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Background and Objective : Coronavirus disease (COVID-19) is an infectious disease caused by a new virus 

never identified before in humans. This virus causes respiratory disease (for instance, flu) with symptoms 

such as cough, fever and, in severe cases, pneumonia. The test to detect the presence of this virus in 

humans is performed on sputum or blood samples and the outcome is generally available within a few 

hours or, at most, days. Analysing biomedical imaging the patient shows signs of pneumonia. In this 

paper, with the aim of providing a fully automatic and faster diagnosis, we propose the adoption of deep 

learning for COVID-19 detection from X-rays. 

Method : In particular, we propose an approach composed by three phases: the first one to detect if in 

a chest X-ray there is the presence of a pneumonia. The second one to discern between COVID-19 and 

pneumonia. The last step is aimed to localise the areas in the X-ray symptomatic of the COVID-19 pres- 

ence. 

Results and Conclusion : Experimental analysis on 6,523 chest X-rays belonging to different institutions 

demonstrated the effectiveness of the proposed approach, with an average time for COVID-19 detection 

of approximately 2.5 seconds and an average accuracy equal to 0.97. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Coronaviruses represent an extended family of respiratory

iruses able to cause diseases, for instance the cold to most im-

ortant respiratory syndromes such as MERS (Middle East respira-

ory syndrome) and SARS (Severe acute respiratory syndrome) [1] .

hey are called in this way due to the crown-shaped tips on their

urface [2] . 

These viruses are really common in a plethora of animal species

ut in several cases they are able to evolve and to infect humans

nd, consequently, rapidly and easily spread among the popula-

ion [1,3] . This is what happened at the end of 2019, when the

019 coronavirus (COVID-19, acronym of COronaVIrus Disease 19 ) 1 ,

 new kind of coronavirus never previously detected in humans,

ppeared. The first cases were found during the pandemic of 2019-

020 [4] , which probably started at the end of December 2019 in
∗ Corresponding author. 
1 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/ 

ituation-reports . 

i  

r  

ttps://doi.org/10.1016/j.cmpb.2020.105608 

169-2607/© 2020 Elsevier B.V. All rights reserved. 
he city of Wuhan [5] , the capital of the Chinese province of Hubei,

nd subsequently spread to several countries around the world.

s confirmation of the rapid spread of the disease in January 28

020 there were more than 4,600 COVID-19 confirmed cases in a

lethora of countries and 106 deaths while on February 15 (in a

ime-window less than a month) these data had already risen to

9,053 cases and 1,381 deaths 2 . As of January 23 2020, the city

f Wuhan has been quarantined with the suspension of all pub-

ic transports into and out of the city. These measures were ex-

ended the following day to the neighboring cities of Huanggang,

zhou, Chibi, Jingzhou and Zhijiang. Moreover, further limitations

nd controls have been adopted in many areas of the world, also

n Europe where several cases have also been recorded. The coun-

ry most affected in Europe in the month of March 2020 is Italy

6] . In fact, in April 5 2020, approximately 15.9 thousand deaths

ere reported by the Italian authorities, of which 8.9 thousand

n the region of Lombardia, 2.1 thousand in Emilia-Romagna the

egion, and 1.2 thousand in the region of Piedmont, the regions
2 https://www.worldometers.info/coronavirus/ . 

https://doi.org/10.1016/j.cmpb.2020.105608
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2020.105608&domain=pdf
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.worldometers.info/coronavirus/
https://doi.org/10.1016/j.cmpb.2020.105608
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mostly hit. In March 19 2020, the number of coronavirus deaths

in Italy exceeded that registered in China 3 . From a clinical point

of view the COVID-19 infection caused clusters of fatal pneumonia

with clinical presentation greatly resembling SARS-CoV. In fact, pa-

tients experience flu-like symptoms such as fever, dry cough, tired-

ness, difficulty breathing. In more severe cases, often found in sub-

jects already burdened by previous diseases, pneumonia develops,

acute renal failure, up to even death [4] , but this new coronavirus

presents several unique features [7] . 

However, many patients are infected with COVID-19 but are

asymptomatic. In other words, there is the possibility that people

infected by COVID-19 but without any symptoms could transmit

the disease [8] . As a matter of fact in Italy, in the country of Vo’

Euganeo, 50 km west of Venice, was closed off by authorities in

mid-February: it was discovered that of all the inhabitants of the

country who underwent the pharyngeal swab, 50-75% of the in-

habitants were swab positive, that is, infected with the virus, but

did not present any symptoms [9] . Currently the only way to find

out about COVID-19 infection is to undergo the swab and then an-

alyze the biological material taken from the patient through the

polymerase chain reaction [10] . 

The problem is that the swab is however carried out only to

those who show symptoms therefore currently people infected

with COVID-19 but asymptomatic cannot be discovered unless

there are particular cases [11] . 

