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A B S T R A C T   

Passenger contact in public transit (PT) networks can be a key mediate in the spreading of in-
fectious diseases. This paper proposes a time-varying weighted PT encounter network to model 
the spreading of infectious diseases through the PT systems. Social activity contacts at both local 
and global levels are also considered. We select the epidemiological characteristics of coronavirus 
disease 2019 (COVID-19) as a case study along with smart card data from Singapore to illustrate 
the model at the metropolitan level. A scalable and lightweight theoretical framework is derived 
to capture the time-varying and heterogeneous network structures, which enables to solve the 
problem at the whole population level with low computational costs. Different control policies 
from both the public health side and the transportation side are evaluated. We find that people’s 
preventative behavior is one of the most effective measures to control the spreading of epidemics. 
From the transportation side, partial closure of bus routes helps to slow down but cannot fully 
contain the spreading of epidemics. Identifying “influential passengers” using the smart card data 
and isolating them at an early stage can also effectively reduce the epidemic spreading.   

1. Introduction 

Infectious diseases spread through repetitive social contacts (Smieszek, 2009; Smieszek et al., 2009), such as at schools (Salathé 
et al., 2010; Litvinova et al., 2019), conferences (Stehlé et al., 2011) or workplaces (Potter et al., 2015). Past studies proved that human 
mobility networks—like air transportation (Hufnagel et al., 2004; Colizza et al., 2006; Balcan et al., 2009) or waterways (Mari et al., 
2012; Gatto et al., 2012)—reconstruct the geometry distance by transporting pathogens or contagious individuals more effectively to 
widespread locations (Brockmann and Helbing, 2013), leading to the outbreak of epidemics. Recently, the outbreak of coronavirus 
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disease 2019 (COVID-19) confirmed the strong connection between human mobility network and disease dynamics. The first case of 
COVID-19 was reported in Wuhan, China, at the beginning of Dec. 2019, and has then quickly spread to the rest of China through 
airlines and high-speed rail networks during the Spring Festival travel season (Wu et al., 2020). Besides the transmissions of pathogens 
to destination local communities via human mobility network, the densely populated urban public transit (PT) network, however, may 
also become a key mediate in the spreading of influenza-like epidemics with public transport carriers being the location of transmission 
(Sun et al., 2013). 

The PT system in large metropolitan areas plays a key role in serving the majority of urban commuting demand between highly 
frequented locations, as human trajectories present a high“ degree of spatiotemporal regularity following simple, reproducible patterns 
(Gonzalez et al., 2008). By the end of 2017, the annual patronage of urban metro systems worldwide increased from 44 billion in 2013 
to 53 billion, and in Asia, the systems carry more than 26 billion passengers a year (International Association of Public Transport 
(UITP), 2018). The urban PT system is often framed as a key solution for building sustainable cities with concerns of environment, 
economy, and society’s effectiveness (Miller et al., 2016). But the indoor environment created by crowded metro carriages or buses can 
also make an infected individual easily transmit the pathogen to others via droplets or airborne routes (Xie et al., 2007; Yang et al., 
2009). In recent years, scholars began to turn their attention to the spreading of the epidemic through the urban PT network. 

Rooted in people’s daily behavior regularity, individuals with repeated encounters in the PT network are found to be strongly 
connected over time, resulting in a dense contact network across the city (Sun et al., 2013). Such mobility features lead to great risks for 
the outbreak of infectious diseases through bus and metro networks to the whole metropolitan area (Sun et al., 2014; Liu et al., 2019). 
Based on the contact network developed by Sun et al. (2013), a variation of human contact network structures has been proposed to 
characterize the movement and encounters of passengers in the PT system, which are then used to model the epidemic spreading 
among passengers (Bóta et al., 2017a; Bóta et al., 2017b; Hajdu et al., 2019; Shoghri et al., 2019). 

However, previous studies focusing on the human contacts in PT systems often use a static passenger contact network, discarding 
the time-varying nature of encounters. The aggregation of the time-varying edges into a static version of the network offers useful 
insights but can also introduce bias (Perra et al., 2012; Coviello et al., 2016). Recently, Müller et al. (2020) simulated complete in-
dividual mobility trajectories based on mobile phone data and calculated the spreading risks of COVID-19 over dynamic encounters in 
transportation and buildings. They found that successful contact tracing can reduce the reinfection rate by about 30 to 40%, which 
suggests the importance in considering time-varying human interactions for epidemic modeling. However, their research mainly 
focused on testing the effects of general control strategies at the government level (e.g., closing schools, limiting outdoor activities). 
From the transportation perspective, the operation strategies by transport authorities (especially PT agencies) may also play an 
important role in controlling epidemics. Recently, a variety of epidemic control strategies in PT systems have been implemented to 
respond to the outbreak of COVID-19 since late January 2020. For example, in Wuhan, almost all PT services have been shut down 
since Jan. 24th. In Wuxi, another Chinese big city, except the 22 arterial bus routes kept running with shortened operation hours, all 
other PT services (roughly 92% of bus routes) were suspended since Feb. 1st. In Milan, Italy, the PT services were still in operation, but 
the suspension of PT has been officially proposed with the rapid surge of COVID-19 cases in the Lombardy area. The impacts of these 
strategies and other possible PT operation strategies (e.g., distributing passengers’ departure time, limiting maximum bus load), 
however, have seldom been carefully explored. 

To fill these gaps, this study proposes a time-varying weighted PT encounter network (PEN) to model the spreading of the epidemic 
through urban PT systems. The social activity contacts at both local and global levels are also considered. We select the epidemiological 
characteristics of COVID-19 as the case study along with high-resolution smart card data from Singapore to illustrate the model at the 
metropolitan level. Different control policies from both the public health side and the transportation side are evaluated. 

In this work, we do not attempt to reproduce or predict the patterns of COVID-19 spreading in Singapore, where a variety of 
outbreak prevention and control measures have been implemented (Ministry of Health (MOH), 2020) and make most of epidemic 
prediction models invalid. Instead, since the PT systems in many cities share the similar contact network structure despite the dif-
ferences in urban structures, PT network layouts and individual mobility patterns (Qian et al., 2020), this study aims to employ the 
smart card data and the PT network of Singapore as proximity to the universal PEN to better understand the general spatiotemporal 
dynamics of epidemic spreading over the PT system, and to evaluate the potential effects of various measures for epidemic prevention 
in the PT systems, especially from the PT operation angle. 

The main contribution of this paper is threefold: 

• Propose a PT system-based epidemic spreading model using the smart card data, where the time-varying contacts among pas-
sengers at an individual level are captured. 

• Propose a novel theoretical solving framework for the epidemic dynamics with time-varying and heterogeneous network struc-
tures, which enables to solve the problem for the whole population with low computational costs.  

• Evaluate various potential epidemic control policies from both public health side (e.g., reducing infectious rate) and transportation 
side (e.g., distributing departure time, closing bus routes) 

The rest of the paper is organized as follows. In Section 2, we elaborate on the methodology of establishing contact networks and 
solving the epidemic transmission model. Section 3 presents a case study using the smart card data in Singapore to illustrate the general 
spatiotemporal dynamics of epidemic spreading through the PT system. In Section 4, conclusions are made and policy implications are 
offered. 
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2. Methodology 

2.1. Network representation 

Epidemic spreading is usually modeled based on individual’s contact network. The contact network is a undirected graph where the 
node is individual and the edge shows the potential infection intensity between corresponding individuals. The majority of previous 
studies investigated the epidemic process in a static network, where the spreading of the disease is virtually frozen on the time scale of 
the contagion process. However, static networks are only approximations of the real interplay between time scales. Considering daily 
mobility patterns, no individual is in contact with all the friends simultaneously all the time. On the contrary, contacts are changing in 
time, often on a time scale that is shorter than the whole spreading process. Real contact networks are thus inherently dynamic, with 
connections appearing, disappearing, and being rewired with different characteristic time scales, and are better represented in terms of 
a temporal or time-varying network. Therefore, modeling the epidemic process on PT should be based on a time-varying contact 
network. 

Although we focus on the contagion process through PT, passengers’ social-activity (SA) contacts besides riding the same vehicles 
are not neglectable. In this study, two components of the contact network are considered: 1) a PEN that is designated to capture the 
interaction of passengers on PT, 2) and an SA contact network that captures all other interactions among people. 

2.1.1. PT encounter network 
PT encounters are defined as those who have ever stayed in the same vehicle in a PT system. PT passengers’ encounter patterns have 

been studied by Sun et al. (2013) through an encounter network, which is an undirected graph with each node representing a passenger 
and each edge indicating the paired passengers that have stayed in the same vehicle. The network is constructed by analyzing the smart 
card data, which includes passengers’ tap-in/tap-out time, location, and corresponding bus ID. We assume passengers staying in a same 
vehicle are close enough to trigger infections. Since PEN provides direct encounter information of passengers, it is an ideal tool to 
investigate the epidemic spreading through PT. 

