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Sudden cardiac death (SCD) is a devastating event and a significant healthcare burden. 

While coronary artery disease and overall cardiovascular deaths have declined significantly 

over the last decades1, a disproportionately high contribution to mortality results from SCD, 

with the majority of events due to ventricular arrhythmias, VA (ventricular tachycardia, VT 

or ventricular fibrillation, VF). The development of new methodologies and the 

enhancement of existing ones for prediction and prevention of SCD is critical to addressing 

this healthcare need. Accurate SCD risk stratification is an area of active investigation, and it 

has been recognized early on that success will require integration of multi-disciplinary 

efforts from the molecular level to the bedside, and conducting studies in the general 

population2.

Currently, assessment of left ventricular (LV) ejection fraction (LVEF) is the clinical 

standard in identifying patients at high risk of SCD and is used to guide primary prevention 

of SCD3 by the deployment of a cardioverter-defibrillator (ICD). LVEF, however, does not 

adequately represent the underlying myocardial structural and electrophysiological 

remodeling in heart disease predisposing to VAs and SCD, and is thus insensitive and 

nonspecific4. Accordingly, considerable effort has been extended in establishing biomarkers 

that reflect arrhythmia substrates more directly and developing invasive and noninvasive 

techniques to identify patients at risk for SCD. Invasive electrophysiological testing using 

programmed cardiac stimulation has been shown to add specificity in identifying patients 

with ischemic heart disease at risk for VAs, however, the approach does not confer sufficient 

sensitivity to deem patients with a negative test at a low risk of SCD. Comorbidities, 

structural remodeling parameters identified in clinical imaging scans such as contrast-

enhanced (i.e late gadolinium enhanced, LGE) cardiac magnetic resonance (CMR), and 

alterations in ECG parameters are the three main groups of biomarkers that have been 

investigated in the effort to better stratify patients for SCD risk. Presence of atrial 

fibrillation, interim heart failure hospitalization, and worse NYHA class have been 

associated with higher VT/VF risk. Chronic ventricular dilation and remodeling of cardiac 

structure, and particularly the extend of disease-induced scar and fibrosis, predispose to VA5. 

Electrophysiological remodeling, manifested as prolonged QRS interval, and particularly, 

changes in restitution properties, reflected as oscillations in the T-wave6 have been linked to 

VT/VF occurrence. Personalized computational modeling has also made advances in 

predicting risk of VAs7, integrating both structural and electrophysiological remodeling in 

Correspondence: Natalia Trayanova, ntrayanova@jhu.edu, Phone: (410) 516-4375, Address: Hackerman 216, Johns Hopkins 
University, 3400 North Charles Street, Baltimore, MD, 21218. 

HHS Public Access
Author manuscript
Circ Res. Author manuscript; available in PMC 2022 January 22.

Published in final edited form as:
Circ Res. 2021 January 22; 128(2): 185–187. doi:10.1161/CIRCRESAHA.120.318576.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



post-infarction patients, and setting the stage for the utilization of new computational and 

engineering technologies in SCD patient risk stratification.

Among the new technological advancements, machine learning (ML) is making quick 

strides in entering clinical practice. ML applications have also seen a rapid growth and 

popularity in arrhythmia research. A number of studies have employed ML in SCD risk 

stratification. Texture analysis of LGE-CMR has identified imaging features predictive of 

elevated VA risk. In hypertrophic cardiomyopathy, ML achieved diagnostic accuracy ranging 

from 82.8% to 94.1% in a small cohort of 64 patients8. ML has been employed to construct 

patient-specific complexity scores based on the analysis of LGE-MRI scans of 122 ischemic 

cardiomyopathy patients9. In a hyperthrophic cardiomyopathy cohort, VA risk has been 

assessed from electronic health records10, identifying 10 new variables as well as 12 known 

variables, as VA risk predictors. While the above studies offer a static risk score, a few 

studies have also attempted to predict SCD risk dynamically. A probabilistic neural network 

was used to predict11, from intensive care unit signals (ECGs, non-invasive continuous blood 

pressure and arterial oxygen saturation) the occurrence of VF 5 min before the event with an 

accuracy of 82.5%. A recent study12 used random forest ML model to predict survival 

outcomes with baseline and time-varying predictors, achieving area under the receiver 

operating curve (AUC) of 0.88 on a training set of 382 ischemic cardiomyopathy patients; 

predictive variables included heart failure hospitalization, LV scar, LV and left atrial 

volumes, left atrial function, and interleukin-6 levels. These studies demonstrate significant 

interest and underscore the initial successes in utilizing a number of ML approaches to 

advance SCD prediction.