While the diagnosis is confirmed using the polymerase chain

reaction, infected patients with pneumonia may present on chest

X-ray and computed tomography (CT) images with a pattern that is

only moderately characteristic for the human eye as demonstrated

by researchers in [12] . The rate of transmission of COVID-19 de-

pends on the capacity to reliably identify infected patients with a

low rate of false negatives. In addition, a low rate of false positives

is required to avoid further increasing the burden on the health-

care system by unnecessarily exposing patients to quarantine if

that is not required. Along with proper infection control, it is evi-

dent that timely detection of the disease would enable the imple-

mentation of all the supportive care required by patients affected

by COVID-19. 

In late January 2020, Chinese researchers discussed the clinical

and paraclinical features COVID-19 specific [13] . They reported that

patients present abnormalities in chest CT images with most hav-

ing bilateral involvement [13] . Bilateral multiple lobular and sub-

segmental areas of consolidation constitute the typical findings in

chest CT images of intensive care unit (ICU) patients on admission

[13] . In comparison, non-ICU patients show bilateral ground-glass

opacity and subsegmental areas of consolidation in their chest CT

images [13] . In these patients, later chest CT images display bilat-

eral ground-glass opacity with resolved consolidation [13] . 

Biomedical imaging (radiography or computed tomography of

the chest) shows signs of pneumonia. Subsequently, the World

Health Organization published several additional diagnostic proto-

cols 4 . Diagnosis is performed by performing a real-time reverse

polymerase chain reaction (rRT-PCR) test on biological samples

taken from the patient. The test can be performed on sputum or

blood samples [14,15] : results are generally available within a few

hours or, at most, days [16,17] . 

As stated in [18,19] COVID-19 is possibly better diagnosed us-

ing radiological imaging, for this reason, in this paper, we evaluate

the possibility to detect the COVID-19 disease directly from medi-

cal images; X-Rays have been used. 
3 https://www.statista.com/statistics/1099389/coronavirus- deaths- by- 

region- in- italy/ . 
4 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/ 

technical-guidance/laboratory-guidance . 
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Several studies discuss about the detection of pulmonary dis-

ase by analysing medical images by exploiting artificial intelli-

ence. Artificial intelligence represents an emerging field devoted

o create models from data and in last years its adoption is emerg-

ng in the development of methods for assist experts in the medi-

al images interpretation. 

In particular, the transfer learning, a deep learning method

here a model developed for a task is reused as the starting point

or a model on a second task, is emerging. 

It represents a popular approach where pre-trained models are

sed as the starting point on computer vision and natural language

rocessing tasks given the vast compute and time resources re-

uired to develop neural network models on these problems and

rom the huge jumps in skill that they provide on related prob-

ems. 

Recent effort s have shown promise in improving detection in

everal medical field, for instance from lung cancer detection

20] to prostate cancer grading [21] . 

Starting from these considerations, in this paper, we propose

he adoption of deep learning to detect whether there is the

OVID-19 presence in X-ray images by exploiting transfer learning.

s additional contribution, we show the network activation layers

.e., the areas of the chest X-ray that the model considered to gen-

rate the prediction, to provide explainability about the prediction.

his can represent a suggestion for the radiologist to immediately

ocalise the X-ray areas that can be of interest. 

The paper proceeds as follows: Section 2 describes the pro-

osed method, the experimental analysis is presented in Section 3 ;

n Section 4 an overview of the literature related to the pulmonary

isease detection with particular regard to COVID-19 disease is

rovided, and, finally, in the last section, conclusion and future re-

earch plan is presented. 

. The Method 

In this paper, we propose a three-fold method aimed to: (i) de-

ect if a chest X-ray is related to an healthy patient or to a pa-

ient with generic pulmonary disease; (ii) to discriminate between

eneric pulmonary diseases and COVID-19 and, once detected the

OVID-19 disease, (iii) to highlight the areas in the chest X-ray

ymptomatic of the COVID-19 disease. 

In detail, considering as input a chest X-ray the proposed

ethod is aimed to: 

• detect if the chest X-ray is related to an healthy patient or to a

patient affected by a pulmonary disease; 
• detect, using the second model, if the pulmonary disease is

pneumonia or COVID-19, when the chest X-ray is marked with

the pulmonary disease label; 
• provide, when the previous model marked the chest X-ray as

COVID-19, a visualisation of the chest X-ray where the areas po-

tentially interested by the COVID-19 disease are highlighted. 

To build the (first and the second) model, we consider a

eep learning network, based on the VGG-16 (i.e., Visual Geometry

roup ) model [22] by exploiting transfer learning. 