Extending the work by Sun et al. (2013), we propose a time-varying weighted PEN to model the epidemic process. We first evenly 
divide the whole study period into different time intervals t = 1,…,T. The length of each interval is τ. For a specific time interval t, 
consider a weighted graph Gt(N ,E t ,W t), where N = {i : i = 1, ..,N} is the node set with each node representing an individual, N is 
the total number of passengers in the system; E t is the edge set and W t is the weight set. The edge between i and j (i,j ∈ N ), denoted as 

et
ij, exists if i and j have stayed in the same vehicle during the time interval t. The weight of et

ij, denoted as wt
ij, is defined as wt

ij =
dt

ij
τ , 

where dt
ij is the duration of i, j staying in the same vehicle during time interval t. By definition, we have 0⩽wt

ij⩽1. The weight is used to 
capture the fact that epidemic transmission is related to the duration of contact. 

2.1.2. Social-activity contact network 
In addition to contacts during rides on the PT, passengers may also contact each other during their daily social activities. Given the 

heterogeneity of passengers’ spatial distributions, people may have various possibilities to contact with different people. However, 
capturing the real connectivity of passengers in social activities requires a richer dataset (e.g., mobile phone, GPS data), which is 
beyond the scope of this research. In this study, we made the following assumptions to build the SA contact network.  

• Global interaction: Passengers may interact with any other individuals in the system during a time interval of t with a uniform 
probability of θg.  

• Local interaction: Passengers with same origins or destinations of PT trips may interact with each other during time interval t with 
a uniform probability θℓ. Since local interaction is more intense than global interaction, we have θℓ > θg. 

For the global interaction, we assume that the contact time for all connected individuals is τ for a specific time interval if there are 
no PT and local contacts between them. Otherwise, the contact time should be subtracted by the PT and local contact duration (CD) at 
that time interval. For the local interaction, the contact time calculation is illustrated by the following example. Consider passenger i 
with PT trip sequence {(Oi

t1 ,D
i
t2 ),(O

i
t3 ,D

i
t4 )}, where tk is the time when the passenger board or alight the vehicles. Oi

tk 
and Di

tk′
are the trip 

origin and destination, respectively. The trip sequence is defined as a sequence of consecutive PT trips where every adjacent trip pair 
has an interval of fewer than 24 h (e.g., t3 − t2 < 24 h). We call the interval between two consecutive PT trips (e.g., [t2,t3]) as activity time 
hereafter. Since passengers may not stay in the same place between two consecutive trips, we may have Di

t2 ∕= Oi
t3 . We further assume 

that from time t2 to t3, the passenger spends half of the activity time at Di
t2 

and half of the activity time at Oi
t3 . 

Suppose passenger j has a trip sequence {(Oj
t′1
,Dj

t′2
),(Oj

t′3
,Dj

t′4
)}, and Dj

t′2
= Oi

t3 ; and the overlapping time between intervals [t2,t3] and 

[t′2, t
′

3] are not zero. This means passengers i and j may have local contact because they have stayed in the same place Dj
t′2
= Oi

t3 
(by 

definition, the probability of having local contact is θℓ). Recall that we assume that passengers spend half of the activity time at a 
specific origin or destination. If they have a local contact, then the CD between passengers i and j is calculated as half of the overlapping 
time between interval [t2, t3] and interval [t′2, t

′

3]. This calculation gives us the total CD of i and j at the local interaction level. For 

example, if t2 < t′2 < t3 < t′3, the total local CD between i and j is 12
(
t3 − t′2

)

. Analogizing to the PEN, the total local CD can be mapped to 
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each time interval. For example, if t* is the time boundary for time interval t and time interval t + 1, and t* − τ < t′2 < t* < t3 < t* + τ. 

Denote the local CD between i and j for time interval t as d̃
ℓ,t
ij (0⩽d̃

ℓ,t
ij ⩽τ). Then we have d̃

ℓ,t
ij = t* − t′2 and d̃

ℓ,t+1
ij = t3 − t*. 

We denote the SA contact network as G̃t(N ,Ẽ
g
t ,Ẽ tℓ,W̃

g
t ,W̃

ℓ
t ), where Ẽ

g
t is the edge set of global interaction; Ẽ tℓ is the edge set of 

local interaction. The edge of global interaction between any i and j, denoted as ̃eg,t
ij , exists with probability θg for all i,j ∈ N . When i and 

j share the same PT trip origins or destinations during time interval t, the edge of local interaction between i and j (̃eℓ,t
ij ) exists with 

probability θℓ. W̃
g
t and W̃

ℓ
t are the weight set for global and local interaction edges, respectively. By the discussion above, we have 

w̃ℓ,t
ij =

d̃
ℓ,t

ij
τ for all w̃ℓ,t

ij ∈ W̃
ℓ
t and w̃g,t

ij = 1 − w̃ℓ,t
ij − wt

ij for all w̃g,t
ij ∈ W̃

g
t . By definition, the contacts from three sub-networks (local, global, 

and PT) are mutually exclusive. 
It is worth noting that though some macroscopic simplification is applied, the SA contact network proposed in this paper is capable 

to deal with passengers’ full activity trajectories. Once the exact travel data of each individual is given, we can construct the contact 
networks based on their locations and contact duration. Therefore, though the local and global contacts in this study are simplified, the 
proposed framework is general and still works for more detailed data sources. 

2.1.3. Examples 
To illustrate the proposed epidemic contact network, we present a five-passenger system with a single bus route (N = 5) in Fig. 1. 

We consider the time period from 7:00 to 10:00 with τ = 1 h. For illustrative purpose, we neglect the global interaction and set the local 
interaction insensitivity θℓ = 1. The top of the graph shows the overall time-varying contact networks (i.e. PEN + local) for three time 
intervals (t = 1,2,3). The orange (green) edges represent there are SA (PT) contacts between corresponding passengers. The middle of 
the graph shows the duration of passenger’s activity. The orange (green) bar indicates the duration at local activities (at PT trips). The 
bottom of the graph shows the passengers trajectories along the bus route. 

In the time interval t = 1, at 7:30, passengers 1,2, and 5 board the bus; since they share the same origin and also are in the same bus 
during t = 1, they are connected by the edges of PEN (colored green) and edges of local SA interaction network (colored orange). 
Accordingly, we have d1

12 = d1
25 = d1

15 = 0.5 h. The weights are calculated as w1
12 = w1

25 = w1
15 = 0.5/1 = 0.5. In the meanwhile, from 

the trajectories at t = 2, we noticed passengers 3 and 4 also share the same origin. Thus, we also have an SA contact edge between 3 
and 4 at t = 1. It is worth noting that before 7:00, passengers 1, 2, 5 and passengers 3, 4 may also have the local SA contacts because 
they share the same origin at 7:30 and we assume they have stayed around the origin from last bus trips (see Section 2.1.2 for more 
details). 

The local CD for passengers 1,2, and 5 at time interval t = 1 is d̃
ℓ,1
12 = d̃

ℓ,1
25 = d̃

ℓ,1
15 = 1

2 × 0.5 = 0.25 h. The 1
2 comes from the 

assumption that these passengers only spend half of their time around this bus station (see Section 2.1.2). Hence, the corresponding 

Fig. 1. Network representation of a five-passenger system.  
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weights for the SA contact network are w̃ℓ,1
12 = w̃ℓ,1

25 = w̃ℓ,1
15 = 0.25/1 = 0.25. Similarly, we have ̃d

ℓ,1
34 = 1

2 × 1 = 0.5 and w̃ℓ,1
34 = 0.5. The 

weights for t = 2 and t = 3 are calculated in the same way. 

2.2. Epidemic transition model 

The epidemic transition model is independent of the network representation. We can model various infectious diseases based on the 
proposed PEN using different epidemic transition frameworks. For the case study we considered (COVID-19), we employed the 
Susceptible-Exposed-Infectious-Removed (SEIR) diagram in this study. The SEIR model is generally used to model influenza-like illness 
and other respiratory infections. For example, Small and Tse (2005) used this model to numerically study the evolution of the severe 
acute respiratory syndrome (SARS), which shares significant similarities with the COVID-19. 

2.2.1. SEIR diagram 
We first divided the population into four different classes/compartments depending on the stage of the disease (Anderson et al., 

1992; Diekmann and Heesterbeek, 2000; Keeling and Rohani, 2007): susceptibles (denoted by S, those who can contract the infection), 
exposed (E, those who have been infected by the disease but cannot yet transmit it or can only transmit with a low probability), in-
fectious (I, those who contracted the infection and are contagious), and removed (R, those who are removed from the propagation 
process, either because they have recovered from the disease with immunization or because they have died). By definition, we have 
N = S ∪ E ∪ I ∪ R, where N is the set of the whole population. 

