Skip to main content
. 2021 Jan 18;21(2):638. doi: 10.3390/s21020638
Algorithm 1 BPNN algorithm workflow
  • Input: 

     

  •     

    Training set: D={(x1,y1),(x2,y2),...,(xm,ym)}, yiR;

  •     

    Learning rate: η;

  •     

    Initial neuron parameters: w, v, θ, γ.

  • Output: 

    Effective neuron parameters: w, v, θ, γ.

  • 1:

    The samples and network parameters are initialized according to Formula (13);

  • 2:

    for all (kk,yk)D do

  • 3:

          The input β of the output neuron is calculated according to Formula (14);

  • 4:

          The output y^jk of the current sample is calculated according to Formula (15);

  • 5:

          The gradient gj of the neuron in the output layer is calculated according to Formula (16);

  • 6:

          The gradient eh of neurons in the hidden layer is calculated according to Formula (17);

  • 7:

          The Neuron parameters are updated according to Formula (18);

  • 8:

          if The cumulative error calculated by Formula (19) is in accordance with the expectation then

  • 9:

              Break;

  •  

        

  • 10:

    return The neuron parameters.