Transfer learning typically is related to a process where a model

rained on one problem is exploited with the aim to predict labels

elated to a second problem [23] . The main benefit in the adoption

f transfer learning is represented by the decreasing time for the

raining task for a neural network model. Moreover, it can result

n lower generalization error. Clearly, the first problem should be

elated to the second problem to solve: in this case, we transfer

he knowledge of a model trained for generic image detection to

olve the problem of pulmonary disease identification. 

VGG-16 is a convolutional neural network with 16 layers. It is

ossible to load a pre-trained version of the the VGG-16 network

https://www.statista.com/statistics/1099389/coronavirus-deaths-by-region-in-italy/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance
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Fig. 1. The network. 
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rained on the ImageNet database [24] , which is a data-set of over

4 million images: the pre-trained network can classify images into

,0 0 0 different classes, for instance as cat, pen and other similar

bjects. This model obtains 92.7% top-5 test accuracy in ImageNet

atabase. VGG-16 was trained for weeks and was using NVIDIA Ti-

an Black GPU’s. 

We apply transfer learning employing fine-tuning. We initial-

ze the VGGNet model and we set it up for fine-tuning: basically,

e instantiate the VGG16 network with weights pre-trained on

mageNet, leaving off the fully connected layer head. From there,

e build a new fully-connected layer head consisting of follow-

ng layers AveragePooling2D, Flatten, Dense, Dropout and a last

ense with the “softmax” activation to predict the classes. We ap-

end it on top of VGG16. We then freeze the convolutional weights

f VGG16 such that only the fully connected layer head will be

rained: this completes our fine-tuning setup. 

Fig. 1 shows the exploited architecture we modified for our pur-

oses. 

To ensure that the proposed models generalize, we consider

ata augmentation by setting the random image rotation setting

o 15 degrees clockwise or counterclockwise. 

The first layer is represented by convolutional of a size fixed

o 224 x 224 RGB image, for this reason chest X-ray are resized

o this dimension. The chest X-ray is passed through a series of

onvolutional layers: the convolution is set to 1 pixel; the spatial

adding of convolutional layer input is such that the spatial resolu-

ion is preserved after convolution. Spatial pooling is performed by

xploiting 4 max-pooling layers, which follow some of the convo-

utional layers. Max-pooling is performed considering a 2x2 pixel

indow. 

All the considered hidden layers consider a rectification non-

inearity. More details on the VGG-16 model architecture can be

ound in reference [22] 

In detail to the VGG-16 architecture we added the following

ayers (as shown by the network depicted in Fig. 1 ): 

• AveragePooling2D : it performs average pooling operation. This

layer involves computing the average for each patch of the fea-

ture map under analysis. This means that each 2x2 square of

the feature map is down sampled to the average value; 
• Flatten : the aim of this layer is to flat the input. It is a utility

layer, it flats an input, for instance a rows x columns matrix,

to a simple vector output of rows ∗ columns shape. Flattening

transforms a two-dimensional matrix of features into a vector

that can be fed into a fully connected neural network classifier.
• Dense : is the regular deeply connected neural network layer.

The purpose of the layer is to transform the data. It is most

common and frequently used layer. It this case this case layer

reduces the vector of height 512 to a vector of 64 elements; 
• Dropout : this layer basically works in the following way i.e., by

randomly select neurons not considered in the training. The

aim of this layer is to ameliorate generalization in fact, we

are coercing the network to train the same high-level concept

by exploiting different neurons. We chose to ignore the 50%

of neurons. Clearly, we are aware that typically exploiting this

layer this we can reach worse performances, but we want to

generate a model less sensitive to data variations; 
• Dense : the last dense layer is aimed to reduce the vector of

height 64 to a vector of 2 elements (i.e., the two classes to pre-

dict). 

Moreover, to provide explainability, we propose to visualize

lass activation maps, a technique usually considered for debug-

ing deep neural networks. To do this, we resort to the Gradient-

eighted Class Activation Mapping (Grad-CAM) algorithm [25] . 

In fact, as demonstrated by recent literature, while deep learn-

ng has facilitated unprecedented accuracy in image classification

26] , object detection [27] , and image segmentation [28] , one of

heir biggest problems is model interpretability, a fundamental

omponent in model understanding and model debugging cur-

ently limiting the application of these techniques in critical con-

exts (for instance, the medical one). 

As a matter of fact, deep learning models are considered as

black box” methods, and several times researchers and practition-

rs do not have reasonable idea as to: (i) where the network is

looking” in the input image; (ii) which series of neurons are ac-

ivated in the forward-pass during inference/prediction; (iii) how

he network arrived at its final output. 

The above issues can be summarized in the following main

uestion: “how can we trust the decisions of a model if we are

ot able properly validate how it arrived there?”Clearly, it is cru-

ial to answer this question, with particular regards to biomedical

ontexts. 

