Algorithm A1 Adam based method for parameter optimization. Good default settings for the analyzed COVID-19 dataset are learning rate , exponential decay rates and , and . Algorithm tolerance . All operations are element-wise. |
Initialization: maxit = 200 (maximum iteration steps), flag = 0 (convergence indicator), (first moment vector), (second moment vector), (iteration-step indicator), , , . |
Iteration process: |
while
maxit and flag = 0 do
|
|
(gradients of shown in (A6) in Appendix A.2) |
(bias-corrected first moment estimate) |
(bias-corrected second raw moment estimate) |
(temporarily updated parameters) |
(updated parameters) |
(averaged parameters for further iteration) |
if
(convergence determination) |
flag = 1 |
end while
|
return (optimal estimates) |