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a b s t r a c t 

In 2020, a new type of coronavirus is in the global pandemic. Now, the number of infected patients is 

increasing. The trend of the epidemic has attracted global attention. Based on the traditional Richards 

model and the differential information principle in grey prediction model, this paper uses the modified 

grey action quantity to propose a new grey prediction model for infectious diseases. This model weakens 

the dependence of the Richards model on single-peak and saturated S-shaped data, making Richards 

model more applicable, and uses genetic algorithm to optimize the nonlinear terms and the background 

value. To illustrate the effectiveness of the model, groups of slowly growing small-sample and large- 

sample data are selected for simulation experiments. Results of eight evaluation indexes show that the 

new model is better than the traditional GM(1,1) and grey Richards model. Finally, this model is applied 

to China, Italy, Britain and Russia. The results show that the new model is better than the other 7 models. 

Therefore, this model can effectively predict the number of daily new confirmed cases of COVID-19, and 

provide important prediction information for the formulation of epidemic prevention policies. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In 2020, a new type of coronavirus (COVID-19) has broken out 

cross the world. The World Health Organization (WHO) has an- 

ounced that COVID-19 has entered a global pandemic. Till now, 

ata from the WHO [1] shows that more than 20 million confirmed 

ases of COVID-19 have been reported globally. After breaking the 

0 million mark on June 28, the number of confirmed cases world- 

ide has doubled in about six weeks. In recent months, the change 

rend of six regions worldwide is shown in Fig. 1 [1] . Fig. 1 shows

hat the center of the epidemic has moved from the Western Pa- 

ific region to Europe at the beginning, and is currently staying in 

he Americas. The daily number of newly diagnosed patients in the 

ix regions shows a fluctuating S-shaped trend. According to the 

eath toll trend chart in Fig. 2 [1] , except for the Americas, the

eath toll in other regions is basically under control at this stage. 

uring the virus outbreak stage, the death rate in individual coun- 

ries exceeded 10%, and the death rate in most countries between 

% and 10%, the total death toll at this stage has exceeded 70 0,0 0 0.

he global epidemic is still severe, so the worldwide spread of the 

pidemic is an important research topic. Effectively predicting the 
∗ Corresponding author. 

E-mail address: huimingduan@163.com (H. Duan). 

p

c

l

d

ttps://doi.org/10.1016/j.chaos.2020.110480 

960-0779/© 2020 Elsevier Ltd. All rights reserved. 
aily number of newly confirmed cases of COVID-19 is of great 

ignificance to the formulation of epidemic prevention and con- 

rol policies and the development of economic and social activities 

uring the entire stage of the epidemic, especially to provide im- 

ortant forecast information for the allocation of medical resources 

nd policy formulation during the outbreak. 

Now, there are three main types of prediction methods for 

OVID-19: 1. Traditional infectious disease model; for example, 

ia et al. [2] used a dynamic expansion susceptibility clearance 

odel(eSIR) of infectious diseases with different intervention ef- 

ects in different periods to estimate the epidemic trend in Italy. 

astos et al. [3] used the SIR model with added parameters to 

odel and predict the evolution of the Brazilian COVID-19 pan- 

emic. Yang et al. [4] used population migration data and the lat- 

st COVID-19 epidemiological data to integrate into the SEIR model 

o obtain the epidemic curve. 2. Machine learning model; for ex- 

mple, Tomara and Guptab [5] used data-driven estimation meth- 

ds such as long-term memory (LSTM) and curve fitting to pre- 

ict the number of cases of COVID-19 in India and the impact of 

reventive measures such as social isolation and blockade on the 

ransmission of COVID-19 in India. Hu et al. [6] developed an im- 

roved stacked automatic encoder and predicted the cumulative 

onfirmed case curve in China. Sina et al. [7] compared and ana- 

yzed machine learning model and soft computing model to pre- 

ict the outbreak of COVID-19. 3. Time series model; for exam- 

https://doi.org/10.1016/j.chaos.2020.110480
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110480&domain=pdf
mailto:huimingduan@163.com
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Fig. 1. New daily confirmed cases of COVID-19. 

Fig. 2. New daily death cases in world. 
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le, Petropoulos and Makridakis [8] used the exponential smooth- 

ng model to predict the confirmed cases of COVID-19, and the re- 

ults showed that the number of confirmed COVID-19 cases would 

ontinue to increase. Benvenuto et al. [9] used the autoregressive 

ntegrated moving average model (ARIMA) to predict the epidemi- 

logical trend of COVID-19 prevalence and incidence rate in 2019. 

aleki et al. [10] proposed a regression time series model based on 

wo scale mixed normal distribution to analyze the real time se- 

ies data of confirmed and recovered COVID-19 cases. All the above 

rediction models can effectively fit and predict the development 

f COVID-19 epidemic. 

However, the epidemic model is hypothetical and may be af- 

ected by factors such as geography and super communicators [11] . 

rom the above three types of models, it can be seen that the in-

ectious disease model and time series model may need a large 

mount of data for accurate parameter identification. Literatures 

12–14] point that the machine learning model may need a large 

mount of data for training and testing to achieve accurate re- 

ults. In the research on the development trend of infectious dis- 

ases, Richards model [15] has been widely used in a variety of 

nfectious diseases due to its advantages in processing saturated 

-shaped data. Hsieh [16] used Richards model to fit the number 

f SARS cases in many places in China, and estimated the param- 

ters and the maximum number of cases to illustrate the turn- 

ng point. Hsieh and Ma [17] matched the Richards model with 

engue fever notification numbers to detect turning points in the 

pidemic. Chan et al. [18] used Richards model to estimate the ba- 

ic reproductive number (R0) of cholera and the proportion of un- 

ecognized cases. The heterogeneity of R0 estimates generated by 

he model was consistent with the dynamic changes of cholera de- 

cribed. Wang et al. [19] started from a simple epidemic SIR model 

nd re-examined the Richards model through the internal connec- 

ion between the two models. More accurate and stable model pa- 

ameters and key epidemic characteristics were estimated in H1N1, 

ARS and other epidemics. The accurate parameter identification of 

his model is also inseparable from a large-number data. 

For the new type of coronavirus such as COVID-19, due to the 

ow availability of case data and incomplete knowledge, especially 

n the early stage of the outbreak, the information is incomplete 

nd the amount of data is small. The above models may not have 

bvious effect on the data of uncertainty phenomenon. Therefore, 
2 
t is considered to be attractive to find a prediction model with 

ess information to obtain relatively effective results [20] . In recent 

ears, in systems that deal with incomplete information, the grey 

odel stands out by virtue of its "simple model, strong adaptabil- 

ty, and easy parameter changes". It is widely used in energy, fi- 

ance, transportation, environment, manufacturing, materials and 

ther industries [ 12–14 , 20–25 ]. In the field of infectious diseases, 

he grey model is also widely used. Guo et al. [26] used tradi- 

ional GM(1,1) and SMGM(1,1) based on self-memory principle to 

redict the incidence of three typical infectious diseases in China. 

ang et al. [27] used GM(1,1) for prediction of hepatitis B in China. 

hang et al. [28] used GM(1,1), the grey period extended com- 

ined model, and the improved Fourier series grey model to pre- 

ict Hydatid disease, and these models successfully predicted the 

evelopment of these diseases. The above models are all based on 

he GM(1,1) model. The GM(1,1) model is suitable for strong expo- 

ential growth data and is a linear model. The research object of 

his article is the fluctuating S-shaped data, so the applicability of 

M(1,1) is limited. Therefore, this paper chooses the nonlinear grey 

odel as a research method to predict the daily number of newly 

onfirmed cases of COVID-19 and provide an important basis for 

ormulating epidemic prevention policies. 

In the grey system, the Verhulst model has strong prediction 

bility for single-peak or saturated S-shaped sequence [29] . Wang 

t al. [11] used the rolling Verhulst model to predict the final num- 

er of COVID-19 infection cases, and good results were achieved. 

¸  ahin and Ş ahin [30] used fractional Nonlinear Grey Bernoulli 

odel to predict the cumulative number of cases in Italy, the 

nited Kingdom and the United States. The Verhulst model is a 

pecial form of the grey Bernoulli model, and the whitening equa- 

ion of the Verhulst model is the logistic model. The Richards 

odel is also a generalized logistic model [15] . Because of its good 

erformance on S-shaped data and its relationship with the Ver- 

ulst model, this paper study the corresponding grey prediction 

odel based on the Richards model. 

Therefore, based on the characteristics of COVID-19 and the re- 

earch status of Richards model and grey prediction model, this 

aper uses the difference information principles of the grey pre- 

iction model to derive the grey Richards prediction model on 

he basis of the Richards model, and the grey covid-19 prediction 

odel (GERM(1,1, e at )) is established with the help of the effect of 



X. Luo, H. Duan and K. Xu Chaos, Solitons and Fractals 142 (2021) 110480 

Table 1 

Abbreviations of models. 

Number Abbreviation Definition 

1. GM(1, 1) Grey model with one variable and one first order equation [31] 

2. Verhulst Verhulst grey model [32] 

3. ARGM(1,1) Autoregressive grey model [33] 

4. ONGM(1,1) Optimized NGM(1,1,k,c) model [34] 

5. ENGM(1,1) Exact nonhomogeneous grey model [35] 

6. ARIMA Autoregressive Integrated Moving Average model [36] 

7. NGBM(1,1) Nonlinear Grey Bernoulli Model [37] 

8. GRM(1,1) Grey Richards model 

9. GERM(1,1, e at ) Grey Extend Richards model 
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rey action quantity. Using the relevant grey knowledge to solve 

he model, the time response function of the model is obtained, 

nd the properties of the optimization model are studied. Through 

ractical cases, the results of the new model are compared with 

he grey linear model, the grey nonlinear model and the autore- 

ressive model, so as to verify the effectiveness of the model and 

rovide important information for the government to formulate 

conomic policies. 

So, the main contributions of this paper are as follows: 

1 Richards model is widely used in many kinds of infectious dis- 

eases. Based on the structure of traditional Richards growth 

model and the differential information principle, namely the 

relationship between differential equation and difference equa- 

tion, the traditional Richards growth model is transformed into 

corresponding grey prediction model. 

2 Due to the limitation of the traditional model for data trend, 

the new model uses natural index to improve the grey ac- 

tion of the grey Richards model, and optimizes the nonlinear 

term and background value of the model by GA algorithm, so 

as to weaken or even eliminate the dependence of the tradi- 

tional Richards model on saturated S-shaped data, and improve 

the accuracy and applicability of the traditional model, which 

is also a generalization of Richards model and grey prediction 

model. 

3 Through the empirical analysis of small-sample and large- 

sample data, it shows that the new model can effectively carry 

out short-term and medium-term prediction and makes up for 

the defects of grey prediction model generally used for short- 

term prediction. The new model also effectively predicts the 

daily number of newly confirmed COVID-19 cases in four coun- 

tries, which will provide help for local governments to make 

policy decisions. 

