|
Algorithm A1 Adam based method for parameter optimization. Good default settings for the analyzed COVID-19 dataset are learning rate , exponential decay rates and , and . Algorithm tolerance . All operations are element-wise. |
|
Initialization: maxit = 200 (maximum iteration steps), flag = 0 (convergence indicator), (first moment vector), (second moment vector), (iteration-step indicator), , , . |
|
Iteration process: |
| while
maxit and flag = 0 do
|
|
|
| (gradients of shown in (A6) in Appendix A.2) |
| (bias-corrected first moment estimate) |
| (bias-corrected second raw moment estimate) |
| (temporarily updated parameters) |
| (updated parameters) |
| (averaged parameters for further iteration) |
| if
(convergence determination) |
| flag = 1 |
| end while
|
| return (optimal estimates) |