For this reason, we exploit the Grad-CAM algorithm, to visually

ebug the models and properly understand where the proposed

etwork is “looking” into chest X-ray images to predict the COVID-

9 class. 

In a nutshell, Grad-CAM uses the gradients of any target con-

ept, flowing into the final convolutional layer to produce a coarse

ocalization map highlighting the important regions in the image

or predicting the concept. 
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Table 1 

Chest X-ray labels. 

Label Number 

ARDS 4 

Chlamydophila 2 

COVID-19 250 

Escherichia Coli 4 

Klebsiella 1 

Legionella 2 

Pneumocystis 14 

SARS 15 

Streptococcus 16 

Atelectasis 508 

Cardiomegaly 125 

Consolidation 160 

Edema 93 

Effusion 392 

Emphysema 84 

Fibrosis 56 

Hernia 7 

Infiltration 623 

Mass 147 

Pneumonia 500 

Healtly 3,520 
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Using Grad-CAM, it is possible to visually validate where the

network is looking where a chest X-ray is evaluated, verifying that

it is indeed looking at the correct patterns in the image and acti-

vating around those patterns. 

Grad-CAM works by looking the final convolutional layer in the

network and then examining the gradient information flowing into

that layer. The output of Grad-CAM is a heatmap visualization for a

given class label. We use this heatmap to visually verify where in

the image the convolutional neural network is looking, as shown

in the experimental analysis section. 

3. Experimental Analysis 

In this section we present the experiment we performed to

asses the performance of the proposed methods in terms of: 

• (i) discrimination between a healthy and a chest X-ray related

to pulmonary diseases; 
• (ii) discrimination between a chest X-ray related to pneumonia

and COVID-19; 
• (iii) model explainability, by providing samples of chest X-ray

highlighting the foundamental regions in the X-ray for COVID-

19 prediction. 

3.1. Data-set 

To asses the proposed method, different data-sets belonging to

multiple institutions are considered. All the involved data-sets are

collections of chest X-rays. In detail, we consider three different

x-ray datasets: the first one obtained from the “COVID-19 image

data collection” [29] freely available 5 , the second one is the data-

set 6 considered by authors in the “Automated Detection of COVID-

19 Cases Using Deep Neural Networks with X-ray Images” [30] re-

search paper, while the third one was obtained from the “National

Institutes of Health Chest X-Ray” [31] and it is freely available for

research purposes 7 . 

Combining the data-sets, we obtain chest X-rays related to sev-

eral classes. 

As shown from Table 1 , in the study we consider a total of

6,523 chest X-rays: 250 related to patients afflicted by COVID-19,
5 https://github.com/ieee8023/covid-chestxray-dataset . 
6 https://github.com/muhammedtalo/COVID-19 . 
7 https://www.kaggle.com/nih- chest- xrays/sample . 

w  

t

 

n  
,753 related to patients with other pulmonary diseases and 3,520

elated to healthy patients. All the diagnosis were confirmed by

xpert radiologists. 

Fig. 2 shows an example of chest X-ray belonging to the data-

et we analyse with the relative label. 

As shown from Table 5 , the medical images are obtained from

ifferent institutions: from China (where COVID-19 disease started

o manifest) from Italy (the European area in which it was found

o be most widespread), but also from Australia and USA. 

.2. Results 

Below we provide the details about the chest X-rays we consid-

red to build the two models. 

The aim of the first model is the discrimination between

ealthy and pulmonary disease X-ray. In this case we consider with

he health label the healthy 3,520 X-rays in Table 1 while, with

he disease label we consider the 3,003 remaining X-rays with pul-

onary diseases (COVID-19 included). 

With regard to the second model, aimed to discriminate be-

ween COVID-19 and other pulmonary disease, we consider the

50 COVID-19 X-rays labelled by radiologists as COVID-19 and the

ther 2,753 X-rays related to pulmonary disease with the disease

abel. 

We split the data-set in three parts: training, testing and evalu-

tion. Table 3 shows the number of X-ray considered for the train-

ng, testing and validation tasks. For the model building a cross-

alidation is considered. 

Fig. 3 shows the confusion matrix for the testing of the

odel 1, aimed to discriminate between healthy and X-rays af-

icted by pulmonary disease. 

On the 20 0 0 considered X-ray for the first model testing, 18

isease X-rays were marked as Health by the first model, while 43

ealth X-rays were marked with the Disease label. 

Fig. 4 shows the confusion matrix for the testing of the

odel 2, aimed to discriminate between COVID-19 and X-rays af-

icted by other pulmonary disease. 

On the 20 0 0 considered X-rays for the second model testing,

 disease X-rays were marked as COVID-19 by the second model,

hile 4 COVID-19 X-rays were marked with the Disease label. 

Fig. 5 shows the confusion matrix for the validation of the

odel 1, aimed to discriminate between healthy and X-rays af-

icted by pulmonary disease. 