The rest of this paper is as follows: Section 2 establishes the 

ERM(1,1, e at ) model, and studies the properties and mechanism of 

he new model; Section 3 analyses the validity of the new model; 

ection 4 discusses the application of the GERM(1,1, e at ) model. 

ection 5 presents the conclusions. 

In the full text, the different abbreviations are for different grey 

rediction models. Abbreviations and their meanings are listed in 

able 1 . 

. Theoretical modeling of GERM(1,1, e at ) 

This section first introduces the related concepts and properties 

f Richards model, then establishes the corresponding grey predic- 

ion model according to the grey difference information and grey 

ction quantity, and finally optimizes the parameters of the new 

odel by GA algorithm. 
3 
.1. Classical growth Richards model 

The logistic model was first proposed by Verhulst [38] in 1838 

o simulate population growth after Malthus model [39] . The 

odel equation, also known as Verhulst equation, is as follows: 

 

′ (t) = rC (t) 

(
1 − C (t) 

K 

)
. (1) 

here C(t) is the population size in question at time t , r is the 

ntrinsic growth rate, and K is maximum capacity. 

In 1959, Richards [15] proposed the following modification of 

he logistic model to model growth of biological populations: 

 

′ (t) = rC(t) 

(
1 − ( 

C(t) 

K 

) 
α
)

, (2) 

here, C(t) is the cumulative number of infection cases at time t , 

is the carrying capacity of the outbreak or the total number of 

ases, r is the per capita growth rate of the infected population, 

arameter α provides the flexibility measure of S-shaped curva- 

ure shown by the result solution curve, that is, the degree of de- 

iation from the S-shape dynamics of the classical logistic growth 

odel. When α= 1 , Richards model becomes the logistic model. 

ichards model is used to predict the spread of diseases. It only 

onsiders the cumulative population size with saturated growth as 

he model and dynamics of infectious disease outbreak and devel- 

pment, which is due to the reduction of cases due to the attempt 

o avoid contact and the implementation of control measures. 

.2. Description of the GRM(1,1)model 

Let the daily number of newly confirmed cases be 

 

(0) = ( x (0) (1) , x (0) (2) , · · · , x (0) (n )) , (3) 

The first- accumulating generation operator(1-AGO) sequence is 

 

(1) = ( x (1) (1) , x (1) (2) , · · · , x (1) (n )) , (4) 

here x (1) (k ) = 

k ∑ 

i =1 

x (0) (i ) , k = 1 , 2 , · · · n. 

Eq. (2) is a first-order nonlinear differential equation, which is 

ontinuously differentiable and contains infinite information. How- 

ver, the number of confirmed cases per unit time is only a dis- 

rete time series with limited uncertain information or so-called 

rey information. Therefore, Eq. (2) should be transformed and dis- 

retized according to the principle of differential information, so as 

o adapt to the characteristics of grey information [40] . This prin- 

iple is also an important cornerstone of grey model [31] . It is sys-

ematically and accurately described in monograph [41] . 

Therefore, the grey Richards model (GRM(1,1)) is introduced as 

elow. In Eq. (2) , C(t) represents the number of all the patients 

iagnosed in unit time, that is, the total number of all patients 

iagnosed in a certain period of time. According to different unit 

ime, it can be the number of patients diagnosed per minute, the 
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P

∫
∫
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∫

umber of patients diagnosed per hour, the number of patients di- 

gnosed daily, and the number of patients diagnosed per week. If 

he initial time point is recorded as t 0 = 1 , then the number of

onfirmed patients is recorded k times between the time periods 

 t 0 , t] , and the number of all patients diagnosed is 

(t) = C(k ) = 

k ∑ 

i =1 

c (0) (i ) , (5) 

(t) is a 1-AGO sequence X (1) (t) of Eq. (4) , which is similar to that

f oil production in a certain period of time in [ 42 , 43 ] and energy

onsumption in a certain period in [44] . Therefore, according to 

q. (2) , the following formula holds 

d X 

(1) (t) 

dt 
= r X 

(1) (t) − r 

K 

a 

(
X 

(1) (t) 
)1+ a 

. (6) 

Substituting the first-order difference for the differential at the 

eft end of Eq. (6) , then at t = k : 

d X (1) (t) 
dt 

| t= k ≈ �X (1) (t) 
�t 

| t= k = 

X (1) (k ) −X (1) (k −1) 
k −(k −1) 

= X 

(1) (k ) −
X 

(1) (k − 1) = X 

(0) (k ) . 
(7) 

Thus, the following grey prediction models can be defined: 

efinition 1. Set X (0) and X (1) as Eqs. (3) and (4) , then the se- 

uence Z (1) is called the nearest mean generating sequence of X (1) : 

 

(1) = { z (1) (1) , z (1) (2) , · · · , z (1) (n ) } , (8) 

where z (1) (k ) = ( X (1) (k ) + X (1) (k − 1)) / 2 . 

It should be noted that X (0) (k ) is usually regarded as a grey 

erivative and can provide the necessary information related to the 

ime-dependent function X (1) (t) . That is, X (0) (k ) can be regarded 

s the grey derivative sequence of X (1) (t) and replace d X (1) (t) 
dt 

dur- 

ng [ k − 1 , k ] . In addition, the background value Z (1) (t) of X (0) (k )

an be formalized as 

 

(1) (t) 
∣∣

[ k −1 ,k ] ≈
1 

2 

( X 

(1) (k ) − X 

(1) (k − 1)) = Z (1) (k ) . (9) 

efinition 2. Set X (0) , X (1) and Z (1) as Eqs. (3) , (4) and (8) , so, 

 

(0) (t) − r Z (1) (t) = − r 

K 

a 

(
Z (1) (t) 

)1+ a 
, (10) 

is grey Richards model (GRM(1,1)). Set a = −r, b = − r 
K a 

, γ = 1 +
 , Eq. (10) becomes 

 

(0) (t) + a Z (1) (t) = b 
(
Z (1) (t) 

)γ
, (11) 

Eq. (11) is also a power model in grey model. 

Since the daily data of new patients of COVID-19 shows a fluc- 

uating S-shaped trend, and Richard model is suitable for process- 

ng data close to single-peak and saturated S-shaped [15–19] , this 

aper uses a new grey action to improve structure of the grey 

ichard model, it is suitable for the prediction of daily number of 

onfirmed cases of COVID-19. 

.3. Description of the GERM(1,1, e at ) model 

Obviously, the optimization of grey action is an effective mean 

o improve the performance and applicability of grey model [45] . 

n this section, a new driving grey model is proposed, which takes 

he natural exponential function of time as the grey action quan- 

ity. Therefore, this section gives the definition of the grey ex- 

ended Richards model, the time response function and the re- 

tored values of the model. 

efinition 3. Based on the Sections 2.1 and 2.2 , the Grey Extend 

ichards model (GERM(1,1, e at ) ) is defined as 

d x (1) (t) + a x (1) (t) = (b e αt + c) 
(
x (1) (t) 

)γ
. (12) 
dt 

4 
where a is the development coefficient, the term b e αt + c de- 

otes the power-driven grey input. α and γ are nonlinear quanti- 

ies which can be tunable. 

If γ = 0 , the GERM(1,1, e at ) becomes GM(1,1, e at ) [45] . Set 

 

(1) (t) = ( x (1) (t) ) 1 −γ , Eq. (12) becomes 

d y (1) (t) 

dt 
+ (1 − γ ) a y (1) (t) = (1 − γ )(b e αt + c) . (13) 

The solution of Eq. (13) is 

y (1) (t) = 

(
y (0) (1) − b(1 −γ ) 

(1 −γ ) a + α − c 
a 

)
e −(1 −γ ) a (t−1) + 

b(1 −γ ) 
(1 −γ ) a + α e αt + 

c 
a 
. 

(14) 

So, based on the x (1) (t) = ( y (1) (t) ) 
1 

1 −γ , the time response func- 

ion can be derived from Eq. (14) by 

ˆ x (1) (k ) = 

{ [ (
x (0) (1) 

)1 −γ − b(1 −γ ) 
(1 −γ ) a + α − c 

a 

] 
e −(1 −γ ) a (t−1) + 

b(1 −γ ) 
(1 −γ ) a + α e αt + 

c 
a 

} 1 
1 −γ

, 

(15) 

here k = 2 , 3 , · · · , n , and the restored value is 

ˆ 
 

(0) (k ) = 

ˆ x (1) (k ) − ˆ x (1) (k − 1) . (16) 

efinition 4. Assume X (0) and X (1) are defined as the same in 

efinition 1 . The background value is optimized by extrapolation 

ackground value [23] , Z y (k ) is defined as 

 y (k ) = (1 + β) y (1) (k ) − βy (1) (k − 1) , β ∈ (−1 , + ∞ ) . (17)

So, the parameters of GERM(1,1, e at ) are computed by the fol- 

owing expression 

 = ( a, b, c ) 
T = 

(
B 

T B 

)−1 
B 

T X, (18) 

here B = (1 − γ ) 

⎛ 

⎜ ⎜ ⎜ ⎝ 

z y (2) − e α+ e 2 α
2 −1 

z y (3) − e 3 α+ e 2 α
2 −1 

. 

. 

. 
. 
. 
. 

. 

. 

. 

z y (n ) − e n + e (n −1) α

2 −1 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, Y = 

 

 

 

 

y (1) (1) − y (1) (2) 

y (1) (2) − y (1) (3) 
. . 
. 

y (1) (n − 1) − y (1) (n ) 

⎞ 

⎟ ⎟ ⎠ 

. 

roof. By integrating on both side of Eq. (12) , it becomes 

∫ k 
k −1 

d y (1) (t) 
dt 

dt + 

∫ k 
k −1 (1 − γ ) a y (1) (t) dt = 

∫ k 
k −1 b e 

αt (1 − γ ) dt + ∫ k 
k −1 cdt. 

(19) 

It follows from Eq. (19) that 

y (1) (k ) − y (1) (k − 1) + (1 − γ ) a · ∫ k 
k −1 y 

(1) (t) dt = b(1 − γ ) ×∫ k 
k −1 e 

αt dt + c(1 − γ ) . 

(20) 

Using the trapezoidal formula, the terms 
∫ k 

k −1 y 
(1) (t) dt and 

 k 
k −1 e 

αt dt can be computed by 

 k 

k −1 

y (1) (t) dt = 

1 

2 

y (1) (k ) + 

1 

2 

y (1) (k − 1) 
�= z (1) 

y (k ) , k = 2 , 3 , · · · , n

(21) 

 k 

k −1 

e αt dt = 

1 

2 

e αt + 

1 

2 

e α(t−1) . (22) 
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Table 2 

Metrics for evaluating effectiveness of the models. 