The study by Rogers et al13 in the current issue of this journal presents the latest research 

employing ML approaches to predict risk of VT/VF in ischemic cardiomyopathy. The study 

focused on the contribution of cell electrophysiology to VA risk. The authors hypothesized 

that the morphology of the action potential may predict VA risk and long-term outcome. To 

record in-vivo action potentials in these patients, a monophasic action potential (MAP) 

catheter was used, shown previously to accurately reflect transmembrane action potentials in 

patients8. Measurements consisted of 5706 ventricular MAPs acquired during right 

ventricular apex steady-state pacing from 42 patients with LVEF ≤40%. Each MAP beat was 

analyzed as a voltage-time series in a time window that encompassed the longest MAP.

The patients were randomly split into a 70% cohort for training and a 30% cohort for testing, 

and a K-fold cross-validation (K=10) was performed to increase generalizability (i.e. the 

ability to predict outcome on an unseen patient); each iteration providing one training set 

and one test set not used in training. The methodology to predict patient outcomes from 

MAP beats consisted of two steps. First, a supervised ML algorithm (support vector machine 

or a convolutional neural network) was trained to predict the endpoint of sustained VT/VF 

(with an additional endpoint of mortality at 3 years) using as input all MAP beats across 

patients; the support vector machine model provided a superior performance. Second, the 

proportion of each patient’s beats classified by the ML model to be predictive of the clinical 

outcome was calculated, thus constructing a MAP score for that patient. The AUC for the 

MAP score was 0.90 (95% CI = 0.76–1.00) in predicting VT/VF outcome; the optimal MAP 

score cut-point yielded an accuracy of 85.7%. For the mortality endpoint, AUC was 0.91 
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(95% CI: 0.83–1.00), with the MAP score optimal cut-point point having accuracy of 81.0%. 

In this patient cohort, neither testing for induction of VT/VF, nor the presence of ICD within 

14 days of testing, nor coronary artery disease distributions from angiography predicted 

VT/VF – in the multivariate model, the MAP score was the only predominant predictor of 

VT/VF. There results demonstrate that alterations in action potential shape in ischemic 

cardiomyopathy patients are predictive of clinical outcome.

The authors also compared the average MAP shapes that were predictive of sustained 

VT/VF versus those that were not. MAP waveforms that predicted VT/VF had higher 

plateau (i.e. phase II of the action potential) voltage and longer phase II duration compared 

to MAPs that did not. Simulations with a human ventricular action potential model revealed 

that, not surprisingly, increased ICaL or enhanced NCX current (potentially due to increased 

intracellular Ca resulting from elevated ICaL) could lead to elevated voltage and prolonged 

plateau during phase II. Increased ICaL is known to promote VAs in heart failure14 and in 

patients with certain channelopathies15 and the results by Rogers et al indicate that it could 

potentially also increase VA propensity in ischemic cardiomyopathy. Future studies will 

need to address the question whether elevated ICaL is indeed a biomarker of increased 

vulnerability to VT/VF in ischemic cardiomyopathy. The study by Rogers et al presents a 

clear example of how ML methods can improve VA risk prediction and even suggest 

mechanistic interpretation.

The MAPs analyzed in this study were from the right ventricular apex. As the ischemic 

insult in these patients is typically in the LV, it would be important to understand whether 

changes in action potential such as those documented by the MAP recordings here are a 

global or a regional hallmark of elevated propensity to VT/VF. Would similar differences in 

action potential morphology between patients with different outcomes exists in other regions 

of the heart? Should these changes be regional, would such heterogeneity confer additional 

arrhythmogenic propensity, on top of the potential changes in ICaL?

Alterations in action potential morphology (and potentially in the underlying Ca cycling) in 

ischemic cardiomyopathy patients with VT/VF outcome, whether regional or global, 

represent one important aspect of the arrhythmogenic substrate in this disease. Presence of 

scar and infarct border zone and their 3D extents have been strongly associated with VT risk 

and the mechanisms by which structural remodeling sets up the stage for reentrant VTs in 

these patients have been previously explored. Thus, a generalizable VT/VF ML risk model 

in this population would likely need to use as inputs both electrophysiological and structural 

remodeling data as well as other potential covariates. Of particular value would be if such 

risk predictors are dynamic, allowing for an update in prediction when new data becomes 

available, which requires that the model learns from non-invasive measurements. 

Furthermore, assessing survival outcome rather than outcome at a single point of time would 

enhance the clinical value of the prediction. With careful choices and realistic expectations, 

ML appears well poised to address this healthcare need.
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