Skip to main content
. Author manuscript; available in PMC: 2021 Mar 16.
Published in final edited form as: J Vis Exp. 2020 Aug 16;(162):10.3791/61654. doi: 10.3791/61654

Figure 5: Representative results of machine learning classification of cancer cells.

Figure 5:

(A) Machine learning overview. Demonstrates process of splitting data collected from confocal tomography, filtering the data, training the machine learning algorithm using 10-fold validation and then testing the model against a random sample of 20% of the data the was reserved. The selected model can then be applied on new data to collect the metastatic index of individual cells. (B) ROC curves showing the performance of 8 different machine learning algorithms for MDA-231-BR-GFP and MDA-231-GFP cells culture for 1, 2 and 9-Days before imaging. This is representative of the type of curve to be analyzed to understand the performance of the trained model. (C) ROC curves for 8 different machine learning algorithms applied to patient derived xenograft (PDX) dissociated cells cultured for 2-Days. This is representative of the type of curve to be analyzed to understand the performance of the trained model. Reproduced from reference24 with permission from the Royal Society of Chemistry.