Name Abbreviation Formulation 

The absolute percentage error APE ( x 
(0) (i ) − ˆ x (0) (i ) 

x (0) (i ) 
) × 100% 

The mean absolute simulation percentage error MAPE SIM 
1 

n −1 
( 

n ∑ 

i =1 

| x (0) (i ) − ˆ x (0) (i ) 
x (0) (i ) 

| ) × 100% 

The mean absolute prediction percentage error MAPE PRE 
1 
v ( 

n ∑ 

i =1 

| x (0) (i ) − ˆ x (0) (i ) 
x (0) (i ) 

| ) × 100% 

The total mean absolute percentage error MAPE TOT 
1 

n −1 
( 

n ∑ 

i =1 

| x (0) (i ) − ˆ x (0) (i ) 
x (0) (i ) 

| ) × 100% 

Root mean squares percentage error RMSPE 

√ 

1 
n 

n ∑ 

i =1 

( X 
(0) (k ) − ˆ X (0) (k ) 

X (0) (k ) 
) 

2 

× 100% 

Mean absolute percentage error MAE 1 
n 

n ∑ 

i =1 

| X (0) (k ) − ˆ X (0) (k ) | 

Index of agreement IA 1 −
n ∑ 

k =1 

( X (0) (k ) − ˆ X (0) (k )) 
2 

n ∑ 

k =1 

( | ̂ x (0) (k ) −x̄ | + | x (0) (k ) −x̄ | ) 2 

Theil U statistic 1 U1 

√ 
1 
n 

n ∑ 

i =1 

( X (0) (k ) − ˆ X (0) (k )) 
2 

√ 
1 
n 

n ∑ 

i =1 

[ X (0) (k )] 
2 + 

√ 
1 
n 

n ∑ 

i =1 

[ ̂ X (0) (k )] 
2 

Theil U statistic 2 U2 
[ 

n ∑ 

i =1 

( X (0) (k ) − ˆ X (0) (k )) 
2 

] 
1 / 2 

[ 
n ∑ 

i =1 

[ X (0) (k )] 
2 

] 
1 / 2 

Correlation coefficient R Cov ( ̂ X (0) , X (0) ) √ 

V ar( ̂ X (0) ) V ar( X (0) ) 

Table 3 

Lewis’ criterion for model evaluation. 

MAPE (%) Prediction performance 

< 10 Excellent 

10-20 Good 

20-50 Reasonable 

> 50 Incorrect 
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Algorithm 1 

The GA algorithm to find the optimal γ , β, α. 

Set the objective function and the maximum iteration number 

Input: The original parameters β, γ , α, original data and the number of 

modelling data 

Output: The best β, γ , α

for β ∈ ( −1 , + ∞ ) do 

Substitute β, γ , α to ˆ P = ( B T B ) −1 B T Y and obtain parameters P = ( a, b, c ) T 

Substitute parameters to discrete equation Eq. (14) and compute the 

simulation value to obtain ˆ X (1) (k ) 

Compute ˆ X (0) (k ) in Eq. (16) 

Compute APE and MAPE in Table 2 . 

End 

Update the minimum MAPE value 

Return the best β, γ , α by the GA algorithm. 
By substituting Eqs. (21) and (22) into Eq. (20) , Eq. (20) be- 

omes 

y (1) (k ) − y (1) (k − 1) + (1 − γ ) a · Z y (k ) = 

1 
2 
( e αk + e α(k −1) ) ·

b(1 − γ ) + c(1 − γ ) . 

(23) 

Once β, γ , α are given, the linear parameters can be straight- 

orwardly computed by the following expression 

 = ( a, b, c ) 
T = 

(
B 

T B 

)−1 
B 

T X, 

here 

B = (1 − γ ) 

⎛ 

⎜ ⎜ ⎜ ⎝ 

z y (2) − e α+ e 2 α
2 

−1 

z y (3) − e 3 α+ e 2 α
2 

−1 

. . . 
. . . 

. . . 

z y (n ) − e n + e (n −1) α

2 
−1 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, 

Y = 

⎛ 

⎜ ⎜ ⎝ 

y (1) (1) − y (1) (2) 

y (1) (2) − y (1) (3) 
. . . 

y (1) (n − 1) − y (1) (n ) 

⎞ 

⎟ ⎟ ⎠ 

. 

Therefore Definition 4 is proven. 

.4. Error evaluation criteria 

This subsection provides some standard error evaluation crite- 

ia to measure the accuracy of grey forecasting models. In general, 

hey are defined in Table 2 . Meanwhile, Lewis’ criterion [46] shown 

n Table 3 is used to illustrate the prediction ability of the model. 

.5. Optimization of nonlinear parameters 

It can be seen from Section 2.4 that the parameters of 

ERM(1,1, e at ) can be obtained through the values of three pa- 
5 
ameters β, γ , α, where γ , α are nonlinear quantities. In this sec- 

ion, the genetic algorithm (GA) is used to search for β, γ , α, and 

APE TOT is taken as the objective function. Then, the mathematical 

xpression of the optimization problem is 

f : min MAP E 1 
n −1 

n ∑ 

k =2 

∣∣∣ x (0) (k ) − ˆ x (0) (k ) 
x (0) (k ) 

∣∣∣ × 100% 

.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

β ∈ [ −1 , ∞ ] 

P = (a, b, c) T = 

(
B 

T B 

)−1 
B 

T Y 

ˆ x (1) (k ) = 

{ [ (
x (0) (1) 

)1 −γ − b(1 −γ ) 
(1 −γ ) a + α − c 

a 

] 
e −(1 −γ ) a (t−1) + 

b(1 −γ ) 
(1 −γ ) a + α e αt + 

c 
a 

} 1 
1 −γ

ˆ x (0) (k ) = 

ˆ x (1) (k ) − ˆ x (1) (k − 1) , k = 2 , · · · , n 

. 

(24) 

GA is proposed by American Professor John Holland [47] . It ran- 

omly searches the optimal value by simulating the genetic law 

nd evolutionary theory of natural organisms. It applies the evo- 

utionary principle of survival of the fittest and elimination of the 

nfit in the biological world to optimize the parameter individuals 

fter coding. Through selection, variation and crossover, the over- 

ll fitness level of the population is improved continuously, which 

ot only inherits the good information of the previous generation, 

ut also is superior to the previous generation. This is repeated un- 

il the desired conditions are met. The GA algorithm is utilized to 

earch for optimal β, γ , α, and its main procedures are given in 

lgorithm 1 . 
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Table 4 

Results of three grey models in validation Case 1. 

Raw data GM(1,1) model APE (%) GRM (1,1) APE (%) GERM (1,1, e at ) APE (%) 

1 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 

2 2.4658 23.2912 1.9385 -3.0731 1.9994 -0.0312 

3 3.0619 2.0644 2.9302 -2.3283 3.0019 0.0633 

4 3.8021 -4.9464 3.9194 -2.0157 4.0041 0.1025 

5 4.7213 -5.5739 4.9133 -1.7336 5.0061 0.1201 

6 5.8627 -2.2889 5.9161 -1.3993 6.0075 0.125 

7 7.2802 3.9993 6.9302 -0.9970 7.0088 0.1257 

MAPE SIM (%) 7.0273 1.9245 0.0944 

8 9.0399 12.9983 7.9578 -0.528 8.0097 0.1213 

9 11.2252 24.7247 9.0002 0.0021 9.0103 0.1144 

10 13.9389 39.3890 10.0587 0.5874 10.0106 0.1061 

MAPE PRE (%) 25.704 0.3725 0.1139 
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Fig. 3. APE of the three models in Validation Case 1. 

Table 6 

Metrics of models in Validation Case 1. 

Metrics GM (1,1) GRM (1,1) GERM (1,1, e at ) GERM (1,1, e at ) rank 

MAPE TOT (%) 10.2098 1.7895 0.7782 1 

RMSPE 17.1908 1.5973 0.1001 1 

MAE 0.8626 0.0554 0.0060 1 

MSE 2.1983 0.0040 5.03E-05 1 

IA 0.9518 0.99988 0.999998 1 

U1 0.1093 0.0051 0.0005 1 

U2 0.2390 0.0102 0.001143 1 

R 0.9749 0.9999 1.0000 1 

3

. Validation of the GERM(1,1, e at ) model 

This section mainly discusses the effectiveness of the new 

odel through two data sets. The two selected data sets are di- 

ided into slowly growing small-sample data and large-sample 

ata to illustrate that the new model has improved the accuracy of 

RM(1,1) after modifying the grey action quantity, and the depen- 

ence of GRM(1,1) on saturated S-shaped data is weakened. There- 

ore, the traditional GM(1,1) and GRM(1,1) are selected for compar- 

son. GRM(1,1) is also the form of NGBM(1,1). The validity compar- 

son of the models can be explained from two aspects: 1. Using 

ight evaluation indexes in Table 2 , the smaller APE, MAPE, RM- 

PE, MAE, MSE, U1 and U2, the higher the accuracy of the model, 

nd vice versa. The higher the values of IA and R, the higher the 

ccuracy of the model. 2. Use the comparison chart of APE value 

very year. 

.1. Validation case 1: fitting of small-sample data 

The first case study object is small sample data. The first seven 

ata are used for modeling, and the last three data are used 

o test the model accuracy. According to GA algorithm, the opti- 

al parameter of GRM(1,1) is γ = 0 . 9818 , the optimal parameters 

f GERM(1,1, e at ) are γ , β, α = [6 . 6354 × 10 −4 , −0 . 9954 , −3 . 1248 ×
0 −4 ] . The calculation results of three grey models are shown in 

able 4 and the index results are shown in Table 5 . In Table 4 , the

APE SIM 

and MAPE PRE of GM(1,1) are the highest. In the model- 

ng phase, MAPE SIM 

of GERM(1,1, e at ) is nearly 2% higher than that 

f GRM(1,1), and the prediction error is the smallest. In Table 5 , 

he MAPE TOT of GERM(1,1, e at ) is 1.3% higher than that of GRM(1,1). 

n addition, the other indicators of GERM(1,1, e at ) are good, and the 

 index reaches 1. In order to further show the fitting effect of 

he model, the APE value comparison chart is made, as shown in 

ig. 3 . In Fig. 3 , the APE values of GERM(1,1, e at ) are basically the

owest, and compared with the other two models, the APE values 

re almost zero every year. The comparison results of the above 

wo aspects show that the GERM(1,1, e at ) improves the accuracy of 

he original GRM(1,1). 
Table 5 

Metrics of models in Validation Case 1. 