The diagram of the SEIR model is shown in Fig. 2. The diagram shows how individuals move through each compartment in the 
model. The infectious rate, β, controls the rate of spread and is associated with the probability of transmitting disease between a 
susceptible (S) and an exposed individual (E). The incubation rate, γ, is the rate of exposed individuals (E) becoming infectious (I). 
Removed rate, μ, is the combination of recovery and death rates. The SEIR model typically assumes the recovered individuals will not 
be infected again, given the immunization obtained. It is worth noting that this study focuses on the early stage of an epidemic process, 
where the impact of outside factors on N (e.g., birth and natural death) are not considered. 

For the epidemic process models, people are concerned about the steady-state, epidemic threshold and reproduction number. 
According to Pastor-Satorras et al. (2015), the number of infected individuals in the SEIR model always tends to zero after a long term 
(see Fig. 3a). This is obvious from the diagram of SEIR (Fig. 2), where there is only one recurrent state R. The basic reproduction 
number, denoted by R0, is defined as the average number of secondary infections caused by a primary case introduced in a fully 
susceptible population (Anderson et al., 1992). In the standard SEIR model, we have R0 =

β
μ. Epidemic threshold, in many cases, is 

defined based on the value of R0. When R0 < 1, the number of infectious individuals tends to decay exponentially; thus, there is no 
epidemic. However, if R0 > 1, the number of infectious individuals could grow exponentially with an outbreak of epidemic (see 
Fig. 3b). 

Fig. 3. Illustration of SEIR model (adapted from Karong’oi et al. (2018), Pastor-Satorras et al. (2015)).  

Fig. 2. Diagram of SEIR.  
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2.2.2. Individual-based approach 
Epidemic modeling can be classified into compartment models and network models. The typical compartment models assume the 

population are homogeneous and well-mixed, which is not suitable in this study. Thus, the network models are used. 
The modeling of epidemic on networks falls into two different categories (Pastor-Satorras et al., 2015): the individual-based 

approach and the degree-based approach. Generally, the individual-based approach models the epidemic transmission at the indi-
vidual level (Smieszek et al., 2011). While the degree-based approach captures the infection process at the group level, where each 
group includes a set of nodes (individuals) with the same degree and these nodes are assumed to be statistically equivalent (Pastor- 
Satorras et al., 2015). Since in the PEN, passengers with the same degree are not necessarily similar, the individual-based framework is 
used in this study. 

We denote Si,t , Ii,t ,Ei,t , and Ri,t as the Bernoulli random variable that describes whether individual i is in class S, I,E, and R at time 
interval t, respectively (Yes = 1). By definition we have Si,t +Ii,t +Ei,t +Ri,t = 1 for all i and t. Let P(Xi,t = 1) = pX

i,t, where X ∈ {S, I,E,R}
and 

∑
XpX

i,t = 1. 
Since the contact network is defined in discrete time, we can describe the epidemic process of the SEIR model as a discrete Markov 

process with specific transition probabilities. To match with the epidemiological characteristics of COVID-19, we assume that the 
exposed individual can also infect others based on the recent finding (Rothe et al., 2020), which may not be the common case in the 
SEIR model. 

Let βI be the probability of a susceptible individual i ∈ S getting infected by an infected individual j ∈ I at a time interval t if i and j 
contact each other (either by PT or SA) for the entire time interval. Since the actual transmission probability is related to the interaction 
duration, we can write the actual probability of i getting infected by j (βI

i,j,t) as 

βI
i,j,t = at

ij ⋅ h
(

wt
ij, βI

)
+ ãℓ,t

ij ⋅ h
(

w̃ℓ,t
ij , βI

)
+ ãg,t

ij ⋅ h
(

w̃g,t
ij , βI

)
∀i ∈ S, j ∈ I. (1)  

where h(⋅, ⋅) is a function to describe the transmission probability with respect to CD. It can be a form of survival function (e.g., 
exponential, Weibull) or a linear function (i.e., h(w, β) = wβ, which is used in the case study). at

ij (ã
ℓ,t
ij , ãg,t

ij ) is an indicator variable 

showing whether et
ij (̃e

ℓ,t
ij , ẽg,t

ij ) exists. It is worth noting that at
ij is a known constant but ̃aℓ,t

ij and ̃ag,t
ij are random variables with Bernoulli 

distribution: ãℓ,t
ij ̃B (Lt

ijθ
ℓ) and ãg,t

ij ̃B (θg), where Lt
ij = 1 if i and j share the same origin or destination at time interval t and Lt

ij = 0 
otherwise (see Section 2.1.2 for details). Therefore, we have 

βI
i,j,t = at

ij ⋅ h
(

wt
ij, βI

)
+ Lt

ij ⋅ θℓ ⋅ h
(

w̃ℓ,t
ij , βI

)
+ θℓ ⋅ h

(
w̃g,t

ij , βI

)
∀i ∈ S, j ∈ I. (2) 

Similarly, we define βE as the probability of a susceptible individual i ∈ S getting infected by an exposed individual j ∈ E at time 
interval t if i and j contact each other for the entire time interval (βE ≪ βI). The actual transmission probability considering interaction 
duration is 

βE
i,j,t = at

ij ⋅ h
(

wt
ij, βE

)
+ Lt

ij ⋅ θℓ ⋅ h
(

w̃ℓ,t
ij , βE

)
+ θℓ ⋅ h

(
w̃g,t

ij , βE

)
∀i ∈ S, j ∈ E. (3) 

Note that if i and j have been in contact, we assume the transmission probability only depends on the CD. The variation of 
transmission probability due to spatial distribution is neglected in the case study because it requires a more dedicated physical 
infection model and assumptions about passenger spatial distribution in a vehicle, which is beyond the scope of this study. However, 
the proposed method can be extended to capture the spatial effect by replacing h(wt

ij, βI) with a dedicated transmission models (e.g., 
Wells–Riley model (Wells et al., 1955)) and taking the distance between i and j into consideration. For example, one can replace h(wt

ij,

βI) with h(wt
ij,st

ij,βI), where st
ij is the distance between i and j in time interval t, and it is a function of vehicle loads, vehicle types (e.g., 

double-decker vs. smallish normal buses), seating distributions, etc. 
Let γ be the probability of E → I, which is unrelated to the network. μ is the probability of I → R and μ = μr + μd, where μr and μd are 

the probability of infectious people getting cured and dying, respectively. Both of them are unrelated to the network. We summarize 
the transition graph for individual i at time interval t in Fig. 4. 

The notations and epidemic transmission mechanism allow us to write the following system equations: 

Fig. 4. Transition graph of individual i at time interval t.  
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pS
i,t+1 = pS

i,t −
∑

j∈N

βE
i,j,tP

(

Si,t = 1,Ej,t = 1

)

−
∑

j∈N

βI
i,j,tP

(

Si,t = 1, Ij,t = 1

)

(4)  

pE
i,t+1 = pE

i,t +
∑

j∈N

βE
i,j,tP

(

Si,t = 1,Ej,t = 1

)

+
∑

j∈N

βI
i,j,tP

(

Si,t = 1, Ij,t = 1

)

− pE
i,tγ (5)  

pI
i,t+1 = pI

i,t − pI
i,t

(
μr + μd

)
+ pE

i,tγ (6)  

pR
i,t+1 = pR

i,t + pI
i,t

(
μr + μd

)
(7)  

Eq. (4) means that the infection probability of an individual in S equals to the probability of infected by surrounding people in I plus the 
probability of infected by surrounding people in E. This comes from the typical assumption of discrete Markov chain that in a time 
interval the probability of more than one events happening is zero, which holds for this study because the probability of infected by 
both people in I and people in E in a time interval is small. 

Calculating P(Si,t = 1,Xj,t = 1) requires the joint distribution of Si,t and Xj,t , which is usually unavailable. According to the 
individual-based mean-field approximation, we can assume that the state of neighbors is independent (Hethcote and Yorke, 2014; 
Chakrabarti et al., 2008; Sharkey, 2008; Sharkey, 2011). Hence, this leads to 

P
(

Si,t = 1,Ej,t = 1
)
= pS

i,tp
E
j,t (8)  

P
(

Si,t = 1, Ij,t = 1
)
= pS

i,tp
I
j,t (9)  

By plugging Eqs. (8) and (9) into Eqs. (4) and (5), we can get a new group of solvable system equations. 

2.3. Simulation-based solving framework 

Different from the typical SEIR model, the proposed epidemic model with the individual-based PEN has two challenges. First, the 
infection rate in a typical SEIR model is defined at the population level (i.e., homogeneous network assumption). However, in the 
proposed framework, we consider one-to-one contagious behaviors at the individual level with heterogeneous contact networks. The 
heterogeneity is difficult to characterize by probabilistic models (e.g., degree distributions) because contact structures are known from 
the smart card data. Second, the proposed framework lies on a time-varying network, for which the contagious behaviors and 
interacted individuals vary over time. 

One of the solution methods for Eqs. (4)–(7) is simulation. Similar to many other complex stochastic process, simulation can output 
approximate values for pX

i,t for all X ∈ {S, I,E,R} and t. The simulation process is described in Algorithm 1, where pX
t (X ∈ {S,I,E,R}) is 

the proportion of people in class X for time interval t. Initialization can assign some seed infectious people in the system. At each time 
step t, we calculate the one-to-one transmission probability βI

i,j,t and βE
i,j,t for each person in class S, where the time complexity is O (N2). 