On the 2,523 considered X-rays for the first model evaluation,

9 disease X-rays were marked as Health by the first model, while

3 Health X-rays were marked with the Disease label. 

Fig. 6 shows the confusion matrix for the evaluation of the

odel 2, aimed to discriminate between COVID-19 and X-rays af-

icted by other pulmonary disease. 

On the 803 considered X-rays for the second model evaluation,

 COVID-19 X-rays were marked as pulmonary Disease by the sec-

nd model, while 7 Disease X-rays were marked with the COVID-19

abel. 

Following four metrics are considered to evaluate the perfor-

ance of the classifiers: Sensitivity, Specificity, F-Measure and Ac-

uracy. 

The sensitivity of a test is the proportion of people who test

ositive among all those who actually have the disease and it is

efined as: 

ensitivity = 
t p 

t p + f n 

here tp indicates the number of true positives and fn indicates

he number of false negatives 

The specificity of a test is the proportion of people who test

egative among all those who actually do not have that disease

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/muhammedtalo/COVID-19
https://www.kaggle.com/nih-chest-xrays/sample
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Table 2 

Institutions involved the study. 

Hospital Country X-ray machine brand 

Ospedale Santo Spirito, Rome Italy Siemens Healthcare 

Riccione Italy Philips Healthcare 

Myongji Hospital, Goyang Korea Hitachi Medical Corporation 

Jönköping Sweden Siemens Healthcare 

Melbourne Australia GE Healthcare 

Royal Brisbane and Women’s Hospital, Brisbane Australia GE Healthcare 

Sichuan Provincial People’s Hospital, Chengdu China Shimadzu Corporation 

Tongji Medical College, Wuhan, Hubei Province China Fujifilm Holdings 

Taoyuan General Hospital, Taoyuan Taiwan Fujifilm Holdings 

Snohomish County, Washington USA GE Healthcare 

Fig. 2. Example of chest X-rays with the related label. 

a

S

w

 

b

F

 

n  
nd it is defined as: 

pecificity = 
tn 

tn + f p 

here tn indicates the number of true negatives. 
The F-Measure is a measure of a test’s accuracy. This score can

e interpreted as a weighted average of the precision and recall: 

 − Measure = 2 ∗ Sensit i v it y ∗ Speci f icity 

Sensit i v it y + Speci f icity 

The accuracy of a measurement system is the degree of close-

ess of measurements of a quantity to that quantity’s true value:
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Fig. 3. Model 1 Testing Confusion Matrix. 

Fig. 4. Model 2 Testing Confusion Matrix. 

Fig. 5. Model 1 Validation Confusion Matrix. 

Table 3 

Training, testing and evaluation sets. 

Model Label Training Testing Evaluation 

1 Health 1,000 1,000 1,520 

Disease 1,000 1,000 1,003 

2 Disease 1,000 1,000 753 

COVID-19 1,000 100 50 

Fig. 6. Model 2 Validation Confusion Matrix. 

Table 4 

Results. 

Model Sensitivity Specificity F-Measure Accuracy Time 

1 0.96 0.98 0.94 0.96 2.569s 

2 0.87 0.94 0.89 0.98 2.498s 
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a

t is the fraction of the classifications that are correct and it is com-

uted as the sum of true positives and negatives divided all the

valuated instances: 

ccuracy = 

t p + t n 

t p + f n + f p + tn 

here fn indicates the number of false negatives. 

Table 4 shows the classification results for both the models. We

ndicate in the Model column the first model with the Disease label,

hile the COVID-19 detection model are indicated with the COVID-

9 label. In the time column we indicate the average time to obtain

 prediction respectively from the Disease and the COVID-19 mod-

ls. 

As shows by results highlighted by Table 4 , the model for dis-

riminating between healthy and generic pulmonary diseases ob-

ains a sensitivity equal to 0.96 and a specificity of 0.98. 

The model for discerning between generic pulmonary diseases

nd COVID-19 exhibits a sensitivity of 0.87 and a specificity equal

o 0.94. 

With regard to the accuracy, the first model reaches an accuracy

qual to 0.96, while the second model obtains a value of 0.98. 

The proposed method is able to output (in average) in 2.569

econds whether the chest X-ray is related to a healthy patient or

o a patient with a pulmonary disease. Moreover, the chest X-ray

s marked with the COVID-19 label in 2.498 seconds. 

In Figs. 7 and 8 , we report the performances of the proposed

etwork for the disease and for the COVID-19 model in terms of

ccuracy and loss. 



L. Brunese, F. Mercaldo and A. Reginelli et al. / Computer Methods and Programs in Biomedicine 196 (2020) 105608 7 

Table 5 

State-of-the-art comparison. 