Metrics GM (1,1) GRM (1,1) GERM (1,1, e at ) GERM (1,1, e at ) rank 

MAPE TOT (%) 19.8793 1.4072 0.1009 1 

RMSPE 17.1908 1.5973 0.1001 1 

MAE 0.8626 0.0554 0.0060 1 

MSE 2.1983 0.0040 5.03E-05 1 

IA 0.95181 0.99988 0.999998 1 

U1 0.1093 0.0051 0.0005 1 

U2 0.2390 0.0102 0.001143 1 

R 0.9749 0.9999 1.0000 1 
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6 
.2. Validation case 1: fitting of large-sample data 

The first case study object is small sample data. The first seven 

ata are used for modeling, and the last three data are used to 

est the model accuracy. The optimal parameter of GRM(1,1) is 

= 0 . 3108 , the optimal parameters of GERM(1,1, e at ) found by GA 

lgorithm are γ , β, α = [3 . 8128 × 10 −5 , −0 . 9999 , −0 . 0239] . Due to

he large amount of data, the original data and the calculation 

esults of the three grey models are shown in Table 12 in Ap- 

endix A, and the index results are shown in Table 6 . In Table 6 ,

he MAPE TOT of GERM(1,1, e at ) is the lowest, which is 1 percentage 

oint higher than the original GRM(1,1), and the results of other 

even indicators are the best. Meanwhile, the R of this cases is also 

. As in the previous case, the APE comparison chart between the 

odels are drawn, as shown in Fig. 4 . In Fig. 4 , the APE values of
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Table 7 

Metrics of models in Validation Case 1. 

NO. Country Date Points for modeling Points for prediction 

Case 1 China 1.23-2.6 9 6 

Case 2 Italy 3.10-3.21 10 2 

Case 3 United Kingdom 4.11-4.25 5 10 

Case 4 Russian 6.1-8.12 61 12 

Table 8 

Fitting MAPE values of models in Case 1. 

MAPE GM(1,1) Verhulst ARGM(1,1) ONGM(1,1) ENGM(1,1) ARIMA GRM(1,1) GERM(1,1, e at ) 

MAPE SIM 29.7152 43.2128 35.3292 14.6649 17.5457 72.7097 24.7328 7.7121 

MAPE PRE 59.5837 55.2802 27.2007 12.1904 14.1994 10.0138 5.2691 4.2684 

MAPE TOT 42.5160 48.3845 31.8456 13.6044 26.7355 53.4474 16.3912 6.2362 

Fig. 4. APE of the three models in Validation Case 2. 
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he GERM(1,1, e at ) are basically the lowest, which is closer to 0 from 

he 11th point compared with the other two models. In conclusion, 

ERM(1,1, e at ) improves the accuracy of GRM(1,1) model. 

.3. Analysis of result 

In two practical cases, MATLAB software is used to calculate the 

hole simulation process. According to the fitting results of three 

rey models and APE comparison chart, the following conclusions 

an be obtained: 

1) In the contrast test with the eight metrics of traditional GM(1,1) 

and GRM(1,1) (NGBM(1,1)), those of GERM(1,1, e at ) are the best. 

Meanwhile, the APE value of GERM(1,1, e at ) are basically the 

lowest, that is to say, its error is the smallest and the accuracy 

is the highest, indicating that the GERM(1,1, e at ) is competitive. 

2) From original GRM(1,1) to GERM(1,1, e at ), the results of two 

cases show that the accuracy of the extended model is signifi- 

cantly improved. It shows that the extended grey action model 

can improve the structure of the grey model, alleviate the ex- 

ponential growth and saturated S-shaped growth, weaken the 

dependence of the original GRM(1,1) on the saturated S-shaped 

data, and overcome the disadvantage of the grey model used 

in short-term prediction, and apply new model to medium and 
long-term prediction. d

7 
. Applications 

After the model test in Section 3 , GERM(1,1, e at ) is applied to 

he representative epidemic developing countries in the world, in- 

luding China, Italy, the United Kingdom and Russia. The research 

ata on the number of all confirmed patients per day are all 

rom the WHO [1] . The first three cases use small-sample data, 

nd the last case uses large-sample data. In addition to the tradi- 

ional GM(1,1), GRM(1,1) (NGBM(1,1)), Verhulst model, ARGM(1,1), 

NGM(1,1), ONGM(1,1) and ARIMA models are added to the model 

or comparison. There are still two ways to compare: one is to use 

APE index; the other is curve trend chart and APE percentage 

hart. The curve trend chart is used to evaluate the fitting and ap- 

roximation degree of the model simulation trend line and the ac- 

ual data trend line. The higher the degree of fitting and approxi- 

ation, the better the data fitting ability of the model is. The APE 

ercentage comparison chart is used to evaluate the error size by 

easuring the area occupied by percentage of APE value of each 

oint of each model. The larger the area proportion, the greater 

he error. The number of modeling data and prediction data in the 

our cases is shown in Table 7 . Due to the large amount of data in

ach case, the fitting result of each model is put into the Appendix. 

Case 1: China 

China is the first center for the occurrence of COVID-19 epi- 

emic, and China immediately adopted strong measures to quickly 

egin to control the epidemic. In this case, eight prediction mod- 

ls are established based on the number of confirmed cases in the 

rst nine days of the outbreak period, and the data of the next six 

ays are used to test the accuracy of the models. The fitting results 

f the eight prediction models are shown in Table 13 in Appendix, 

nd the comparison of MAPE values is shown in Table 8 . Using GA 

lgorithm, the optimal parameters of GERM(1,1, e at ) are γ , β, α = 

0 . 0707 , 0 . 1385 , 0 . 0416] , and the optimal parameter of GRM (1,1) is

= 0 . 9818 . 

In Table 8 , in the modeling stage, the MAPE SIM 

of GERM(1,1, e at ) 

s the lowest, which is 17% higher than that of the original 

RM(1,1). The two models with the largest MAPE SIM 

are ARIMA 

nd Verhulst models. In the prediction stage, the lowest MAPE PRE 

s GERM(1,1, e at ), the two models with the maximum MAPE PRE are 

lso ARIMA and Verhulst models, which indicates that ARIMA and 

erhulst models are not suitable for the prediction of epidemic sit- 

ation in China. In order to show the model fitting effect from 

he second aspect, the results in Table 13 are transformed into 

urve trend chart and APE percentage chart, as shown in Figs. 5 

nd 6 . In Fig. 5 , the GERM(1,1, e at ) is the closest to the original

rend line. The original GRM(1,1) basically overestimates the devel- 

pment of the epidemic situation, first overestimates and then un- 

erestimates the original data, Verhulst shows a single-peak trend, 
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Fig. 5. the overall trend of simulation results of eight models in Case 1. 

Fig. 6. APE percentages of the eight models in Case 1. 
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Fig. 7. The overall trend of simulation results of eight models in Case 2. 

Fig. 8. APE percentages of the eight models in Case 2. 
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NGM(1,1) and ONGM(1,1) basically underestimate the develop- 

ent of the epidemic situation. In Fig. 6 , it is clear that ONGM 

1,1) and ENGM (1,1) occupy a small area in the percentage of APE 

ach year, indicating that the prediction error of these two mod- 

ls are small, while the APE percentage of GERM(1,1, e at ) is slightly 

arger at point 6 and point 10, and the area of other points is ba-

ically close to 0. The comparison results of the two aspects show 

hat GERM(1,1, e at ) effectively predicts the development of the early 

tage of the outbreak in China. 

Case 2: Italy 

At the beginning of the outbreak in Italy, the number of newly 

OVID-19 confirmed cases in a single day is close to 3500, and its 

ortality rate exceeded 7%. Two data made Italy an early outbreak 

ountry in Europe. If calculated in proportion to the population, 

he epidemic in Italy is the most severely affected country in the 

orld at that time. The data of 10 days from March 10 to March 

9 are used to build eight models, and the data from the next 

wo days are used to test the model prediction accuracy. Accord- 

ng to GA algorithm, the optimal parameters of GERM(1,1, e at ) are 

, β, α = [0 . 0382 , −0 . 1587 , 0 . 2547] , and the optimal parameter of

RM(1,1) is γ = 1 . 5625 × 1 0 −4 . The fitting results of the eight pre- 

iction models are shown in Table 14 in Appendix, and the com- 

arison of MAPE values is shown in Table 9 . 

In Table 9 , in the modeling stage, the MAPE SIM 

of GERM(1,1, e at ) 

s the lowest, which is 1% higher than that of GRM(1,1). In the pre-

iction stage, the MAPE PRE of GERM(1,1, e at ) is the lowest, which is 

% higher than that of GRM(1,1), so the MAPE of GERM(1,1, e at ) 
TOT 

8 
s also the lowest. The results in Table 14 are transformed into 

urve trend chart and APE percentage chart, as shown in Figs. 7 

nd 8 . In Fig. 7 , the blue line is the closest to red line, that is, the

ine of GERM(1,1, e at ) model is the closest to the original trend line. 

RM(1,1), Verhulst, ARIMA, ENGM(1,1) and ONGM(1,1) basically 

verestimate the development of the epidemic. In Fig. 8 , the APE 

f Verhulst model occupies the largest area. APE of GERM(1,1, e at ) 

nly has larger areas at points 5, 6, and 10 than other points, while 

ther points are basically close to 0. The above results show that 

ERM(1,1, e at ) effectively predict the development in the early stage 

f the outbreak in Italy. 

Case 3: The United Kingdom 

After the outbreak in Italy, the epidemic began to spread in 

urope, and the United Kingdom was not included. The research 

bjects of the first two cases were modeling data with a large 

mount of modeling data and a small amount of predicted data. 

herefore, this case selects the data of 5 days from April 11 to April 

5 during the outbreak period of the United Kingdom to establish 

he model, and the data of the last 10 days are used for model 

ccuracy test. Based on GA algorithm, the optimal parameters of 

ERM(1,1, e at ) are γ , β, α = [0 . 3007 , 0 . 9993 , −3 . 7872] , and the opti-

al parameter of GRM(1,1) is γ = 2 . 3333 × 1 0 −3 . The fitting results 

f the eight prediction models are shown in Table 15 in Appendix, 

nd the comparison of MAPE values is shown in Table 10 . 

In Table 10 , in the modeling stage, the MAPE SIM 

of GERM(1,1, e at ) 

s the lowest, which increases that of GRM(1,1) by 5 percentage 

oints, and the highest MAPE model is Verhulst. In the pre- 
SIM 
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Table 9 

Fitting MAPE values of models in Case 2. 

MAPE GM(1,1) Verhulst ARGM(1,1) ONGM(1,1) ENGM(1,1) ARIMA GRM(1,1) GERM(1,1, e at ) 

MAPE SIM 8.3361 52.5502 14.7858 8.3953 19.0126 21.3977 8.3376 7.1304 

MAPE PRE 11.7031 29.7941 21.7826 5.8776 21.9019 24.2912 11.7076 3.4857 

MAPE TOT 8.9483 48.4127 16.0579 7.9375 19.5379 21.9238 8.9503 6.4677 

Table 10 

Fitting MAPE values of models in Case 3. 

