
Barthelson et al. Mol Brain           (2021) 14:22  
https://doi.org/10.1186/s13041-021-00734-5

MICRO REPORT

No observed effect on brain vasculature 
of Alzheimer’s disease‑related mutations 
in the zebrafish presenilin 1 gene
Karissa Barthelson1*  , Morgan Newman1, Cameron J. Nowell2 and Michael Lardelli1

Abstract 

Previously, we found that brains of adult zebrafish heterozygous for Alzheimer’s disease-related mutations in their pre-
senilin 1 gene (psen1, orthologous to human PSEN1) show greater basal expression levels of hypoxia responsive genes 
relative to their wild type siblings under normoxia, suggesting hypoxic stress. In this study, we investigated whether 
this might be due to changes in brain vasculature. We generated and compared 3D reconstructions of GFP-labelled 
blood vessels of the zebrafish forebrain from heterozygous psen1 mutant zebrafish and their wild type siblings. We 
observed no statistically significant differences in vessel density, surface area, overall mean diameter, overall straight-
ness, or total vessel length normalised to the volume of the telencephalon. Our findings do not support that changes 
in vascular morphology are responsible for the increased basal expression of hypoxia responsive genes in psen1 
heterozygous mutant brains.
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Introduction
The dominant hypothesis of Alzheimer’s disease (AD) 
pathogenesis is the amyloid cascade hypothesis (ACH) 
[1], which postulates the amyloid β peptide (Aβ) as ini-
tiating a pathological process resulting in neurodegen-
eration and dementia (reviewed in (2)). An alternative 
to the ACH is the vascular hypothesis [3], asserting that 
age-related cerebral vascular abnormalities induce AD 
pathologies by limiting nutrient and oxygen delivery to 
produce hypoxic stress, a neural energy crisis and, con-
sequently, neurodegeneration. Significant evidence sup-
ports the vascular hypothesis of AD (reviewed in [4]).

Rare, inherited forms of AD are caused by dominant 
mutations in a small number of genes (early-onset famil-
ial AD, EOfAD). Most EOfAD cases are due to heterozy-
gous mutations in the gene presenilin 1 (PSEN1) that 

obey a “reading-frame preservation rule” [5]. Mutations 
allowing production of a transcript(s) with an altered 
coding sequence but, nevertheless, utilising the original 
stop codon cause EOfAD while mutant alleles coding 
only for truncated proteins do not. We previously gen-
erated knock-in models in zebrafish with each of these 
types of mutant psen1 allele: K97Gfs, a frameshift muta-
tion encoding a truncated protein similar to the human 
PS2V isoform that is increased in sporadic, late onset AD 
[6], and Q96_K97del: an EOfAD-like, reading-frame-pre-
serving deletion of two codons [7].

We recently observed in normoxic adult zebrafish brains 
that heterozygosity for either of the above two muta-
tions causes increased basal expression levels of hypoxia 
responsive genes (HRGs, genes with expression regulated 
by a master regulator of the transcriptional response to 
hypoxia: hypoxia-inducible factor 1 (HIF1)). This implied 
that the heterozygous psen1 mutant fish brains were 
already under some form of hypoxic stress [8], possibly 
due to changes in vasculature, as have been observed in 
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transgenic mice expressing human PSEN1 EOfAD muta-
tion-bearing transgenes in neurons [9]. Therefore, we 
examined the effects on forebrain vasculature with age of 

heterozygosity for the K97Gfs and Q96_K97del mutations 
of psen1 by exploiting the fli1:GFP transgene that labels 
zebrafish endothelial cells [10].
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Methods
Single zebrafish heterozygous for either psen1 muta-
tion were mated with single fish bearing the fli1::GFP 
[10] transgene. GFP-fluorescent progeny were selected 
to form families of siblings either wild type or heterozy-
gous for the psen1 mutant alleles (Fig. 1a). We used n = 4 
brains of each sibling genotype at 6 months (young adult) 
and 24 months (aged) of age for tissue clearing using the 
PACT method [11]. Briefly, PACT involves infusing and 
crosslinking the brain with an acrylamide-based hydro-
gel. Then, light scattering lipids are passively removed 
by incubating the brain with a detergent, allowing light 
to penetrate deep into the tissue [11, 12]. We imaged the 
telencephalons (thought to be the region loosely equiva-
lent of the prefrontal cortex in humans) using an Olym-
pus FV3000 confocal microscope, and performed 3D 
image analysis using Imaris v9.1 (Bitplane) (Fig. 1b). For 
a detailed description of methods, see Additional File 1.

Results and conclusion
No statistically significant differences between sibling 
genotypes at each age were observed for any of the meas-
ured parameters (see Fig. 1). This does not support that 
the increased basal levels of HRGs observed previously in 
our zebrafish psen1 mutants are due to vascular changes. 
However, subtle changes to vasculature due to psen1 gen-
otype may be too small to detect using this method and 
further experimentation using a larger number of bio-
logical replicates may increase statistical power to detect 
changes to these measured parameters. Alternatively, 
other factors such as altered γ-secretase activity [13] and/
or cellular ferrous iron levels [14] may influence HIF1-⍺ 
activity to affect basal HRG expression.

Supplementary Information
The online version contains supplementary material available at https​://doi.
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Additional file 1. Detailed description of sample preparation, imaging 
and 3D image analysis. 

Additional file 2. Quantified values used to produce the graphs in Fig. 1.
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Fig. 1  No statistically significant changes to brain vascular network parameters due to heterozygosity for the Q96_K97del or K97Gfs mutations of 
psen1. a Experimental design flow diagram. Genome-edited psen1 heterozygous mutant fish were pair-mated with transgenic zebrafish expressing 
green fluorescent protein (GFP) under the control of the fli1 promotor (fli1:GFP transgene). GFP-fluorescent larvae were selected to give a family of 
transgenic siblings either wild type or heterozygous for a psen1 mutation. Analysis of the brain vascular network was performed at 6 and 24 months 
of age. b 3D image analysis pipeline. The telencephalon was manually segmented from the optic tectum using contour lines to generate a masked 
surface channel containing only GFP signals from the telencephalon. Then, an additional surface was generated over the vessels to remove 
background fluorescence. A masked surface channel was generated from this surface as input for the filament trace algorithm. c Measured 
values from the surface and filament trace algorithms for the 6 month old zebrafish and d the 24 month old female zebrafish for (left to right) the 
volume of the telencephalon, the density of fli1:GFP positive vessels per telencephalon, the surface area of vessels normalised to the volume of the 
telencephalon, the overall mean diameter of vessels, the overall straightness of the vessels, and the total length of the vessels normalised to the 
volume of the telencephalon. Data are presented as the mean ± standard deviation. Colours of the bars represent the two families of fish used in 
this analysis. P-values were determined by Student’s t-test assuming unequal variance. e Representative images of a 200 µm section of the right 
hemisphere of the telencephalon from fish of each age and genotype. Scale bars indicate 100 µm. Vessels appeared morphologically similar in each 
age and genotype
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