Method Images COVID-19 Other Healtly Total Accuracy 

Apostolopoulos et al. [42] X-ray 224 700 504 1428 0.93 

Wang and Wong [50] X-ray 53 5526 8066 13645 0.92 

Sethy et al. [44] X-ray 25 n.a. 25 50 0.95 

Hemdan et al. [41] X-ray 25 n.a. 25 50 0.90 

Narin et al. [43] X-ray 50 n.a. 50 100 0.98 

Song et al. [45] CT 777 n.a. 708 1485 0.86 

Wang et al. [40] CT 195 n.a. 258 453 0.82 

Zheng et al. [46] CT 313 n.a. 229 542 0.90 

Xu et al. [51] X-ray 219 224 175 618 0.86 

Ozturk et al. [30] X-ray 250 500 1000 1750 0.92 

Ardakani et al. [47] CT 510 510 n.a. 1020 0.99 

Li et al. [48] CT 1,296 1,735 1,325 4,356 0.96 

Butt et al. [49] CT 357 1,353 n.a. 1,710 0.86 

Our Method X-ray 250 2,753 3,520 6,523 0.97 

Fig. 7. Fist model performances. 

Fig. 8. Second model performances. 
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The Loss represents a quantitative measure of how much the

redictions differ from the actual output (i.e., the label). Loss is

nversely proportional to the correctness or the model. 

The loss is calculated on training and validation and its inter-

retation is how well the model is doing for these two sets: it is

 summation of the errors made for each example in training or

alidation sets. 
From the Accuracy and Loss definitions, it is expected that Ac-

uracy and Loss should be inversely proportional: for high values

f accuracy, low loss values are expected (and the opposite). Fur-

hermore, considering that the weights and bias are initially ran-

om selected, the accuracy trend should start by exhibiting low

alues (and high loss value, symptomatic that the network is per-

orming wrong predictions), but whether the network during the

everal “epochs” (i.e., one forward pass and one backward pass of

ll the training examples) is able to learn (i.e., it is able to solve

he driver prediction problem), the accuracy should start to ex-

ibit higher values in the next iterations (and consequently the

oss should exhibit low values). The epoch is a parameter cho-

en by the network designer, usually the number of epochs cho-

en is such that the loss is at least and it does not get worse in

he immediately succeeding epochs and, consequently, the accu-

acy value reached is the maximum and in the immediately suc-

eeding epochs is not improving, symptomatic that the network

as reached the stability and that further epochs would not im-

rove performances. We set the number of epochs equal to 25, be-

ause both the models reach the stability with a number of epochs

ess or equal to 25. 

In particular the performance plots consider: 

• train_loss : the loss for the training; 
• val_loss : the loss for the validation; 
• train_acc : the accuracy for the training; 
• val_acc : the accuracy for the validation. 

Fig. 7 shows the performance plots for the 25 epochs of the first

odel. 

As shows by Fig. 7 , initially the train_acc shows values slightly

igher to 0.8 of accuracy, but starting from the second epoch this

alue is increasing. The value_acc value roughly remains 

With regards to the loss, it shows for both the training that for

he validation a trend opposed to the ones of the training and val-

dation accuracy. 

Fig. 8 shows the performance plots for the models discriminat-

ng between COVID-19 and generic pulmonary diseases. 

As shows from Fig. 8 , the performance trends are more linear

f compared to the one of the first model (shown in Fig. 7 ): symp-

omatic that the there is an evident different between COVID-19

nd the other pulmonary diseases. 

To understand which areas of the chest X-ray was highlighted

y the network for the COVID-19 detection, we shows examples

f GRAD-CAM activation maps in Fig. 9 . We show the chest X-

ay used to input the model, the activation maps generated by the

RAD-CAM algorithm and the overlapping of the chest X-ray and

he activation maps. In particular, we think that this last visualiza-

ion can be useful for the radiologist and pathologists for localise

he X-ray areas to investigate. The areas considered by the model



8 L. Brunese, F. Mercaldo and A. Reginelli et al. / Computer Methods and Programs in Biomedicine 196 (2020) 105608 

Fig. 9. Examples of COVID-19 model activation maps. 
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to output the prediction are in yellow with a more marked yellow

where the probability of the predicted label is higher. 