MAPE GM(1,1) Verhulst ARGM(1,1) ONGM(1,1) ENGM(1,1) ARIMA GRM(1,1) GERM(1,1, e at ) 

MAPE SIM 9.2207 17.4099 8.1942 7.1084 7.6501 9.2277 9.2222 4.4999 

MAPE PRE 26.2797 84.8051 20.0258 22.7735 31.1187 10.9995 26.3003 8.9448 

MAPE TOT 21.4057 21.4208 16.6453 18.2976 24.4134 10.4933 21.4208 7.6748 

Fig. 9. The overall trend of simulation results of eight models in Case 3. 

Fig. 10. APE percentages of the eight models in Case 3. 
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Fig. 11. the overall trend of simulation results of eight models in Case 4. 
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iction stage, the MAPE PRE of GERM(1,1, e at ) is the lowest, which 

ncreases that of GRM(1,1) model by 18 percentage points. The 

APE SIM 

of ARIMA model is the second, and MAPE SIM 

of other 

odels is more than 20%. Therefore, the MAPE TOT of GERM(1,1, e at ) 

s also the lowest. The results in Table 15 are transformed into 

urve trend chart and APE percentage chart, as shown in Figs. 9 

nd 10 . In Fig. 9 , the line of GERM(1,1, e at ) is the closest to the orig-

nal trend line. The trend line of ARIMA model is similar to the ac- 

ual trend line, but some points are far away from the actual point. 

he other six models basically underestimate the development of 

pidemic situation. In Fig. 10 , GM (1,1), ARIMA and Verhulst mod- 

ls have larger area of APE percentage in modeling stage, the APE 
9 
ercentage of ARIMA and Verhulst models are also larger in pre- 

iction stage, and APE percentage of GERM(1,1, e at ) only accounts 

or a large area in points 4, 7 and 11, and these of other points

re close to 0. The above results show that GERM(1,1, e at ) can effec- 

ively predict the development of the outbreak period in Britain. 

Case 4: Russian 

Up to now, the daily diagnosis of more than 50 0 0 patients in 

ussia, the epidemic situation is still grim. The research objects of 

bove three cases are small-sample data, and the last case uses 

arge-sample data. The data of June and July are used for modeling, 

nd the data of August are used to test the model accuracy. Base 

n the GA algorithm, the optimal parameters of GERM(1,1, e at ) are 

, β, α = [0 . 0064 , 0 . 6512 , −0 . 0306] , and the optimal parameter of

RM(1,1) is γ = 3 . 944 × 1 0 −3 . The comparison of MAPE values is 

hown in Table 11 , and the fitting results of the eight prediction 

odels are shown in Table 16 in Appendix. 

Table 11 summarizes the errors in the modeling and predic- 

ion stages. In the modeling phase, the ARIMA model has the low- 

st MAPE SIM 

, followed by the GERM(1,1, e at ), and MAPE SIM 

of Ver- 

ulst model is the largest. In the prediction phase, the MAPE PRE 

f GERM(1,1, e at ) is the best, which is about 2% higher than that 

f original GRM(1,1). Due to the large error of Verhulst model, the 

raph of Verhulst model is omitted in the process of graphical fit- 

ing results. In Fig. 11 , ARIMA model has the best fitting effect in

he modeling stage, while the predicted fitting line of GERM(1,1, e at ) 

s the closest to the actual curve, which indicates that ARIMA 

odel is more suitable for fitting large-sample data. In Fig. 12 , in 

he modeling phase, the APE percentage of ARIMA model accounts 
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Table 11 

Metrics of models in Case 4. 

MAPE GM(1,1) Verhulst ARGM(1,1) ONGM(1,1) ENGM(1,1) ARIMA GRM(1,1) GERM(1,1, e at ) 

MAPE SIM 2.8280 51.8554 3.0286 2.6521 2.6664 1.4243 2.8294 2.6248 

MAPE PRE 2.7481 40.7817 3.9221 1.0399 1.8335 7.0740 2.7735 0.9023 

MAPE TOT 2.8149 50.0351 3.1755 2.3871 2.5295 2.3530 2.8202 2.3416 

Fig. 12. APE percentages of the eight models in Case 4. 
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or the smallest area, and other models have little difference. In 

he prediction phase, only two points of GERM(1,1, e at ) account for 

 large proportion, and other points are close to 0. The comparison 

esults of the two perspectives show that the expanded model not 

nly can effectively predict the daily number of confirmed patients 

n Russia, but also has advantages in medium and long-term pre- 

iction, which improves the disadvantage of grey model which is 

enerally suitable for short-term prediction. 

. Conclusion 

Due to the advantages of traditional Richards model in pro- 

essing saturated S-shaped data, it has been applied to the trend 

rediction of various infectious diseases. Therefore, in this pa- 

er, based on the structure of traditional Richards growth model 

nd the theory of grey differential information, the correspond- 

ng GRM(1,1) is established. Meanwhile, the grey action quan- 

ity is modified to improve the structure of GRM(1,1), and the 

ERM(1,1, e at ) is established. The new model weakens the depen- 

ence of the Richards model on S-shaped data. In practical cases, 

hrough the comparison with GM(1,1), ARGM(1,1), ONGM(1,1), 

NGM(1,1), Verhulst and ARIMA models, GRM(1,1) (NGBM(1,1)), the 

tting effect of GERM(1,1, e at ) is better than other models, that is, 

his model accuracy is the highest. 

As mentioned in this paper, China, Italy, Britain, Russia and 

ther places are the regions with severe epidemic situation in dif- 

erent periods of time, and the prediction of their infectious dis- 

ase system is more complex. The priority of the GERM(1,1, e at ) 

ver the other above models indicates that it is qualified to predict 

he number of daily confirmed patients of COVID-19. As COVID- 

9 is in a global pandemic, it is expected that the GERM(1,1, e at ) 

odel can be applied to predict the number of confirmed cases 

round the world, which will be of great help to local governments 

o make policy decisions 

As a single-variable grey model, GERM(1,1, e at ) can effectively 

redict the daily average number of daily confirmed patients of 

OVID-19. With the in-depth study of covid-19, the mechanism 
10 
f virus transmission and the factors affecting virus transmission 

ill become clear gradually. In the process of prediction, consider- 

ng these factors such as temperature, population and environment 

ill bring uncertainty to the model. Therefore, fully mining the 

ays of these factors affecting virus transmission, and introducing 

hem into the GERM(1,1, e at ), and extending the GERM(1,1, e at ) to a 

ultivariate model, the prediction effect may be further improved. 

ow to establish multivariate GERM model is also our anticipated 

ext main research direction. 
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Table 12 

Results of three grey models in Validation Case 1. 

Raw data GM (1,1) APE (%) GRM (1,1) APE (%) GRM (1,1,) APE (%) Raw data GM (1,1) APE (%) GRM (1,1) APE (%) GERM (1,1, e at ) APE (%) 

10 10.0000 0.0000 10.0000 0.0000 10.0000 0.0000 40 37.7643 -5.5893 39.7978 -0.5055 39.8225 -0.4439 

11 18.9264 23.2912 9.2933 -3.073 10.2359 -0.304 41 38.6747 -5.6716 40.7426 -0.6279 40.8005 -0.4865 

12 19.3826 2.0644 11.0746 -2.3283 11.3413 0.0629 42 39.607 -5.6976 41.6918 -0.7339 41.779 -0.5262 

13 19.8499 -4.9464 12.6151 -2.0157 12.4385 0.1018 43 40.5618 -5.6702 42.6457 -0.8239 42.7581 -0.5625 

14 20.3284 -5.5739 14.0047 -1.7336 13.5264 0.1188 44 41.5396 -5.5918 43.6048 -0.8982 43.7382 -0.5949 

15 20.8185 -2.2889 15.2903 -1.3993 14.6053 0.125 45 42.541 -5.4644 44.5694 -0.9569 44.7195 -0.6233 

16 21.3203 3.9993 16.4999 -0.9970 15.6757 0.1249 46 43.5665 -5.2901 45.5397 -1.0006 45.7023 -0.6471 

17 21.8343 12.9983 17.6516 -0.5280 16.7382 0.1209 47 44.6168 -5.0706 46.5162 -1.0295 46.6869 -0.6662 

18 22.3606 24.7247 18.7582 0.0021 17.7932 0.1143 48 45.6924 -4.8076 47.499 -1.0438 47.6735 -0.6803 

19 22.8997 39.389 19.8288 0.5874 18.8409 0.1058 49 46.7939 -4.5023 48.4884 -1.044 48.6623 -0.6891 

20 23.4517 17.2587 20.8704 4.3521 19.8819 -0.5905 50 47.9219 -4.1561 49.4848 -1.0303 49.6537 -0.6925 

21 24.0171 14.3671 21.8884 4.2302 20.9165 -0.3977 51 49.0772 -3.7702 50.4884 -1.0031 50.6480 -0.6903 

22 24.5961 11.8003 22.8869 4.0312 21.945 -0.2498 52 50.2603 -3.3456 51.4994 -0.9627 51.6452 -0.6823 

23 25.1890 9.5174 23.8694 3.7801 22.9679 -0.1394 53 51.4719 -2.8832 52.5181 -0.9092 52.6458 -0.6683 

24 25.7962 7.4843 24.8389 3.4953 23.9855 -0.0602 54 52.7127 -2.3838 53.5447 -0.8431 53.6499 -0.6483 

25 26.4181 5.6724 25.7975 3.1902 24.9982 -0.0072 55 53.9835 -1.8482 54.5795 -0.7646 54.6579 -0.6221 

26 27.055 4.0575 26.7475 2.8749 26.0063 0.0242 56 55.2849 -1.277 55.6226 -0.674 55.6699 -0.5895 

27 27.7072 2.6191 27.6904 2.5569 27.0101 0.0375 57 56.6176 -0.6709 56.6743 -0.5714 56.6862 -0.5506 

28 28.3751 1.3397 28.6277 2.2418 28.0101 0.036 58 57.9825 -0.0302 57.7348 -0.4572 57.7070 -0.5051 

29 29.0591 0.2039 29.5608 1.9337 29.0064 0.0222 59 59.3803 0.6445 58.8044 -0.3315 58.7327 -0.4531 

30 29.7597 -0.8011 30.4907 1.6358 29.9996 -0.0014 60 60.8117 1.3529 59.8832 -0.1947 59.7633 -0.3944 

31 30.4771 -1.6868 31.4186 1.3503 30.9898 -0.0328 61 62.2777 2.0946 60.9714 -0.0469 60.7993 -0.3291 

32 31.2118 -2.4631 32.3452 1.0788 31.9775 -0.0704 62 63.7791 2.8694 62.0693 0.1117 61.8407 -0.2569 

33 31.9642 -3.1387 33.2714 0.8225 32.9628 -0.1126 63 65.3166 3.6771 63.1770 0.2809 62.8879 -0.1779 

34 32.7348 -3.7213 34.198 0.5823 33.9462 -0.1581 64 66.8912 4.5174 64.2947 0.4605 63.9411 -0.0921 

35 33.5239 -4.2174 35.1255 0.3586 34.928 -0.2057 65 68.5037 5.3903 65.4227 0.6503 65.0005 0.0007 

36 34.3321 -4.6331 36.0547 0.1518 35.9084 -0.2545 66 70.1551 6.2956 66.5611 0.8501 66.0663 0.1005 

37 35.1597 -4.9738 36.986 -0.0379 36.8877 -0.3034 67 71.8463 7.2333 67.7101 1.0599 67.1388 0.2072 

38 36.0073 -5.2439 37.9199 -0.2107 37.8663 -0.3517 68 73.5783 8.2034 68.87 1.2794 68.2183 0.321 

39 36.8753 -5.4479 38.8571 -0.3665 38.8445 -0.3988 69 75.3521 9.2059 70.0408 1.5084 69.3049 0.4418 

70 77.1686 10.2408 71.2229 1.747 70.3988 0.5698 

Table 13 

Fitting values of models in Case 1. 