Therefore, the total time complexity of simulation is O (N2T), where T is the total number of time intervals considered. The model also 
requires to store the network structures and individual states at each time step, where the space complexity is also O (N2T). 

Algorithm 1. 
Simulation-based solving algorithm   

1: Initialize Si,0, Ei,0, Ii,0, Ei,0 for all i = 1,2, ...,N.  
2:for t = 1,2, ...,T do  
3: for i = 1, 2, ...,N do  
4: if Si,t− 1 = 1 then  
5: Calculate βI

i,j,t and βE
i,j,t  

6: Assign Ei,t = 1 with probability 
∑

j∈Iβ
I
i,j,t +

∑
j∈EβE

i,j,t .  
7: Let Si,t = 1 − Ei,t , and Ii,t = 0, Ri,t = 0.  
8: else if Ei,t− 1 = 1 then  
9: Assign Ii,t = 1 with probability γ.  

10: Let Ei,t = 1 − Ii,t , and Si,t = 0, Ri,t = 0.  
11: else if Ii,t− 1 = 1 then  
12: Assign Ri,t = 1 with probability μ = μr + μd  
13: Let Ii,t = 1 − Ri,t , and Si,t = 0, Ei,t = 0.  
14: else 
15: Assign Ri,t = 1, and Ii,t = 0, Ri,t = 0, Si,t = 0.  
16: pX

t = (1/N)
∑

i∈N Xi,t for all X ∈ {S, I,E,R}.  
return pX

t for all t ∈ {1,2, ...,T}, and X ∈ {S, I,E,R}.   
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Given the O (N2T) of time and space complexity, the simulation-based solving framework is hard to scale up to the whole popu-
lation level (4.7 million in our case study). As we code the calculation process by matrix operation (to improve computing efficiency), 
large N will easily occupy large memory and makes the matrix operation unavailable. According to the numerical results, N⩾300 k 
would cause memory errors to a 32 GB RAM personal computer. 

It is worth noting that there exists a sparse representation of the contact network (i.e. only storing the edges (i, j) when i and j are 
interacted, rather than the whole network). In this way, we only have the space and time complexity of O (〈k〉NT), where 〈k〉 is the 
average degree of the contact network, which may simplify the simulation. However, generating this sparse representation needs a 
merge or join operation of two lists of all individuals. And this operation still requires a space complexity in O (N2T). Hence, future 
research can be done on optimizing the algorithms of constructing contact networks for large sample sizes. 

2.4. Theoretical framework 

Considering computational costs, a scalable and lightweight theoretical model is proposed to handle the epidemic calculation. The 
theoretical model, though simplified from agent-level simulation, can retain the flexibility to capture the behavioral, mechanical, 
networked, and dynamical features of the simulation-based models. 

The framework is separated into three steps. 1) We first build up a multi-particle dynamics model for the epidemic process to 
represent the individual-based model. 2) Considering properties of contact network and multi-particle dynamics (Gao et al., 2016), an 
effective model is employed to represent the multi-dimensional dynamics (individual-based) into one-dimension (mean-based). 3) 
Previous effective models are developed for static network structure. To fit with the time-varying contact network, we innovatively 
combine the effective model with a temporal network model by adding energy flow into the equations, from which we can capture the 
impact of the time-varying contact networks on the entire dynamical system. 

For the multi-particle dynamics model, we focus on the early stage of the epidemic process, where the percent of susceptible people 
is almost 100%, and recovered people are 0%. Hence, we could use Taylor expansion to simplify the four-dimension (S,E, I, and R) 
individual dynamical epidemic process described in Eq. (4)–(7) to two dimensions (E and I): 

pE
i,t+1 − pE

i,t =
∑

j∈N

βE
i,j,tp

E
j,t +

∑

j∈N

βI
i,j,tp

I
j,t − pE

i,tγ (10)  

pI
i,t+1 − pI

i,t = − pI
i,t

(
μr + μd

)
+ pE

i,tγ (11) 

In this formula, we embedded the dynamical network structure into two tensors [βE
i,j,t ]i,j,t ∈ RN×N×T and [βI

i,j,t ]i,j,t ∈ RN×N×T . These two 
tensors are non-negative, and each temporal slice of these tensors (i.e., βI

t = [βI
i,j,t ]i,j ∈ RN×N and βE

t = [βE
i,j,t ]i,j ∈ RN×N) are symmetric due 

to the property of infection. According to the previous studies (Gao et al., 2016; Tu et al., 2017), the infectious burst in this canonical 
system could be captured by a one-dimensional simplification of the individual-based model. This simplification is based on the fact 
that in a network environment, the state of each node is affected by the state of its immediate neighbors. More details on the 
simplification can be found in Gao et al. (2016) and Tu et al. (2017). Therefore, we can characterize the effective state of the system 
using the average nearest-neighbor activity: 

pE
eff,t =

1T βE
t pE

t

1T βE
t 1

=

∑

i∈N

∑

j∈N

βE
i,j,tpE

j,t

∑

i,j∈N

βE
i,j,t

(12)  

pI
eff,t =

1T βI
t pI

t

1T βI
t 1

=

∑

i∈N

∑

j∈N

βI
i,j,tpI

j,t

∑

i,j∈N

βI
i,j,t

(13)  

where pE
t = [pE

i,t ]i ∈ RN (pI
t = [pI

i,t ]i ∈ RN) is the vector of individuals’ exposed (infectious) probability. 1 ∈ RN is the unit vector. pE
eff,t ∈ R 

(pI
eff,t ∈ R) is the effective proportion of exposed (infectious) people in the system at time interval t. If we assume that all individuals 

hold a uniform probability to come into contact with each other, pE
eff,t and pI

eff,t are good proxies for pE
t and pI

t , where pE
t and pI

t are the 
actual proportion of exposed and infectious population (i.e., pE

t = 1
N
∑

i∈N pE
i,t and pI

t = 1
N
∑

i∈N pI
i,t). However, this assumption may not 

hold in reality. The relaxation of the assumption will be described later. pE
eff,t and pI

eff,t allow us to reduce the individual-based equations 
(Eqs. (10) and (11)) to an effective mean-based equations: 

pE
eff,t+1 − pE

eff,t = βE
eff,t ⋅ pE

eff,t + βI
eff,t ⋅ pI

eff,t − pE
eff,tγ (14)  

pI
eff,t+1 − pI

eff,t = − pI
eff,t

(
μr + μd

)
+ pE

eff,tγ (15)  

where: 
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βX
eff,t =

∑

i,j∈N

(
βX

i,j,t

)2

∑

i,j∈N

βX
i,j,t

, ∀X ∈

⎧
⎪⎨

⎪⎩
E, I

⎫
⎪⎬

⎪⎭
(16) 

Considering that people’s interaction probabilities are actually heterogeneous, in practice, to relax the uniform contact assumption, 
we further consider the dynamics of the mobility network on the multi-particle systems based on Li et al. (2017), which recommends 
adding the energy flow fX

t = (1/N2)
∑

i,j∈N (βX
i,j,t)

2 (X ∈ {E, I}) into the general dynamical process: 

pE
eff,t+1 − pE

eff,t = βE
eff,t ⋅ pE

eff,t + βI
eff,t ⋅ pI

eff,t − pE
eff,tγ + kE

E ⋅ f E
t + kE

I ⋅ f I
t (17)  

pI
eff,t+1 − pI

eff,t = − pI
eff,t

(
μr + μd

)
+ pE

eff,tγ + kI
E ⋅ f E

t + kI
I ⋅ f I

t (18)  

where K = [kE
E, k

E
I , k

I
E, k

I
I] are parameters to be estimated. The energy flow and corresponding parameters are expected to capture the 

heterogeneous contacts in the network. 
The theoretical model is calibrated from a two-layer regression method. In the first layer, given a trajectory of epidemic process: 

[(pE
t , p

I
t)]t=1,…,T, we can replace pE

eff,t , pI
eff,t with pE

t , p
I
t in Eqs. (17) and (18). This leads to a linear regression problem with a total of T 

samples: 

pE
t+1 − pE

t = βE
eff,t ⋅ pE

t + βI
eff,t ⋅ pI

t − pE
t γ + kE

E ⋅ f E
t + kE

I ⋅ f I
t t = 1, 2,…, T (19)  

pI
t+1 − pI

t = − pI
t

(
μr + μd

)
+ pE

t γ + kI
E ⋅ f E

t + kI
I ⋅ f I

t t = 1, 2,…, T (20)  

where the only unknown parameters are K ; βX
eff,t and fX

t are calculated from the constructed contact network, and pX
t is given (X ∈ {E,

I}). Therefore, K can be obtained for every given epidemic trajectory. The epidemic trajectory is generated using the simulation-based 
solving framework for a small sample size (e.g., 100 k). 