In particular, in all the X-ray shown in Fig. 9 the activation

maps are related in areas inside the chest (regardless of the differ-

ent chest inclination). This is interesting because we can state that

the proposed model does not consider areas outside the chest. The

second consideration is that all areas are within the lungs, for this

reason we can state that the models effectively consider the lungs

for discriminating between COVID-19 and generic pulmonary dis-

eases. Another interesting result is the one provided by the right

X-ray shown in Fig. 9 : with red arrow the radiologists marked the

areas where the COVID-19 disease is manifested, as is shown from

the activation maps, the proposed models rightly highlighted the

areas marked by the radiologist. 
Below we provide also the radiologist diagnosis: with regard

o the left X-ray in Fig. 9 the radiologist confirmed the COVID-

9 diagnosis adding that the patient is afflicted by bronchial wall

hickening with small peripheral patchy infiltrates. While with re-

ard to the right X-ray in Fig. 9 , the radiologist also confirmed

he COVID-19 diagnosis adding that the patient exhibits multifo-

al patchy opacities that can be seen in both lungs, confirming the

ed arrow the area of interest in the X-ray that are symptomatic of

he COVID-19. 

The analysis requires for a new chest X-ray approximately 2.5

econds to make the predictions and the visualise the activation

aps. The machine used to run the experiments and to take mea-

urements was an Intel Core i7 8th gen, equipped with 2GPU and

6Gb of RAM. 
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8 https://www.kaggle.com/paultimothymooney/chest- xray- pneumonia . 
. Related Work 

In this section we review the current state of the art literature

bout the application of artificial intelligence techniques to chest

rea cancer detection detection. 

.1. Methods for generic pulmonary disease detection 

A detection rate equal to 92.4% is reported by researchers

n [32] where a method to discriminate between healthily and

athological crackels is proposed. The consider supervised machine

earning obtaining the best performance using the kNN classifica-

ion algorithms. 

The SVM algorithm is exploited by authors in [33] to distinguish

etween pneumonia and congestive heart failure. A data-set of 257

atient is considered obtaining a detection rate ranging from 82%

o 87%. 

An average f-measure of 0.9 is reached by the method proposed

y Lang and colleagues [34] . They propose a graph-based semi-

upervised one class support vector machine to detect normal lung

ounds and detect the abnormal ones. 

A method to detect the presence of wheeze sounds in breath

ecordings is proposed by Torre-Cruz et al. [35] : authors obtain a

etection ratio of 95.5% for classifying presence/absence of wheez-

ng in respiratory sounds (i.e., in the discrimination of healthy and

ung disease affected patients). 

The main difference between the cited works and the one we

roposed is that our work is focused on the COVID-19 detection.

oreover, this represents the first tentative to provide explainabil-

ty by exploiting activation areas in chest biomedical images. 

.2. Methods focused on COVID-19 disease 

Current literature presents also papers focused to COVID-19 de-

ection. In details, the current research lines are related to the

OVID-19 detection from medical images [5,36,37] (this is direc-

ion of the method we propose) and to protein analysis to boost

esearch in COVID-19 vaccines [38,39] . 

Below we discuss these papers. 

Authors in [36] exploit deep learning by considering the UNet++

odel obtaining an accuracy equal to 98.85%. The consider 51 pa-

ients confirmed as affected by the COVID-19 disease belonging to

ne institution (i.e., the Renmin Hospital of Wuhan University). The

ain difference with respect to the proposed method is that au-

hors in [36] do not take into account healthy patients. Moreover

hey do not provide explainability about their network predictions.

Researchers in [40] propose also a deep learning model for

OVID-19 detection. Similarly to the method proposed by [36] , au-

hors do not consider healthy patients and do not provide a kind

f explainable about the results of the proposed method. Moreover,

he method in [36] requires to manually mark the region of inter-

st of the COVID-19 disease. They obtain an accuracy equal to 73.1%

y evaluating a data-set belonging from two different institutions.

hey evaluate medical images related to 99 patients, 55 cases of

neumonia and the other 44 cases affected by the COVID-19 dis-

ase. 

Xu and colleagues [37] design an approach deep learning based

y obtaining an accuracy equal to 86.7% by evaluating a data-

et composed by 618 medical images. They consider two three-

imensional convolutional neural networks: the first one is the

esNet23 network, while the second network represent a variant

f the first one, where authors added several layers. 

Below, we discuss the papers [38,39] applying deep learning

echniques to proteins with the aim to boost the research in new

accines. 
Zhang et al. [38] consider the DenseNet network with the

OVID-19 RNA sequences with the aim to predict which current

ntivirals can help patients COVID-19 affected. 

Beck et al. [39] experiment deep learning with the SMILES

ataset, a repository of molecules as text to encode and decode

ach molecule. Their main outcome is that the 2019-nCoV 3C-like

roteinase is predicted to bind with atazanavir i.e., an anti-viral

edication used to treat HIV/AIDS. 