Date Raw data GM (1,1) APE (%) Verhulst APE (%) ARGM (1,1) APE (%) ONGM (1,1) APE (%) 

1.23 131 131.0000 0.0000 131.0000 0.0000 131 0.0000 131.0000 0.0000 

1.24 261 525.4234 101.3116 94.8453 -63.6608 465.5988 78.3903 188.401 27.8157 

1.25 462 647.4437 40.1393 161.5834 -65.0252 756.06 63.6494 489.2726 -5.9032 

1.26 688 797.8011 15.9595 271.6218 -60.5201 1008.2059 46.5416 775.2303 -12.6788 

1.27 776 983.0764 26.6851 446.4831 -42.4635 1227.0907 58.1302 1047.0131 -34.9244 

1.28 1772 1211.3786 -31.6378 707.5696 -60.0694 1417.102 -20.0281 1305.3239 26.3361 

1.29 1462 1492.7000 2.0999 1058.8516 -27.5751 1582.0485 8.2113 1550.8304 -6.0759 

1.30 1741 1839.3533 5.6492 1455.9708 -16.3716 1725.2366 -0.9054 1784.1672 -2.4794 

1.31 1984 2266.5107 14.2395 1785.2687 -10.0167 1849.5365 -6.7774 2005.9377 -1.1057 

2.1 2101 2792.8680 32.9304 1905.3780 -9.3109 1957.4397 -6.8330 2216.7151 5.5076 

2.2 2590 3441.4625 32.8750 1754.7511 -32.249 2051.1092 -20.8066 2417.0444 -6.6778 

2.3 2827 4240.6817 50.0064 1409.742 -50.1329 2132.4226 -24.5694 2607.4435 -7.7664 

2.4 3233 5225.5054 61.6302 1013.4274 -68.6537 2203.0097 -31.8587 2788.4047 -13.7518 

2.5 3892 6439.0372 65.4429 671.7559 -82.7401 2264.2856 -41.8221 2960.3957 -23.9364 

2.6 3697 7934.3904 114.617 421.6564 -88.5946 2317.4784 -37.3146 3123.8612 -15.5028 

Date Raw data ENGM (1,1) APE (%) ARIMA APE (%) GRM (1,1) APE (%) GERM(1,1, e at ) APE (%) 

1.23 131 131.0000 0.0000 587.2736 -348.3005 131.0000 0.0000 131.0000 0.0000 

1.24 261 107.9406 -58.6435 657.3624 -151.863 378.7444 45.1128 260.9996 -0.0002 

1.25 462 439.9931 -4.7634 662.6214 -43.4246 624.1423 35.0957 469.4866 1.6205 

1.26 688 748.3673 8.7743 775.4638 -12.7128 869.6805 26.4071 688.0390 0.0057 

1.27 776 1034.7516 33.3443 1074.8507 -38.5117 1116.2213 43.8429 918.1424 18.3173 

1.28 1772 1300.714 -26.5963 1459.0940 17.6584 1364.2258 -23.0121 1160.6658 -34.4997 

1.29 1462 1547.7108 5.8626 1391.2421 4.8398 1613.9876 10.3959 1416.0809 -3.1408 

1.30 1741 1777.0945 2.0732 2069.5928 -18.8738 1865.7134 7.1633 1684.6594 -3.2361 

1.31 1984 1990.121 0.3085 2345.1462 -18.2029 2119.5596 6.8326 1966.6041 -0.8768 

2.1 2101 2187.9568 4.1388 2220.4564 -5.6857 2375.6505 13.0724 2262.1216 7.6688 

2.2 2590 2371.6851 -8.4291 2184.6567 15.6503 2634.0888 1.7023 2571.4581 -0.7159 

2.3 2827 2542.3119 -10.0703 2361.6271 16.4617 2894.9622 2.4040 2894.9135 2.4023 

2.4 3233 2700.7714 -16.4624 2993.5868 7.4053 3158.3475 -2.3091 3232.8462 -0.0048 

2.5 3892 2847.9312 -26.8260 3475.7700 10.6945 3424.3133 -12.0166 3585.6721 -7.8707 

2.6 3697 2984.5973 -19.2698 3542.2804 4.1850 3692.9217 -0.1103 3953.8634 6.9479 
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Table 14 

Fitting values of models in Case 2. 

Date Raw data GM (1,1) APE (%) Verhulst APE (%) ARGM (1,1) APE (%) ONGM (1,1) APE (%) 

3.10 977 977.0000 0.0000 977.0000 0.0000 977.0000 0.0000 977.0000 0.0000 

3.11 2313 2295.3639 -0.7625 411.9399 -82.1902 1868.5143 -19.2168 2551.2386 -10.3000 

3.12 2651 2518.0459 -5.0152 578.7551 -78.1684 2575.0435 -2.8652 2658.438 -0.2806 

3.13 2547 2762.3310 8.4543 806.3475 -68.3413 3134.9711 23.0848 2798.3715 -9.8693 

3.14 3497 3030.3152 -13.3453 1110.4411 -68.2459 3578.7163 2.3368 2981.0345 14.7545 

3.15 3590 3324.2975 -7.4012 1504.9561 -58.0792 3930.3864 9.4815 3219.4750 10.3210 

3.16 3233 3646.8002 12.7993 1996.0261 -38.2609 4209.0865 30.1914 3530.7248 -9.2089 

3.17 3526 4000.5901 13.4597 2572.7846 -27.0339 4429.9576 25.6369 3937.0168 -11.6567 

3.18 4207 4388.7024 4.3191 3196.8035 -24.0123 4604.9990 9.4604 4467.3728 -6.1890 

3.19 5318 4814.4671 -9.4685 3796.0134 -28.6195 4743.7201 -10.7988 5159.6764 2.9771 

3.20 5986 5281.5367 -11.7685 4272.1207 -28.6315 4853.6572 -18.9165 6063.3796 1.2927 

3.21 6557 5793.9186 -11.6377 4527.1791 -30.9565 4940.7828 -24.6487 7243.0346 10.4626 

Date Raw data ENGM (1,1) APE (%) ARIMA APE (%) GRM (1,1) APE (%) GERM (1,1, e at ) APE (%) 

3.10 977 977.0000 0.0000 2103.8538 -115.3382 977.0000 0.0000 977.0000 0.0000 

3.11 2313 2778.3139 20.1173 1753.5983 24.1851 2295.1304 -0.7726 2345.6369 1.4110 

3.12 2651 2961.7041 11.7203 2612.2324 1.4624 2517.9964 -5.0171 2506.3437 -5.4567 

3.13 2547 3186.8406 25.1213 2849.9128 -11.8929 2762.3603 8.4554 2669.8166 4.8220 

3.14 3497 3463.2265 -0.9658 2889.2604 17.3789 3030.3800 -13.3434 2859.3663 -18.2337 

3.15 3590 3802.5278 5.9200 3512.8958 2.1477 3324.3702 -7.3992 3090.2263 -13.9213 

3.16 3233 4219.0666 30.5001 3633.3998 -12.3848 3646.8581 12.8011 3378.2706 4.4934 

3.17 3526 4730.4249 34.1584 3543.4230 -0.4941 4000.6122 13.4604 3742.5556 6.1417 

3.18 4207 5358.1871 27.3636 3819.6221 9.2079 4388.6674 4.3182 4207.0690 0.0016 

3.19 5318 6128.8509 15.2473 4281.7874 19.485 4814.3521 -9.4706 4802.5537 -9.6925 

3.20 5986 7074.9461 19.0126 4964.6274 17.0627 5281.3168 -11.7722 5568.7153 -6.9710 

3.21 6557 8236.4073 18.1915 4490.2532 31.5197 5793.5659 -11.6430 6557.0293 0.0004 

Table 15 

Fitting values of models in Case 3. 

Date Raw data GM (1,1) APE (%) Verhulst APE (%) ARGM (1,1) APE (%) ONGM (1,1) APE (%) 

4.11 4858.0000 0.0000 4858.0000 0.0000 4858 0.0000 4858.0000 0.0000 

4.12 4313 3969.9498 -7.9539 3021.5485 -29.9432 4072.0243 -5.5872 4146.0369 3.8712 

4.13 3579 3915.9128 9.4136 3897.1178 8.8885 3892.5527 8.7609 3810.8437 -6.4779 

4.14 3489 3862.6113 10.7083 4205.6223 20.5395 3851.5718 10.3919 3731.8115 -6.9593 

4.15 4178 3810.0353 -8.8072 3748.9680 -10.2688 3842.2141 -8.0370 3713.1771 11.1255 

4.16 4326 3758.1749 -13.1259 2813.6517 -34.9595 3840.0773 -11.2326 3708.7835 -14.2676 

4.17 5065 3707.0205 -26.8110 1850.8859 -63.4573 3839.5894 -24.1937 3707.7476 -26.7967 

4.18 5292 3656.5623 -30.9040 1114.2737 -78.9442 3839.478 -27.4475 3707.5033 -29.9414 

4.19 4956 3606.7910 -27.2237 635.3629 -87.1799 3839.4526 -22.5292 3707.4457 -25.1928 

4.20 4721 3557.6971 -24.6410 351.1143 -92.5627 3839.4468 -18.6730 3707.4322 -21.4693 

4.21 3853 3509.2714 -8.9211 190.6801 -95.0511 3839.4454 -0.3518 3707.4290 -3.7781 

4.22 4854 3461.5049 -28.6876 102.5734 -97.8868 3839.4451 -20.9014 3707.4282 -23.6212 

4.23 4760 3414.3886 -28.2691 54.8958 -98.8467 3839.4451 -19.3394 3707.4281 -22.1129 

4.24 5487 3367.9136 -38.6201 29.2989 -99.4660 3839.445 -30.0265 3707.4282 -32.4325 

4.25 5158 3322.0712 -35.5938 15.6144 -99.6973 3839.445 -25.5633 3707.4283 -28.1228 

Date Raw data ENGM (1,1) APE (%) ARIMA APE (%) GRM (1,1) APE (%) GERM(1,1, e at ) APE (%) 