In the second layer, we aim to obtain the relationship between K and epidemic/mobility parameters (i.e., Θ = [βE,βI,γ,μr,μd,θ
ℓ,

θg]). For every combination of Θ, we can use the simulation model to generate a trajectory and thus to estimate K (as we described 
above, the first layer regression). Therefore, based on different values of Θ, we can estimate a series of K . Then, we assume a linear 
relationship between Θ and K , and use a linear regression model to fit the relationship based on the generated Θ,K pairs. After the 
two-layer regression, the theoretical model can be used to flexibly predict the epidemic process under different policy conditions (i.e., 
different Θ,βE, or βI). 

The theoretical model can smoothly consider different sizes of the studied population by scaling βE
eff,t ,β

I
eff,t , and energy flows f I

t ,f
E
t . 

Those parameters can be obtained once the contact network was constructed (see Eq. (16)). The scale factor can be computed 
empirically by comparing the dynamics (i.e. epidemic trajectories) established on sample passengers and the whole population. A 
time-based pair-wisely scaling technique is applied for each yt ∈ Φt = {βE

eff,t ,β
I
eff,t ,f

I
t ,f

E
t }. Let the corresponding parameters calculated in 

sample passengers be yt(Sample) and in whole population be yt(Pop), where yt ∈ Φt. Then the empirical scaling factor for yt can be 
calculated as: 

st

(

yt

)

=
yt(Pop)

yt(Sample)
for all yt ∈ Φt and t = 1, 2,…, T (21) 

The empirical scaling factor is not directly the sampling rate, but also depend on the dynamical processes and co-variances between 
individual travel behaviors. It is worth noting that though the generation of yt(Pop) may be computational inefficient, it only needs to 
be calculated once. After obtaining st(yt) and enforcing this scaling to different policy experiments, we can obtain different dynamical 
behaviors of infectious from a small sampled data set (i.e. using sample data to generate yt(Sample) and scale it). 

Thus, this model can efficiently test different policy combinations with a low computational cost. According to the numerical test, it 
can evaluate one-million policy combinations for the full population (4.7 million) within seconds. The memory and computational 
complexity are both O (T). This allows us to find the optimal policy to control the contagion. 

2.5. Reproduction number (R0) 

In epidemiology, the basic reproduction number (expressed as R0) of the infection can be viewed as the expected number of cases 
directly generated by one case in a population where all individuals are susceptible to infection (Fraser et al., 2009). The most 
important use of R0 is to determine whether an emerging infectious disease would spread throughout the population. In a common 
infection model, if R0 > 1, the infection starts to spread throughout the population, but not if R0 < 1(see Fig. 3b). In general, the larger 
the value of R0, the more difficult it is to control the epidemic (Fine et al., 2011). 

In the ideal SEIR model where diseases spread uniformly over time and people have a uniform contact probability, R0 is easy to 
define. To match with the discrete-time expression in this study, let β̂ be the average number of people infected by one infectious 
person within one time interval in the ideal SIR system, and μ̂ be the probability that the infectious people (I) are removed (R) within 
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one time interval (Note that in continuous time context, β̂ and μ̂ represents infectious rate and removal rate, respectively). The basic 
reproduction number for ideal SEIR model is calculated as 

R0 =
β
μ =

∑∞

t=0
β(1 − μ)t

=
∑∞

t=0

It+1 − It

It
(1 − μ)t (22)  

where It is the number of infectious people at time interval t. Note that It+1 − It
It = β, ∀t only holds under the ideal SEIR system. 

In heterogeneous populations, the definition of R0 is more subtle. The definition must take into account the fact that the contact 
between people is not uniform. One person may only contact a small group of friends and be isolated from the rest of the population. On 
the temporal evolving side, people’s mobility patterns may vary every day, resulting in time-varying contact networks. This defeats 
ideal SEIR system assumptions. To consider the network heterogeneity Damgaard et al. (1995), we define R0 as “the expected number 
of secondary cases of a typical infected person in the early stages of an epidemic”, which focuses on the expected direct infected 
population for each time step at the early stage 

Let Et and It be the number of exposed and infectious people at time interval t. Given a trajectory of epidemic process [(Et , It)]t=1,…,T 

(either from the simulation model or the theoretical model), we define the equivalent reproduction number for time period T (R0(T)) as: 

R0

(

T

)

=
∑T

t=0

Et+1 − Et

It
⋅ (1 − μ)t (23)  

We assume that the incubation period 1γ is much longer than a time interval, which holds true for most of the diseases (e.g., in our case 
study, 4 days ≫ 1 h). Therefore, Et+1 − Et in this study is a good proxy for It+1 − It in the ideal SEIR model. Comparing with the original 
definition in Eq. (22), if we take T to ∞ and assume that Et+1 − Et

It is a constant for all t, Eqs. (23) and (22) are equivalent. This property 
illustrates the reasonableness of the defined equivalent R0. 

The equivalent R0 enables flexible and fair comparison of different epidemic processes with heterogeneous contact and time- 
varying networks. In the following sections, we will use the defined equivalent R0 as a major epidemic measure for different policy 
discussions. 

3. Case study 

We use the Singapore bus system as a proximity to demonstrate the dynamics of epidemic spreading through a PT network. The 
time-varying PEN is constructed based on daily mobility patterns in the bus system and the epidemiological characteristics of COVID- 
19 is used as the case disease. A series of disease control policies are evaluated to exhibit the sensitivity of the developed approach.2 

3.1. Mobility patterns in Singapore bus system 

Singapore is a city-state country where inter-city land transportation is relatively small. This provides an ideal testbed to focus on 
epidemic spreading through intra-city transportation, especially for bus systems, which count for a high proportion of modes shared in 
Singapore (Mo et al., 2018; Shen et al., 2019). According to Singapore Land Transport Authority (LTA) (2018), the average daily 
ridership of buses is around 3.93 million, accounting for almost half of all travel modes. There are more than 368 scheduled bus routes 
operated by four different operators. A total of approximately 5,800 buses are currently in operation. In the case study, the mass rapid 
transit (MRT) system is neglected because a) passengers’ contacts in a bus are more conducive for epidemic transmission compared to 
the MRT system, given the limited space in a bus; b) smart card data can provide exact bus ID to identify the direct contact of pas-
sengers. The direct contact in trains is, however, difficult to obtain from smart card data because the transactions are recorded at the 
station level. To identify the car that passengers boarded on, a transit assignment or simulation model is required (Zhu et al. (2017), Mo 

Fig. 5. Demand distribution. Numbers in x-axis represent the hour ID (e.g., 1 represents 0:00–1:00 AM). The number in brackets at the top of each 
sub-graph indicates the total daily ridership. 

2 To facilitate future research, we uploaded the codes of this work to a GitHub repository: https://github.com/mbc96325/Epidemic-spreading- 
model-on-public-transit. 
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et al. (2020), which is beyond the scope of this study. 
Though we neglected the MRT system in the case study, our proposed approach focuses on a general modeling framework for virus 

spreading over PT systems. It is capable for modeling the MRT system once the boarded-trains for each passenger are identified. 
Moreover, to provide a more meaningful discussion for the omission of the MRT system, we estimate the corresponding impact in 

Fig. 7. Example of time-varying PEN and LIN (100 sample passengers who have used the same bus, θℓ = 1).  

Fig. 6. Distribution of trip duration and trip frequency (data of 4 weeks, the inset plots are in semi-log scale). Values in x-axis are rounded up in 
minute. For example, TD = 20 min includes all values from 19 to 20 min. 
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Appendix B. 

3.1.1. Usage of the system 
The smart card data used in this study are from August 4th (Monday) to August 31st (Sunday), 2014, with a length of four weeks. 

The dataset contains 109.2 million bus trip transaction records from 4.7 million individual smart cardholders. Given that the popu-
lation of Singapore in 2014 is around 5.5 million, the smart card data is representative of the population (accounting for 84% of the 
population) and can model the epidemic spreading for the whole city. Fig. 5 shows the hourly ridership distribution for one week 
(average of four weeks). The ridership of weekdays shows highly regular and recurrent patterns with morning (8:00–9:00 AM) and 
evening peaks (18:00–19:00). While the ridership distributions on weekends are different from those on weekdays, there are no 
prominent peaks observed. 

The usage of bus systems is related to daily activities, which represent mobility patterns of metro travelers in Singapore and can 
influence the epidemic spreading. Fig. 6a shows the distribution of trip duration (P(TD)) in four weeks, where TD means trip duration. 
Most trips have a duration of fewer than 40 min. From the inset of Fig. 6b, we found the tail of P(TD) can be well characterized by an 

exponential function: when TD⩾10 min, we have P

⎛

⎜
⎝TD)̃e−

TD
λtd , where λtd = 11.94 min calculated by regression. As people tend to use 

MRT for long-distance travel, the duration of bus trips is relatively short. On average, the duration of bus trips is 14.55±12.51 min 
(mean± standard deviation). 

