Skip to main content
. Author manuscript; available in PMC: 2021 Mar 16.
Published in final edited form as: J Vis Exp. 2020 Aug 16;(162):10.3791/61654. doi: 10.3791/61654

Table 2:

Comparison of machine learning methods to classify cancer cells and PDX cancer cells by brain metastatic potential.

Cancer cells
Method AUC Accuracy F1
Neural Network 0.925 0.84 0.847
AdaBoost 0.928 0.853 0.86
Random Forest 0.925 0.849 0.855
Decision Tree 0.898 0.817 0.827
kNN 0.775 0.702 0.718
Logistic Regression 0.769 0.735 0.751
Naive Bayes 0.745 0.715 0.73
SGD 0.73 0.73 0.737
PDX Cancer cells
Method AUC CA F1
Neural Network 0.972 0.881 0.878
Random Forest 0.964 0.888 0.887
AdaBoost 0.957 0.881 0.879
Tree 0.954 0.867 0.865
Logistic Regression 0.897 0.832 0.831
Naive Bayes 0.896 0.846 0.849
kNN 0.882 0.818 0.814
SGD 0.861 0.86 0.853