4.11 4858 4858.0000 0.0000 4965.9742 -2.2226 4858.0000 0.0000 4858.0000 0.0000 

4.12 4313 3998.2368 -7.2980 4717.4428 -9.3773 3969.8426 -7.9564 4313.0979 0.0023 

4.13 3579 3722.3409 4.0051 4339.0877 -21.2374 3915.9602 9.4149 3692.1102 3.1604 

4.14 3489 3552.3716 1.8163 3836.821 -9.9691 3862.6518 10.7094 3807.9261 9.1409 

4.15 4178 3447.6599 -17.4806 4038.7789 3.3322 3809.991 -8.8083 3940.0159 -5.6961 

4.16 4326 3383.1509 -21.7949 4667.2344 -7.8880 3758.0015 -13.1299 4071.6967 -5.8785 

4.17 5065 3343.4092 -33.9899 5150.3372 -1.6848 3706.6903 -26.8176 4202.7668 -17.0234 

4.18 5292 3318.9259 -37.2841 5034.3642 4.8684 3656.0579 -30.9135 4333.3862 -18.1144 

4.19 4956 3303.8426 -33.3365 5216.7338 -5.2610 3606.1007 -27.2377 4463.7041 -9.9333 

4.20 4721 3294.5504 -30.2150 5250.5274 -11.2164 3556.8135 -24.6597 4593.8537 -2.6932 

4.21 3853 3288.8257 -14.6425 5358.3126 -39.0686 3508.1901 -8.9491 4723.9543 22.6046 

4.22 4854 3285.2990 -32.3177 5429.2496 -11.8510 3460.2232 -28.714 4854.1137 0.0023 

4.23 4760 3283.1263 -31.0268 5518.5372 -15.9357 3412.9056 -28.3003 4984.4298 4.7149 

4.24 5487 3281.7878 -40.1898 5598.6861 -2.0355 3366.2295 -38.6508 5114.9921 -6.7798 

4.25 5158 3280.9632 -36.3908 5683.3861 -10.1858 3320.1870 -35.6303 5245.8824 1.7038 
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Table 16 

Fitting values of models in Case 4. 

Date Raw data GM (1,1) APE (%) Verhulst APE (%) ARGM (1,1) APE (%) ONGM (1,1) APE (%) 

6.1 9035 9035.0000 0.0000 9035.0000 0.0000 9035.0000 0.0000 9035.0000 0.0000 

6.2 8863 9094.4356 2.6113 654.3997 -92.6165 8939.7883 0.8664 9223.4489 -4.0669 

6.3 8536 9014.1475 5.6015 700.7504 -91.7906 8846.3892 3.6362 9127.1391 -6.9252 

6.4 8831 8934.5682 1.1728 750.2275 -91.5046 8754.7682 -0.8632 9032.3510 -2.2800 

6.5 8726 8855.6914 1.4863 803.0186 -90.7974 8664.8914 -0.7003 8939.0605 -2.4417 

6.6 8855 8777.511 -0.8751 859.3189 -90.2957 8576.7257 -3.1426 8847.2440 0.0876 

6.7 8984 8700.0208 -3.1609 919.3312 -89.7670 8490.2384 -5.4960 8756.8781 2.5281 

6.8 8985 8623.2147 -4.0265 983.2653 -89.0566 8405.3976 -6.4508 8667.9399 3.5288 

6.9 8595 8547.0867 -0.5575 1051.3379 -87.768 8322.1720 -3.1743 8580.4070 0.1698 

6.10 8404 8471.6307 0.8047 1123.7713 -86.6281 8240.5309 -1.9451 8494.2570 -1.0740 

6.11 8779 8396.8409 -4.3531 1200.7932 -86.3220 8160.4439 -7.0459 8409.4682 4.2093 

6.12 8987 8322.7113 -7.3917 1282.6355 -85.7279 8081.8817 -10.0714 8326.0190 7.3549 

6.13 8706 8249.2362 -5.2465 1369.5327 -84.2691 8004.8151 -8.0540 8243.8882 5.3080 

6.14 8835 8176.4098 -7.4543 1461.7209 -83.4553 7929.2156 -10.2522 8163.0551 7.6055 

6.15 8246 8104.2262 -1.7193 1559.4357 -81.0886 7855.0554 -4.7410 8083.4991 1.9707 

6.16 8248 8032.6800 -2.6106 1662.9105 -79.8386 7782.3070 -5.6461 8005.2001 2.9437 

6.17 7843 7961.7653 1.5143 1772.3734 -77.4018 7710.9436 -1.6837 7928.1381 -1.0855 

6.18 7790 7891.4767 1.3027 1888.0453 -75.7632 7640.9387 -1.9135 7852.2937 -0.7997 

6.19 7972 7821.8087 -1.8840 2010.1361 -74.7850 7572.2666 -5.0142 7777.6476 2.4379 

6.20 7889 7752.7557 -1.7270 2138.8415 -72.8883 7504.9019 -4.8688 7704.1809 2.3427 

6.21 7728 7684.3123 -0.5653 2274.339 -70.5701 7438.8196 -3.7420 7631.8750 1.2439 

6.22 7600 7616.4731 0.2168 2416.7834 -68.2002 7373.9953 -2.9737 7560.7114 0.5170 

6.23 7425 7549.2329 1.6732 2566.3021 -65.4370 7310.4052 -1.5434 7490.6722 -0.8845 

6.24 7176 7482.5862 4.2724 2722.9899 -62.0542 7248.0256 1.0037 7421.7396 -3.4245 

6.25 7113 7416.5280 4.2672 2886.9034 -59.4137 7186.8336 1.0380 7353.8961 -3.3867 

6.26 6800 7351.0529 8.1037 3058.0546 -55.0286 7126.8066 4.8060 7287.1245 -7.1636 

6.27 6852 7286.1558 6.3362 3236.4050 -52.7670 7067.9223 3.1512 7221.4078 -5.3912 

6.28 6791 7221.8317 6.3442 3421.8589 -49.6119 7010.1591 3.2272 7156.7294 -5.3855 

6.29 6719 7158.0754 6.5348 3614.2566 -46.2084 6953.4955 3.4900 7093.0730 -5.5674 

6.30 6693 7094.8820 6.0045 3813.3674 -43.0245 6897.9106 3.0616 7030.4223 -5.0414 

7.1 6556 7032.2465 7.2643 4018.8832 -38.6992 6843.3840 4.3835 6968.7614 -6.2959 

7.2 6760 6970.1640 3.1089 4230.4116 -37.4199 6789.8954 0.4422 6908.0748 -2.1905 

7.3 6718 6908.6295 2.8376 4447.4702 -33.7977 6737.4251 0.2892 6848.3469 -1.9403 

7.4 6632 6847.6383 3.2515 4669.4810 -29.5917 6685.9538 0.8135 6789.5628 -2.3758 

7.5 6736 6787.1855 0.7599 4895.7661 -27.3194 6635.4623 -1.4925 6731.7074 0.0637 

7.6 6611 6727.2664 1.7587 5125.5437 -22.4695 6585.9320 -0.3792 6674.7661 -0.9645 

7.7 6368 6667.8763 4.7091 5357.9271 -15.8617 6537.3447 2.6593 6618.7245 -3.9373 

7.8 6562 6609.0105 0.7164 5591.9235 -14.7832 6489.6824 -1.1021 6563.5682 -0.0239 

7.9 6509 6550.6644 0.6401 5826.436 -10.4865 6442.9275 -1.0151 6509.2835 -0.0044 

7.10 6635 6492.8334 -2.1427 6060.2677 -8.6621 6397.0626 -3.5861 6455.8564 2.7000 

7.11 6611 6435.5129 -2.6545 6292.1274 -4.8234 6352.0709 -3.9166 6403.2734 3.1421 

7.12 6615 6378.6985 -3.5722 6520.6389 -1.4265 6307.9358 -4.6419 6351.5213 3.983 

7.13 6537 6322.3857 -3.2831 6744.3521 3.1720 6264.6409 -4.1664 6300.5867 3.6165 

7.14 6248 6266.5700 0.2972 6961.7574 11.4238 6222.1702 -0.4134 6250.457 -0.0393 

7.15 6422 6211.2470 -3.2817 7171.3023 11.6677 6180.508 -3.7604 6201.1192 3.4394 

7.16 6428 6156.4125 -4.2251 7371.4112 14.6766 6139.6390 -4.4860 6152.5610 4.2850 

7.17 6406 6102.0620 -4.7446 7560.5062 18.0223 6099.5481 -4.7838 6104.7700 4.7023 

7.18 6234 6048.1914 -2.9806 7737.0309 24.1102 6060.2203 -2.7876 6057.734 2.8275 

7.19 6109 5994.7963 -1.8694 7899.4753 29.3088 6021.6413 -1.4300 6011.4413 1.5970 

7.20 5940 5941.8727 0.0315 8046.4004 35.4613 5983.7968 0.7373 5965.8799 -0.4357 

7.21 5842 5889.4162 0.8116 8176.4646 39.9600 5946.6727 1.7917 5921.0383 -1.3529 

7.22 5862 5837.4229 -0.4193 8288.4482 41.3928 5910.2553 0.8232 5876.9053 -0.2543 

7.23 5848 5785.8886 -1.0621 8381.2769 43.3187 5874.5313 0.4537 5833.4695 0.2485 

7.24 5811 5734.8092 -1.3111 8454.0434 45.4835 5839.4874 0.4902 5790.7200 0.3490 

7.25 5871 5684.1808 -3.1821 8506.0257 44.8821 5805.1106 -1.1223 5748.6459 2.0840 

7.26 5765 5633.9993 -2.2723 8536.7023 48.0781 5771.3883 0.1108 5707.2366 1.0020 

7.27 5635 5584.2609 -0.9004 8545.7630 51.6551 5738.3079 1.8333 5666.4815 -0.5587 

7.28 5395 5534.9615 2.5943 8533.1161 58.1671 5705.8574 5.7620 5626.3703 -4.2886 

7.29 5475 5486.0974 0.2027 8498.8897 55.2309 5674.0246 3.6352 5586.8929 -2.0437 

7.30 5509 5437.6647 -1.2949 8443.4295 53.2661 5642.7978 2.4287 5548.0392 -0.7086 

7.31 5482 5389.6595 -1.6844 8367.2909 52.6321 5612.1655 2.3744 5509.7993 -0.5071 

8.1 5462 5342.0782 -2.1956 8271.2278 51.4322 5582.1164 2.1991 5472.1637 0.1861 

8.2 5427 5294.9169 -2.4338 8156.1765 50.2889 5552.6393 2.3151 5435.1226 0.1497 

8.3 5394 5248.1719 -2.7035 8023.2368 48.7437 5523.7235 2.4050 5398.6668 0.0865 

8.4 5159 5201.8397 0.8304 7873.6503 52.6197 5495.3581 6.5198 5362.787 3.9501 

8.5 5204 5155.9165 -0.9240 7708.7764 48.1318 5467.5327 5.0640 5327.4741 2.3727 

8.6 5267 5110.3986 -2.9733 7530.0675 42.9669 5440.2370 3.2891 5292.7191 0.4883 

8.7 5241 5065.2827 -3.3527 7339.0432 40.0314 5413.4610 3.2906 5258.5132 0.3342 

8.8 5212 5020.5650 -3.6730 7137.2651 36.9391 5387.1948 3.3614 5224.8478 0.2465 

8.9 5189 4976.2421 -4.1002 6926.3122 33.4807 5361.4286 3.3230 5191.7142 0.0523 

8.10 5118 4932.3105 -3.6282 6707.7578 31.0621 5336.1529 4.2625 5159.1042 0.8031 

8.11 4945 4888.7668 -1.1372 6483.1485 31.1051 5311.3584 7.4087 5127.0094 3.6807 

8.12 5102 4845.6075 -5.0253 6253.9852 22.5791 5287.0359 3.6267 5095.4216 -0.1289 

(continued on next page) 
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Table 16 