Fig. 6b presents the trip frequency (number of trips per week) distribution for all 4.7 million smart card holders. The similar long 

tail attribute is observed, which can also be quantified by an exponential function: P

⎛

⎜
⎝f)̃e−

f
λtf , where f is the trip frequency and λtf =

5.66 per week. On average, trip frequency in Singapore is around 6.34±5.94 per week. 
In summary, Singapore has an intense usage of bus systems with high ridership and user frequency, though the trip duration is 

relatively small. This implies that for highly infectious diseases that can be infected by short-term exposure, the bus system may play a 
crucial platform for the epidemic spreading. 

3.1.2. Contact networks 
As discussed in Section 2.1, the PEN and local interaction network (LIN) highly depend on passengers’ mobility patterns and 

present time-varying properties. Fig. 7 shows example networks of 100 passengers extracted from real-world data (7:00–10:00 AM). 
The length of time interval τ = 1 h is used in this study. For better visualization, these passengers are chosen from the same bus, and 

Fig. 8. Degree and contact duration (CD) distributions of PEN and LIN (data of all Singapore, θℓ = 1× 10− 3). Note that all figures except for (c) and 
(d) are empirical probability density functions. While (c) and (d) are CCDFs. The dot and dash lines in (c) and (d) indicate empirical and fitted 
CCDFs, respectively. The red squares in (g) and (d) represent the value of P(CD = 30 min) and P(CD = 60 min). 
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θℓ = 1 is used for LIN. Both these networks show high dependency on time, with various network structures across time. In PEN, only 
about half of the passengers are connected during a time interval, and the connectivity changes dramatically over time. This highlights 
the importance of considering time-varying networks in modeling epidemics. 

The property of the contact network is essential for analyzing the epidemic spreading. Fig. 8 summarizes the degree and CD dis-
tribution of PEN and LIN. Note that the global interaction network is, by definition, a simple random graph with homogeneous 
structures. Hence, we did not plot it. Given the time-varying properties of networks, we consider three different time intervals: 
morning peak (8:00–9:00 AM), noon off-peak (12:00–13:00), and evening peak (18:00–19:00). Fig. 8a and b show that the degree 

distribution of PEN displays a exponential tail (P

⎛

⎜
⎝k)̃e−

k
λk , where k is the degree), implying a significant degree heterogeneity. Most of 

the nodes are of low or medium degree. The number of super-nodes with a high degree is limited, and the maximum degree is bounded, 
which is reasonable given the limited capacity of buses. These properties are consistent with the findings in Qian et al. (2020). 
Although the shapes of P(k) for different times are similar, the exact values are still time-dependent. On weekdays, P(k) for morning 
and evening peaks are similar but different from the off-peak curve. PENs in peak hours also have a larger degree of nodes. On 
weekends, however, the degree distributions in the three time intervals are similar. 

Fig. 8c and d show the complementary cumulative distribution function (CCDF) of the degree for the LIN (θℓ = 1 × 10− 3 is used to 
correspond to the case study in the following sections). CCDF is defined as F(k) =

∑∞
i=k′ P(k

′

). The reason for showing F(k) instead of 
P(k) is to avoiding the information loss due to binning and reducing the noise impacts at high degree regions (Barabási et al., 2016). We 

observe that the degree distribution can be approximately characterized with a truncated power low: P
(

k)̃(k + ksat)
− γexp

(

− k
kcut

)

(dashed lines are the fitted CCDFs), where ksat accounts for low-degree saturation and kcut accounts for high-degree cutoff. Low-degree 
saturation is a common deviation, which indicates that we have fewer small degree nodes (i.e. isolated individuals in terms of social 
activities) than expected for a pure power law. High-degree cutoff appears as a rapid drop in P(k) for k > kcut, indicating that we have 
fewer high-degree nodes (i.e. extremely active individuals in social activities) than expected in a pure power law. 

The Fig. 8e and f, show that the contact time of PEN follows an exponential tail (P

⎛

⎜
⎝CD)̃e−

CD
λcd ), which is similar to the trip duration 

distribution (Fig. 6a). There are more contacts with duration less than 10 min in noon off-peak compared to morning and evening peaks 
on weekdays, while P(CD) for the three time intervals on weekends are similar. By definition, the contact time of time-varying PEN is 
bounded by 60 min (same for the LIN). 

Fig. 8g and h present the CD distribution of LINs. We observe a huge concentration on CD = 30min and CD = 60min (see the red 
squares). This is because people are not traveling most of the day-time. Thus, for a specific time interval, the duration of local in-
teractions, for most individuals, would cover the whole time interval given our definition of LINs. However, since we assume people 
only spend half of their time on a specific origin or destination of a PT trip (see Section 2.1.2), the local CD for two people without 
travel within the time interval is either 30 min (if two individuals only share a single origin or destination) or 60 min (if two individuals 
share both origin and destination). Therefore, there are two concentrations with CD = 30min and CD = 60min. As P(CD = 30) >
P(CD = 60), most people will only locally interact with others in one place (e.g., either at home or workplace). 

We also find that other local CD values are nearly uniformly distributed. Since local interaction duration that does not equal 30 or 
60 min indicates that the trip occurs or ends in this time interval, the uniform distribution implies a Poisson start and end time of bus 
trips within the time interval. 

Fig. 9. Number of confirmed, cured and dead people in Wuhan (Jan 24 to Feb 2020; Data sources: Ding Xiang Yuan (2020)). The inset plot is the 
zoom-in of the number of cured .and dead people. 
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3.2. Coronavirus disease 2019 

COVID-19, also known as 2019-nCoV, is an infectious disease caused by “SARS-CoV-2”, a virus closely related to the Severe Acute 
Respiratory Syndrome (SARS) virus (Centers for Disease Control and Prevention (CDC), 2020). The disease is the cause of the 
2019–2020 coronavirus outbreak. Cases were initially identified in Wuhan, China, and soon spread all over the world. The World 
Health Organization (WHO) declared the outbreak of COVID-19 as a Public Health Emergency of International Concern (PHEIC) on 
Jan 30, 2020, and later characterized the coronavirus as a pandemic on Mar 11, 2020. Fig. 9 shows the number of confirmed (in-
fectious), cured, and dead people from Jan 24 to Feb 20, 2020, in Wuhan. Up to Feb 20, there are more than 40 thousand confirmed 
COVID-19 cases. The total number of healed and dead patients is around 6,000 and 2,000, respectively. The sudden increase in 
confirmed cases on Feb 12 is due to the revision of diagnosis criteria (adding the cases of clinical diagnosis). 

We select COVID-19 as the case study for the following reasons: a) COVID-19 is extremely contagious. It is primarily spread be-
tween people via respiratory droplets from infected individuals when they cough or sneeze. According to CDC (2020), anyone who has 
been within approximately 2 m of a person with COVID-19 infection for a prolonged period (more than 1 or 2 min) is considered risky 
to get infected. Therefore, PT can play a significant intermediary for such a highly contagious disease. b) Even when authors are 
writing this article, COVID-19 is a big threat to global public health. Singapore is also experiencing the impact of COVID-19 (Ministry 
of Health (MOH), 2020). The case study of COVID-19 can provide disease control suggestions from the transportation side, which adds 
real-time value to this research. 

The SEIR model parameters are chosen based on the epidemiological characteristics of COVID-19. Time from exposure to onset of 
symptoms (latent or incubation period) is generally between 2 to 14 days for COVID-19. Read et al. (2020) suggested setting the latent 
period as 4 days. We, therefore, have γ = 1

24×4 = 0.0104 (probability from E to I per h). According to Read et al. (2020), the trans-
mission rate of COVID-19 in the static SEIR model is 1.96 day− 1, which can be seen as the number of people that one infectious person 
can infect per day in a well-mixed network. Therefore, assuming one person, on average, has close contact with 100 others per day, we 
can calculate the hourly one-to-one infectious probability as βI = 1.96

24×100 = 8.17× 10− 4. Although recent studies show βE > 0 for 
COVID-19 (Rothe et al., 2020), calibrating the exact value of βE is difficult due to lack of data. Since people in the latent period (group 
E) usually have extremely lower probability of transmission, we arbitrarily set βE = 0.01βI. We calculate μr and μd using data from 
Wuhan. Fig. 10 shows the daily cure and death rate (number of cured/dead people per day divided by the total number of confirmed 
people on that day) in Wuhan. The reason for the high value on the first day may be the inaccurate data. From Fig. 10, we observe the 
average daily cure and death rate are approximately 1% at the early stage. Therefore, we can calculate the hourly cured and death 
probability as μr = μd = 0.01

24 = 4.17× 10− 4. 
θℓ = 1 × 10− 3 is used for the status quo analysis. This value is calculated as follows. Consider a community with 10,000 people, 

assume each person may have close contact with another 10 people on average per hour locally. We therefore have θℓ = 10
10,000 = 1×

Fig. 10. Daily cure and death rate in Wuhan (data sources: Ding Xiang Yuan (2020)).  

