Table 2.
Stimuli-triggered metallic nanotherapeutics for multiple anticancer therapies.
| Types of metal | Metallic nanotherapeutics | Stimuli | Applications | References |
|---|---|---|---|---|
| Gold | AuNSs@PDA-PEG | NIR Laser (808 nm, 0.9 W/cm2) | Photothermal therapy, apoptosis, and autophagy | Li et al., 2019c |
| GNR@Mem | NIR laser (980 nm, 0.5 W cm−2) and X-Ray (4Gy) | Photothermal therapy and radiosensitization induced apoptosis | Sun et al., 2020a | |
| ANS-Mas | NIR laser (810 nm, 14 W/cm2) | Photothermal therapy | Kang et al., 2020 | |
| FA-AuNPs | 638 nm Laser (1.56 W cm−2) | Photothermal and photodynamic therapy | Guerrero-Florez et al., 2020 | |
| FA-PEG-GNP | Ultrasound (1.8 MHz, 8 ×10−6 J cm−2) | Sonodynamic therapy | Brazzale et al., 2016 | |
| Au-MnO JNP Ves | Ultrasound (1.0 MHz, 2.0 W cm−2) and Redox | Chemodynamic therapy by Fenton-like reaction and sonodynamic therapy | Lin et al., 2020 | |
| Copper | CuS@MSN-TAT-RGD | NIR Laser (980 nm, 2 W/cm2) | Photothermal therapy | Li et al., 2018 |
| CuS NPs-PEG-Mal | NIR laser (808 nm, 2 W/cm2) | Photothermal therapy and immunotherapy | Wang et al., 2019c | |
| IONF@CuS | AMF (471 kHz of frequency and 18 mT) and NIR laser (1,064 nm, 0.3 W/cm2) | Photothermal therapy, photodynamic therapy, and magnetic hyperthermia | Curcio et al., 2019 | |
| Cu-Cys NPs | Redox and ROS | Chemodynamic therapy | Ma et al., 2018 | |
| Molybdenum | MoO2 NPs | NIR laser (980 nm laser) | Photothermal therapy | Liu et al., 2018 |
| MoS2-ss@SiO2 | NIR laser (808 nm, 1.5 W/cm2), Redox | Photothermal therapy, photodynamic therapy | Li et al., 2019a | |
| Iron | USPIONs | AMF (15.92 mT at 200 kHz) | Magnetic hyperthermia | Sánchez-Cabezas et al., 2019 |
| Fe3O4@HA NPs | AMF 10 kA/m, 120 kHz) | Magnetic hyperthermia | Soleymani et al., 2020 | |
| IONF@CuS | AMF (471 kHz of frequency and 18 mT) and NIR laser (1,064 nm, 0.3 W/cm2) | Magnetic hyperthermia, photodynamic therapy | Curcio et al., 2019 | |
| Fe3O4-C and RLR NPs | NIR laser (808 nm, 1.5 W/cm2), Redox, and ROS | Photothermal therapy, chemodynamic therapy | Wang et al., 2019d | |
| BSO-FeS2 NPs | NIR laser (808 nm), redox | ROS generation, photothermal therapy, and chemodynamic therapy | Xiao et al., 2020 | |
| Gd-Fe3O4 | AMF (f = 370 kHz, amplitude 500 Oe) | Magnetic hyperthermia | Thorat et al., 2016 | |
| Titanium | PEG–TiO1+x | Ultrasound (40 kHz, 3.0 W/cm2) | Sonodynamic therapy | Wang et al., 2020d |
| CCM-HMTNPs/HCQ | Ultrasound (1 W cm−2) | Ultrasound responsive drug delivery, sonodynamic therapy, and chemotherapy | Feng et al., 2019 | |
| Nd:UCNPs@H-TiO2 | NIR laser (808 nm, 4.7 W/cm2) | Photothermal therapy | Hou et al., 2019b | |
| BTiO2-COS | NIR laser (808 nm, 1.5 W/cm2) | Photothermal therapy, macrophage polarization, and immunotherapy | Zhang et al., 2019b | |
| Palladium | FePd NPs | NIR laser (1,064 nm, 1.0 W cm−2) | Photothermal therapy and magnetic hyperthermia | Yang et al., 2019c |
| Platinum | PEG@Pt/DOX | NIR laser (808 nm, 1.5 W/cm2) | Photothermal therapy, NIR laser-triggered drug delivery and chemotherapy | Fu et al., 2020 |
| Manganese | HSA-MnO2-Ce6 NPs | ROS, PDT laser (660 nm, 5 mW/cm2) | Tumor microenvironment modulation via oxygen generation and photodynamic therapy | Lin et al., 2018 |
| H-MnCO3/Ce6-PEG | ROS, PDT laser (660 nm, 5 mW/cm2) | Photodynamic therapy and chemodynamic therapy | Wang et al., 2019b | |
| Mn(ox)-LDH NPs | NIR laser (808 nm, 1 W/cm2) | Photothermal therapy and cell apoptosis | Xie et al., 2020 | |
| Bismuth | CD47-PEG-Bi2Se3 | NIR laser (808 nm, 1 W/cm2) | Photothermal therapy | Guo et al., 2019 |
| Bi@SiO2−CQ | NIR laser (808 nm, 1 W/cm2) | Photothermal therapy | Chen et al., 2019a | |
| BFO NCs | Ultrasound (3 W/cm2, 40 kHz,), ROS | Ultrasound-triggered chemodynamic therapy | Feng et al., 2020 | |
| Cerium | UCNPs@mCeOx | NIR laser (980 nm laser irradiation (0.72 W cm−2), ROS | Oxygen generation, photodynamic therapy, and chemodynamic therapy | Jia et al., 2019 |