.

Furthermore, several other studies have shown that PEMFs stimulate Wnt signaling
pathway, commonly activated during bone healing and currently under investigation as
a target for pharmacological intervention. As Wnt pathway is negatively modulated by
endogenous molecules such as sclerostin (SOST), molecules targeting SOST, such as SOST
antibodies (Scl-Ab) and lithium chloride (LiCl) are currently in clinical trials [71]. On this
basis, therapies combining PEMFs with Wnt modulatory molecules can be foreseen [74].
Indeed, combination therapies including treatment with local BMP and antibodies against
Wnt signaling inhibitors are currently under investigation.

Similarly, results showing the involvement of Notch signaling in PEMF-induced os-
teogenic differentiation suggest new bone repair approaches [67]. Although the role of
Notch signaling in bone repair has been debated and not completely clarified, some in vivo
recent results confirmed a relevant role for this pathway in fracture healing [73]. In agree-
ment with these findings, scaffolds loaded with the Notch ligand Jagged-1 have been
shown to favor osteogenesis and promote bone formation in animal models of bone de-
fects [75,76]. Finally, the newly discovered ability of PEMFs to modulate miRNAs involved
in osteogenesis deserves further investigation to unravel their potential for translation into
therapeutical approaches [68].

8. Discussion

Restoration of critical-size bone defects and repair of articular cartilage lesions pose
major challenges to the orthopedic surgeon. Figure 2 shows an overview of PEMFs effects
in view of cartilage repair and bone healing.

Bone grafting is a commonly applied surgical procedure for bone repair that em-
ploys three types of grafts: autografts, allografts, and synthetic grafts. Tissue engineering
represents a promising strategy to overcome the limitations of graft application and the
increasing demand for bone grafts. Bone tissue engineering relies on three major players:
the cellular component, the scaffold and the osteogenic factors [77]. Collectively, several
shreds of evidence support the osteogenic effect of PEMFs on MSCs isolated from different
sources, suggesting a synergistic effect with the application of scaffolds and/or osteogenic
growth factors [78]. PEMFs can be applied to favor the colonization of the implant with
MSCs, promoting their proliferation and osteogenic differentiation [59]. After implantation,
PEMFs favor better graft integration and inhibit osteoclast activity, thus protecting the
newly formed bone from degradation and enhance the osteogenic regenerative potential
of resident MCSs [79]. The recent advances in the knowledge of signaling modulated by
PEMFs encourage further investigations on the use of PEMFs alone or in combination with
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osteogenic molecules and/or biomaterial opening several perspectives for bone repair
therapies and optimization of TE approaches.

PEMFs stimulation
Cartilage Bone
-~ Repair - Repair
MSsC TGF/SMAD pathways BMP-2/6/9
. SOX9/Col2 expression BMP signaling BMP type | receptor
chondrogenic GAG cellular content SMAD 1/5/8 activation
pathways ALP and OC production

Ca2+/CAM pathway
2+
TRPVA and TRPCL Intracellular Ca activation
channels up-regulation
MAPK/ERK PI3K/AKT activation
pathway
FAK signaling activation

F-actin network formation Notchd, DIl4, Heyl, Hes1

Notch signaling and Hes5 up-regulation

MSC proliferation Osleohla.sts prol'ifc.mim and
differentiation

MSC/chondrocyte migration Extracellular matrix deposition

Figure 2. Effects of PEMFs stimulation on MSCs in view of cartilage (left panel) and bone (right
panel) repair.

Cartilage TE for the repair of articular cartilage lesions is an attractive opportunity;
however, several limitations still remain: the repaired tissue fails to reproduce the biome-
chanical properties of the native cartilage thus leading to poor clinical outcomes in the
long term [6].

Several factors can undermine the success of the TE procedure, among which local
inflammation is one of the most adverse ones. The local microenvironment can significantly
impact on in situ degradation, survival and integration of TE constructs, and overall on
the success of local repair therapy [6]. Thus, the environment control after the surgical
procedure is critical to ensure a successful long-term clinical outcome.

PEMFs have been shown to stimulate cellular proliferation and extracellular matrix
deposition favoring the colonization of the engineered construct and the in vitro production
of an engineered tissue with better functional and mechanical properties [51]. In vivo, after
surgical implantation of the construct, PEMFs stimulation fosters the anabolic activities of
MSCs and resident cells and exerts a strong anti-inflammatory effect thus protecting the
engineered construct from the detrimental effects of inflammation [51,80].

In various in vitro studies, PEMFs stimulation demonstrated to be effective through
the modulation of ARs and the subsequent reduction of inflammatory mediators re-
lease [81]. Interestingly, PEMFs through the increase of Ayp ARs and A3ARs potentiate
the effect of endogenous adenosine resulting in more physiological effects in comparison
to traditional drugs. As a consequence, the PEMF-enhanced anti-inflammatory effect of
adenosine would not be accompanied by side effects, receptor desensitization, and down-
regulation [82]. These observations on adenosinergic system modulation suggest that
PEMFs may represent an attractive strategy in the context of ‘soft-pharmacology’ as a
non-invasive treatment capable of increasing the effect of an endogenous drug.

PEMFs stimulation has also been reported to promote MSCs migration [47], thus by
recruiting endogenous MSCs to the defect site, PEMFs can further improve the chances of
success of TE approaches. Lately, the ability of MSCs to affect the surrounding environment
through the secretion of a plethora of regulatory molecules has gained significant interest [2].
Through their secretory activity, MSCs are able to exert anti-inflammatory and regenerative
activities. PEMFs enhance the secretory activity of MSCs, and in particular, Parate et al.
showed that the secretome derived from PEMF-stimulated MSCs could promote cartilage
regeneration [49]. These data suggest the possibility to apply PEMFs stimulation to enhance
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the regenerative potential of MSC-derived secretory products as a cell-free therapeutic for
joint injury and osteoarthritis.

Overall, the scientific evidence suggests that tissue repair strategies for the mus-
culoskeletal system should foresee the use of PEMFs both: (1) in vitro: to promote the
formation of an engineered construct with improved functional and mechanical properties;
(2) in vivo: (i) to promote graft integration; (ii) to locally control the environment after
implantation, protecting the engineered construct from the catabolic activity of inflamma-
tory mediators, and (iii) to stimulate tissue repair from implanted and resident cells either
through a direct action or through the paracrine effect exerted by MSCs. The discovery
of the molecules and the signaling pathways involved in PEMF stimulation will help to
define the optimal application of PEMFs towards the development of more effective tissue
repair strategies leading to successful and long-lasting clinical outcomes.
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