Table 1 
Parameters value for status quo analysis (reference scenario).  

Category Parameters Value Sources Sensitivity analysis 

Epidemic βI  8.17× 10− 4  Read et al. (2020) True 

βE  8.17× 10− 6  Authors assumption True 

γ  0.0104  Read et al. (2020) False 
μr  4.17× 10− 4  Ding Xiang Yuan (2020) True 

μd  4.17× 10− 4  Ding Xiang Yuan (2020) True  

Human mobility θℓ  1× 10− 3  Authors assumption True 

θg  7.44× 10− 8  Authors assumption True  
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10− 3. The global interaction captures individual’s probability of close contact with people outside his/her community. Given that the 
population of Singapore is around 5.6 million, we assume one person, on average, can closely contact 10 people per day globally. Then 
θg = 10

5.6×106×24 = 7.44× 10− 8. Note that the number 24 in the denominator is used to get the hourly probability. 
Table 1 summarizes all parameters of the status quo analysis, which can be seen as the reference scenario. The sensitivity analysis 

column indicates whether this value will be changed in the following policy analysis sections. Specifically, the sensitivity analysis for 
βI, βE, μr and μd is shown in Section 3.5.1, for θg and θℓ is shown in Section 3.5.2. 

3.3. Theoretical model calibration 

We first calibrate the theoretical model using the generated epidemic dynamics from the simulation model. 320 cases with different 
combination of parameters (Table 2) for 100 k sample passengers are simulated. These cases are fed into a regression model to obtain 
the parameters for the theoretical model. Fig. 11 shows the comparison of the number of infectious and exposed people between the 
simulation and the calibrated theoretical model. We observe a high goodness-of-fit for the theoretical models, which implies the 
proposed theoretical framework can capture the epidemic spreading through PT and SA contacts. 

Fig. 12 shows the comparison of the number of infectious and exposed people by time for the five selected cases. Generally, the 
simulation and theoretical models show a similar number of infectious people over time. For the number of exposed people, the two 
models show similar dynamic fluctuations with only a slight difference for some periods. 

After model calibration, we also calculate the scaling factors based on Eq. (21). The individual-level policy experiments (Section 
3.5.3, 3.5.4,3.5.5, and 3.5.6) are evaluated based on scaled 100 k sample passengers. 

3.4. Status quo analysis 

Based on the parameters in Table 1, we evaluate the epidemic process in Singapore for all smart cardholders (4.7 million) using the 
calibrated theoretical model. Fig. 13 shows the dynamics of the number of infectious and exposed people. We randomly assign 30 

Fig. 11. Comparison between simulation model and calibrated theoretical model (100 k sample passengers). One dot represents # of infectious/ 
exposed people in a specific time interval. 

Table 2 
Parameters value space for theoretical model calibration.  

Category Parameters Value space 

Epedimic βI  [8.17× 10− 4,1× 10− 4,1× 10− 5 ,1.5× 10− 3,1× 10− 6]  
βE  0.01βI  

γ  0.0104  
μr  [4.17× 10− 4,8× 10− 4,1× 10− 3 ,5× 10− 3]  
μd  4.17× 10− 4   

Human mobility θℓ  [1× 10− 3 ,1× 10− 2,1× 10− 4, 0]  

θg  [7.44× 10− 8,1× 10− 7,1× 10− 9, 0]   
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initial infectious passengers in the system. Results show that if there are no control policies for the disease, the number of infectious 
people will increase to more than 3,000 (100 times the initial value) after four weeks. This is consistent with Liu et al. (2020)’s results 
on early human-to-human transmission of COVID-19 in Wuhan. The equivalent R0 is 2.667, which is consistent with many previous 
estimates: 2.0–3.3 (Majumder and Mandl, 2020); 2.6 (Imai et al., 2020); 2.92 (Liu et al., 2020). 

The inset plot shows the intra-day dynamics of the number of exposed people in week 4, from which we observe the high intensity 
of infections from 7:00 to 22:00. The sudden increases in morning and evening peaks for weekdays (Day 22–26) highlights the 
transmissibility through PT. During the weekends (Day 27 and 28), the number of exposed people shows a decreasing trend, which 
implies lower transmission rates on weekends. 

Fig. 12. Comparison of infectious/exposed people by time for 5 cases (100 k sample passengers).  

Fig. 13. Epidemic process in status quo scenario (whole population). The inset plot shows the zoom-in of the number of exposed people from Day 22 
(Monday) to Day 28 (Sunday). 
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It is worth noting that, the increasing trends of infection is not as dramatic as many standard SEIR models with exponential rates. 
The reasons may be as below. First, this case study focuses on the early stage of the epidemic process (first month). According to the 
Taylor seris, exp(x) ≈ 1+x when x is close to zero. This explains the approximately linear trend at the early stage. Second, we consider 
the specific individual-level passengers contacts. According to Sun et al., 2013), passengers usually meet with repeated PT encounters. 
Therefore, the infected passengers may continue to meet with same passengers every day. These “repeated encounters” delayed the 
actual transmission of virus because the probability of meeting new people is smaller than the typical SEIR model where the population 
is assumed to be well-mixed. 

3.5. Evaluation of control policies 

Motivated by current epidemic control strategies worldwide in PT systems, especially the control policies of COVID-19 exemplified 
in Appendix A, we can hardly find the general criteria to determine whether, when, and where to suspend the urban PT services. The 
individual-based PEN developed in this work contributes to better understanding of the spatiotemporal impacts of various PT oper-
ation strategies for epidemic control, to facilitate the decision-making process for PT operation adjustments. 

3.5.1. Impact of βI and μ 
We first evaluate the impact of βI and μ. βI is related to people’s preventive behavior, such as wearing masks and sanitizing hands, 

which results in a decrease of βI. μ is related to the hospital’s medical behavior, such as increasing cure rate and developing vaccines, 
which leads to an increase in μ. 

Fig. 14 shows the impact of βI and μ on equivalent R0. βI is scaled from 10− 2 to 101 and μ is scaled from 10− 1 to 102. We fixed βE =

0.01βI for all testing. Fig. 14b shows that the epidemics would fade out (equivalent R0 < 1) if transmissibility was reduced to less than 
10− 1 of current value. However, Fig. 14c suggests that even if the cure rate is increased by 100 times, the epidemics would still happen, 
though the process would be lagged (with smaller R0). This implies reducing transmissibility is more effective than increasing the cure 

Fig. 14. Impact of βI and μ on equivalent R0. The scale of a parameter means multiples of the parameter with respect to the status quo scenario. For 
example, “scale of βI” = 10 means 10 times βI of the status quo scenario (i.e., the new βI = 10× 8.17− 4 = 8.17− 3). 

Fig. 15. Impact of controlling trip occurrence rate (whole population).  
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rate for COVID-19. In Fig. 14a, we show the joint impact of βI and μ and the critical bound of equivalent R0. If βI was decreased to 32% 
and μ was enlarged tenfold, the equivalent R0 would be decreased to less than 1. If the cost of controlling each parameter is given, this 
graph can help to optimize the controlling strategies with limited costs. 

3.5.2. Impact of trip occurrence rate 
One of the typical control strategies for the epidemic is decreasing the trip occurrence rate in a city. At the average level, this is 

equivalent to reducing the total contact time, and total squared contact time3. Fig. 15 shows the impact of different control percentage 
of trips (i.e., reducing the percentage of total contact and squared contact time). We observe that controlling one trip (PT or local or 
global) cannot eliminate the epidemic. Based on current parameter settings, reducing PT trips contribute more to the control of the 
epidemic process than the other two. The impact of reducing trips to R0 is generally linear unless the reduction percentage is suffi-
ciently large. When all trips are reduced by more than 80%, the reduction rate for R0 starts to accelerate. When all trips were decreased 
by 98%, the spreading process would fade out, which implies travel control can only be effective at an extreme level. This is corre-
sponding to Wu et al. (2020)’s statement that a 50% reduction in inter-city mobility in Wuhan has a negligible effect on the COVID-19 
epidemic dynamics. 

3.5.3. Impact of distributing departure time 
From a transportation perspective, the trip concentration in morning and evening peaks can strengthen people’s interaction in PT. 

It is possible to reduce people’s contact time on PT by distributing their departure time. The distributing process is as follows. Given the 
departure time flexibility constraints (e.g., ±30 min), we generate new departure time for passengers so that passengers with the same 
boarding stops are assigned to different buses as dispersed as possible. 

Fig. 16 shows the influence of distributing departure time with different flexibility (from 0 to ±110 min). We observe a decline in 
equivalent R0 as the departure time flexibility increases. This is because higher flexibility allows more dispersed riding on the bus; thus, 
fewer contacted passengers. However, the effectiveness of distributing passengers is very limited. With ±110 min flexibility, there is 
only a 2.2% decrease in R0 (from 2.667 to 2.607). 

Fig. 17. Impact of closing bus routes. The black dashed lines are auxiliary lines to analyze the effectiveness of different polices under same number 
of affected people. 