Hemdan et al. [41] proposed COVIDX-Net for COVID-19 detec-

ion by analysing X-ray images. They reach an accuracy equal to

.90 exploiting using 25 COVID-19 positive and 25 healtly im-

ges. Wang and Wong [40] designed COVID-Net, a deep learn-

ng network for COVID19 detection. They obtain an accuracy

qual of 0.92 exploiting medical images obtained from different

epositories. Apostolopoulos and colleagues apply transfer learning

42] analysing 224 COVID-19 medical images, 700 pneumonias, and

04 normal images. They reach an accuracy equal to 0.98 in the

OVID-19 and healthy discrimination. Narin et al. [43] proposed a

ethod considering three different networks (i.e., ResNet50, Incep-

ionV3, and Inception-ResNetV2) by considering 50 COVID-19 chest

-ray images and 50 normal images obtained from a Kaggle repos-

tory 8 . We highlight that in authos consider non-COVID images be-

onging to children, while the COVID-19 one are related to adult

atients. Sethy and Behera [44] consider deep learning models to

ather features from medical images and then classified them by

xploitinh the SVM classifier. Researchers obtain an accuracy of

.95 by considering ResNet50 and SVM model by analysing 50

edical images. Researchers in [45] achieved an accuracy equal to

.86 analysing CT images with a deep model built on the ResNet50

odel. Wang et al. [40] achieved an accuracy of 0.82 exploiting the

odified Inception (M-Inception) deep model by analysing CT im-

ges. Zheng et al. [46] proposed a model to detect COVID-19 from

T images by reaching an accuracy equal to 0.9, while Xu et al.

37] achieved an accuracy of 0.86 in detecting COVID-19 consid-

ring the ResNet by analisying CT images. Most of these papers

onsider a few amount of data to develop the predictive models.

esearchers in [30] consider a total of 1750 X-ray images with

he DarkCovidNet deep learning model, in particular 250 COVID-

9 positive, 500 related to other pulmonary pathologies and 10 0 0

btained from healthy patients obtaining an accuracy of 0.98 and

.87 evaluating two dataset. 

Ardakani et al. [47] propose a deep learning based approach

or distinguishing from COVID-19 from non-COVID-19. As a matter

f fact, ten well-known convolutional neural networks were used:

lexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, 

esNet-18, ResNet-50, ResNet-101, and Xception. Authors state that

he best accuracy was achieved by the ResNet-101 and Xception

odels. ResNet-101 could distinguish COVID-19 from non-COVID-

9 cases with an accuracy equal to accuracy, while the Xception

odel obtained an accuracy equal to accuracy 0.99. The several

etworks were evaluated with a dataset composed by 1020 CT

lices obtained from 108 patients with afflicted by COVID-19 and

6 patients with other atypical and viral pneumonia diseases. 

Li et al. [48] designed the COVNet neural network for COVID-19

etection to extract visual features from CT images. Their model

dopt the RestNet50 network, with an input CT images. They eval-

ate 4,356 chest CT exams from 3,322 patients (1296 COVID-19 CT

xams, 1,735 CAP and 1,325 non-pneumonia) reaching an accuracy

qual to 0.96. 

Butt et al. [49] proposed two different classification models

or discriminating between COVID-19 images, with an overall ac-

uracy equal to 0.86. The first model was a ResNet23-based net-

ork while the second model was designed on the first network

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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structure by concatenating the location-attention mechanism in

the full-connection layer, with the aim to improve the overall ac-

curacy rate. Their dataset is composed by 1,710 image patches ac-

quired from 90 CT, including 357 COVID-19, 390 Influenza-A-viral-

pneumonia, and 963 irrelevant-to-infection. 

From the discussions it emerges that the proposed method ob-

tain interesting performances if compared to the methods cur-

rently proposed by the state-of-the-art. 

Moreover, we consider also healthy X-ray, for this reason our

method is also able to discriminate between healthy and patients

affected by pulmonary diseases. As a last point, we highlight that

the proposed is first one, at the authors knowledge, providing ex-

plainability by showing the activation maps. 

5. Conclusion and Future Work 

Considered the time windows currently requested to obtain a

COVID-19 diagnosis, in this paper we propose an approach aimed

to drastically reduce this time window approximately to 2.5 sec-

onds. We propose and evaluate an approach based on transfer

learning by exploiting the VGG-16 model: we built two models,

the first one aimed to detect whether a chest X-ray is related to

a healthy patient of to a patient with generic pulmonary disease.

In case the X-ray is marked with generic pulmonary disease, we

input the X-ray to a second model, aimed to detect whether the

pulmonary disease is COVID-19. Moreover, we highlight the ar-

eas that the models identified as discriminating for COVID-19, to

provide explainability. As shows by the experimental results, ob-

tained considering two different data-sets for a total of 6,523 chest

X-rays, show an accuracy of 0.96 for the discrimination between

healthy and generic pulmonary disease patients, and an accuracy

of 0.98 for the COVID-19 detection. As future work, we plan to

evaluate the proposed method on a wider set of pulmonary dis-

eases. Moreover we, will investigate if formal verification tech-

niques [52,53] can be helpful to obtain better results in terms of

accuracy. 
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