(continued) 

Date Raw data ENGM (1,1) APE (%) ARIMA APE (%) GRM (1,1) APE (%) GERM(1,1, e at ) APE (%) 

6.1 9035 9035.0000 0.0000 9035.0000 0.0000 9035.0000 0.0000 9035.0000 0.0000 

6.2 8863 9234.8451 4.1955 8638.5028 2.5330 9089.6062 2.5568 9191.9322 3.7113 

6.3 8536 9133.6364 7.0014 8556.2779 -0.2376 9011.0582 5.5653 9111.4905 6.7419 

6.4 8831 9034.2442 2.3015 8606.9425 2.5372 8932.5335 1.1497 9024.1491 2.1872 

6.5 8726 8936.6359 2.4139 8902.1140 -2.0183 8854.3859 1.4713 8934.3398 2.3876 

6.6 8855 8840.7795 -0.1606 8995.2505 -1.5839 8776.7431 -0.8838 8843.8336 -0.1261 

6.7 8984 8746.6435 -2.642 8955.4222 0.3181 8699.6642 -3.1649 8753.5069 -2.5656 

6.8 8985 8654.1971 -3.6817 8802.5761 2.0303 8623.1798 -4.0269 8663.8463 -3.5743 

6.9 8595 8563.4098 -0.3675 8657.6387 -0.7288 8547.3069 -0.5549 8575.1412 -0.2311 

6.10 8404 8474.2521 0.8359 8518.8256 -1.3663 8472.0546 0.8098 8487.5701 0.9944 

6.11 8779 8386.6945 -4.4687 8514.8579 3.0088 8397.4278 -4.3464 8401.2449 -4.3029 

6.12 8987 8300.7084 -7.6365 8709.5847 3.0869 8323.4283 -7.3837 8316.2348 -7.4637 

6.13 8706 8216.2656 -5.6253 8833.3304 -1.4626 8250.056 -5.2371 8232.5809 -5.4378 

6.14 8835 8133.3383 -7.9418 8686.9944 1.6752 8177.3098 -7.4441 8150.3051 -7.7498 

6.15 8246 8051.8995 -2.3539 8548.7040 -3.6709 8105.1874 -1.7076 8069.4156 -2.1415 

6.16 8248 7971.9223 -3.3472 8195.0858 0.6415 8033.686 -2.5984 7989.911 -3.1291 

6.17 7843 7893.3805 0.6424 8082.0461 -3.0479 7962.8022 1.5275 7911.783 0.8770 

6.18 7790 7816.2484 0.3369 7962.3699 -2.2127 7892.5324 1.3162 7835.0179 0.5779 

6.19 7972 7740.5006 -2.9039 7958.7017 0.1668 7822.8725 -1.8706 7759.5986 -2.6643 

6.20 7889 7666.1124 -2.8253 7978.0067 -1.1282 7753.8186 -1.7135 7685.505 -2.5795 

6.21 7728 7593.0593 -1.7461 7831.0397 -1.3333 7685.3662 -0.5517 7612.715 -1.4918 

6.22 7600 7521.3173 -1.0353 7573.155 0.3532 7617.511 0.2304 7541.2051 -0.7736 

6.23 7425 7450.8630 0.3483 7327.3437 1.3152 7550.2484 1.6868 7470.9509 0.6189 

6.24 7176 7381.6732 2.8661 7165.6632 0.1440 7483.5740 4.2861 7401.9272 3.1484 

6.25 7113 7313.7252 2.8219 7087.4427 0.3593 7417.4830 4.2807 7334.1083 3.1085 

6.26 6800 7246.9967 6.5735 7104.7868 -4.4822 7351.9709 8.1172 7267.4685 6.8745 

6.27 6852 7181.4659 4.8083 6995.3065 -2.0915 7287.0330 6.3490 7201.982 5.1077 

6.28 6791 7117.1112 4.8021 6893.7525 -1.5131 7222.6646 6.3564 7137.6229 5.1042 

6.29 6719 7053.9116 4.9845 6729.6816 -0.1590 7158.8611 6.5465 7074.3657 5.2890 

6.30 6693 6991.8462 4.4651 6601.8851 1.3613 7095.6178 6.0155 7012.185 4.7689 

7.1 6556 6930.8948 5.7183 6574.7506 -0.2860 7032.9300 7.2747 6951.0558 6.0259 

7.2 6760 6871.0374 1.6426 6577.7312 2.6963 6970.7930 3.1182 6890.9534 1.9372 

7.3 6718 6812.2543 1.4030 6690.4528 0.4101 6909.2024 2.8461 6831.8536 1.6948 

7.4 6632 6754.5262 1.8475 6703.4529 -1.0774 6848.1534 3.2592 6773.7325 2.1371 

7.5 6736 6697.8342 -0.5666 6635.8891 1.4862 6787.6414 0.7666 6716.5668 -0.2885 

7.6 6611 6642.1597 0.4713 6604.6195 0.0965 6727.6619 1.7647 6660.3336 0.7462 

7.7 6368 6587.4845 3.4467 6552.5218 -2.8976 6668.2104 4.7144 6605.0105 3.7219 

7.8 6562 6533.7905 -0.4299 6501.1837 0.9268 6609.2823 0.7205 6550.5755 -0.1741 

7.9 6509 6481.0603 -0.4292 6601.0316 -1.4139 6550.8731 0.6433 6497.0073 -0.1842 

7.10 6635 6429.2765 -3.1006 6630.2764 0.0712 6492.9784 -2.1405 6444.2848 -2.8744 

7.11 6611 6378.4221 -3.5180 6659.8756 -0.7393 6435.5937 -2.6532 6392.3876 -3.3068 

7.12 6615 6328.4804 -4.3314 6594.5593 0.3090 6378.7147 -3.5720 6341.2959 -4.1376 

7.13 6537 6279.4351 -3.9401 6510.4546 0.4061 6322.3369 -3.2838 6290.9901 -3.7633 

7.14 6248 6231.2700 -0.2678 6422.2844 -2.7894 6266.4561 0.2954 6241.4512 -0.1048 

7.15 6422 6183.9694 -3.7065 6293.6007 1.9994 6211.0679 -3.2845 6192.6608 -3.5711 

7.16 6428 6137.5178 -4.519 6322.0877 1.6477 6156.1681 -4.2289 6144.6008 -4.4088 

7.17 6406 6091.8998 -4.9032 6331.6564 1.1605 6101.7524 -4.7494 6097.2538 -4.8196 

7.18 6234 6047.1007 -2.9981 6311.2151 -1.2386 6047.8166 -2.9866 6050.6025 -2.9419 

7.19 6109 6003.1055 -1.7334 6190.6704 -1.3369 5994.3565 -1.8766 6004.6303 -1.7085 

7.20 5940 5959.9000 0.335 6035.7108 -1.6113 5941.3680 0.0230 5959.3210 0.3253 

7.21 5842 5917.4700 1.2919 5871.3449 -0.5023 5888.8469 0.8019 5914.6589 1.2437 

7.22 5862 5875.8014 0.2354 5772.164 1.5325 5836.7893 -0.4301 5870.6284 0.1472 

7.23 5848 5834.8808 -0.2243 5765.2549 1.4149 5785.191 -1.0740 5827.2148 -0.3554 

7.24 5811 5794.6946 -0.2806 5772.1398 0.6687 5734.048 -1.3242 5784.4034 -0.4577 

7.25 5871 5755.2296 -1.9719 5736.9861 2.2826 5683.3564 -3.1961 5742.1800 -2.1942 

7.26 5765 5716.473 -0.8418 5681.5056 1.4483 5633.1122 -2.2877 5700.5309 -1.1183 

7.27 5635 5678.4119 0.7704 5561.0200 1.3129 5583.3115 -0.9173 5659.4427 0.4338 

7.28 5395 5641.034 4.5604 5452.0088 -1.0567 5533.9504 2.5755 5618.9023 4.1502 

7.29 5475 5604.327 2.3621 5349.1247 2.2991 5485.025 0.1831 5578.8970 1.8977 

7.30 5509 5568.2787 1.0760 5381.4724 2.3149 5436.5316 -1.3155 5539.4146 0.5521 

7.31 5482 5532.8775 0.9281 5433.6295 0.8824 5388.4663 -1.7062 5500.4429 0.3364 

8.1 5462 5498.1116 0.6611 5443.4267 0.3400 5340.8254 -2.2185 5461.9703 -0.0005 

8.2 5427 5463.9697 0.6812 5294.0196 2.4503 5293.6051 -2.4580 5423.9855 -0.0555 

8.3 5394 5430.4406 0.6756 5137.6747 4.7520 5246.8019 -2.7289 5386.4774 -0.1395 

8.4 5159 5397.5133 4.6232 4995.8605 3.1622 5200.4119 0.8027 5349.4352 3.6913 

8.5 5204 5365.1769 3.0972 4921.6525 5.4256 5154.4317 -0.9525 5312.8486 2.0916 

8.6 5267 5333.4209 1.2611 4903.7844 6.8961 5108.8575 -3.0025 5276.7073 0.1843 

8.7 5241 5302.2349 1.1684 4881.3277 6.8627 5063.6858 -3.3832 5241.0015 0.0000 

8.8 5212 5271.6086 1.1437 4798.975 7.9245 5018.9132 -3.7047 5205.7216 -0.1205 

8.9 5189 5241.5320 1.0124 4655.2219 10.2867 4974.536 -4.1331 5170.8582 -0.3496 

8.10 5118 5211.9952 1.8366 4503.7050 12.0026 4930.5507 -3.6625 5136.4022 0.3596 

8.11 4945 5182.9885 4.8127 4408.3534 10.8523 4886.9541 -1.1738 5102.3448 3.1819 

8.12 5102 5154.5024 1.0291 4391.1505 13.9328 4843.7425 -5.0619 5068.6775 -0.6531 
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