Fig. 16. Impact of spreading departure time.  

3 Let xt , and yt be the average number of trips and the average contact time per trip at time interval t, respectively. Then the total contact time at t 
is xtyt ; total squared contact time is c× xty2

t , where c is used to capture the difference of squared sum and sum of squares. If we reduce the number of 
trips to αxt (α < 1), the total contact time will be reduced to αxtyt . The total square contact time will be reduced to αc× xty2

t . Hence, the trip 
occurrence rate is roughly linear with the total contact and squared contact time. 
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3.5.4. Impact of closing bus routes 
As what has been summarized in Section 1, the closure of bus routes is an in-practice implemented strategy from the transportation 

side to reduce people’s close-contacts during the outbreak of COVID-19. We assume that the suspension of bus service is a sign of travel 
restrictions on the corresponding bus routes. While keeping the SA contact network the same, we evaluate four different strategies of 
closing various percentages of bus routes (from 10% to 90%): a) Close from high demand to low demand routes (H-L). b) Close from 
low demand to high demand routes (L-H). c) Close by randomly picking bus routes (Random). d) Close by different local planning 
areas. We assume that passengers who originally take these closed bus routes will change to alternative routes if available; otherwise, 
they will cancel their trips. 

Fig. 17 shows the effect of closing different percentage of bus routes. We observe that the H-L policy shows a convex curve on R0 
while the L-H policy shows a concave curve. Under the same percentage of closed bus routes, closing high demand routes brings a 
larger controlling effect on R0. Closing the top 40% high-demand bus routes can reduce the equivalent R0 by 15.3%. 

It is also important to look at how many passengers are affected by each strategy. The affected passengers are defined as those who 
cannot find alternative bus routes when the original routes are closed. As expected, for the same closing percentage of bus routes, the 
H-L strategy affected more passengers than the other two policies. However, we find that the H-L strategy is more effective in terms of 

Fig. 18. Impacts of closing bus routes by planning areas.  
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R0 reduction per affected passengers. If we fix the percentage of affected passengers at approximately 22% (black dashed line), the H-L 
strategy can reduce R0 to 2.25, while random and L-H strategies can only reduce R0 to 2.41 and 2.50, respectively. This may be because 
passengers in high demand bus routes are more influential (e.g., with a higher degree in the PEN) in the system. Therefore, to control 
the epidemic with fewer people getting affected, PT agencies should close buses from high to low demand routes. 

Fig. 18a shows the percentage of reduction in R0 resulting from the closure of bus routes by planning areas, while Fig. 18b shows the 
corresponding percentage of affected PT passengers. Generally, the high reduction in R0 is the result of a high number of affected 
passengers. Closing bus routes in the main business and residential areas in the Southern part of Singapore Island leads to higher 
controlling effects of epidemics than closing other areas. However, to minimize the impact on passengers’ daily travel, PT agencies 
should first close bus routes in regions with relatively high R0 reduction and a low number of affected passengers, such as core central 
business district (CBD) areas. Passengers who take buses crossing core CBD areas can easily find alternative routes. Thus, the 
concentrated demands at CBD areas can be distributed to other less crowded routes, which leads to a R0 reduction and less number of 
affected passengers. 

3.5.5. Impact of limiting maximum bus load 
Although closing bus routes can postpone the epidemic spreading, it also brings huge inconvenience to society, for example, 

decreasing people’s accessibility to hospitals. A moderate alternative way is preserving the PT supplies but limiting the maximum bus 
load to reduce passengers’ interaction. Fig. 19 shows the impact of this policy. We test the maximum bus load from 26 to 5. Passengers 
who cannot board the bus due to this policy are assumed to cancel their trips (these passengers are called affected passengers). To 
compare with closing bus routes strategies, the x-axis is set as the percentage of affected passengers. Only the H-L strategy is plotted as 
it is the most effective one among all closing bus routes strategies. We find the policy of limiting the maximum bus load can only take 
effects when the available maximum bus load is small. With the same percentage of affected passengers, it is not as effective as closing 
bus routes from high demand to low demand. However, since this policy preserves the city’s mobility capacity, it can be seen as a more 
moderate way to control epidemics compared with directly closing bus routes. 

3.5.6. Impact of isolating critical passengers 
Ideally, a more precise pandemic policy goes into the individual-level. The government could find out those influential passengers 

who are potential to spread viruses considerably and get them isolated at an early stage. Individual-based policies can outperform 
region-based or population-level policies in effectiveness and flexibility. However, due to the computational cost, it is hard to optimize 
the isolation options for each individual directly. Hence, we employed an isolation method based on k-core decomposition. Different 
from traditional degree-based methods, k-core method shows higher impacts on the dynamics of multi-particle systems (Kitsak et al., 
2010; Morone et al., 2019; Borge-Holthoefer and Moreno, 2012; Yang et al., 2017). 

A k-core of a graph G is a maximal connected subgraph of G in which all vertices have a degree of at least k. Each vertex in a k-core is 
connected to at least k other nodes (i.e., has a degree of at least k). A high k number represents the highly concentrated structure of the 
local network, which indicates the most clustered part in the whole network. Nodes in a core with larger k usually have larger degrees 
on average (Dorogovtsev et al., 2006). In the context of infectious diseases, if one node in a high k-core is infected, it has, on 
expectation, > k2 times chances to spread the disease to other nodes in that core in one-time step compared to an arbitrary node (if the 
network is under scaling law) (Serrano and Boguná, 2006). Therefore, we designed the policy by first limiting the nodes in high k-cores, 
which means limiting the more influential nodes. The population in a higher k-core is always lower than that in a lower k-core. Thus, by 
applying this policy, we can isolate a small portion of people to limit the spreading of the disease. 

Fig. 20 shows the impact of isolating passengers in different k-cores and the corresponding number of isolated passengers. For 
comparison purposes, we also evaluate a random policy. For each k-core, the random policy isolates the same number of randomly 
picked passengers in the system, which corresponds to implementing isolation at the population level. Since the number of passengers 
with a core number greater than 5 is low, the reduction in R0 is not significant. However, isolating all 4-core passengers, which ac-
counts for 5% of the whole population, the equivalent R0 is reduced from 2.667 to 2.446 (8.3%), which shows higher effectiveness than 
any other region-based or route-based policies in Section 3.5.4. We also observe that the k-core isolating method can outperform the 
benchmark random isolating method. 

Fig. 19. Impact of limiting maximum bus load. MBL: maximum bus load. CP: close percentage of the H-L strategy.  
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4. Conclusion and discussion 

This paper proposed a general time-varying weighted PEN to model the spreading of infectious diseases over the PT system. The 
social-activity contacts at both local and global level are also considered. The network is constructed using smart card data as an 
undirected graph, in which a node refers to a PT passenger; an edge refers to a pair of passengers staying in the same vehicle; the weight 
of an edge captures the CD. We employ the SEIR diagram—a general diagram to model the influenza-like disease—to model the disease 
dynamics using the recent global outbreak of COVID-19 as a case study. A scalable and lightweight theoretical framework is derived to 
capture the time-varying and heterogeneous network structures, which enables to solve the problem at the whole population level with 
low computational costs. 

We use the PT smart card data from Singapore as a proximity to understand the general spatiotemporal dynamics of epidemic 
spreading over the PT networks in one month. The status quo analysis shows that the COVID-19 infected population is expected to 
increase by 100 times of their initial value by the end of the month without any disease control enforcement. A series of disease control 
and prevention scenarios are envisioned from both public health policy and PT operations sides. From the public health side, the model 
sheds light on people’s preventative behavior. Wearing face masks and sanitizing hands, are considered the most effective measures to 
control the spreading of the epidemic; however, an increased cure rate can only postpone the outbreak of the disease. From the 
perspective of PT operation adjustments, several policies are evaluated, including reducing trip occurrences, enlarging departure time 
flexibility, closing bus routes, limiting maximum bus loads, and isolating critical passengers. In general, the control of the epidemic 
process starts to take effect, with over 80% of all trips being canceled. The equivalent R0 can be reduced to 1 if over 98% of trips are 
banned. In terms of bus operation policies, distributing departure times and limiting maximum bus loads can slightly decelerate the 
spreading process. Closing high-demand bus routes, especially in the main business areas, is more effective than the closure of low- 
demand bus routes. The most effective approach is isolating influential passengers at the early stage, in which the epidemic process 
can be significantly reduced with a small proportion of people being affected. 

4.1. Policy implications 

Many policy implications can be derived from the case study. On the public health side, the government should encourage people to 
take preventative behaviors, such as wearing face masks and sanitizing hands, to reduce the transmission probability. The travel 
restriction policy can take effect—with an equivalent R0 less than 1—only at the extreme travel, such as in Hubei Province, China, 
where all travels were banned during the outbreaks of COVID-19 in Feb 2020. 

On the PT operation side, according to our models, partial closure of bus routes and limiting the maximum bus load can postpone 
the spreading of epidemics. The most effective way is closing bus routes with high demands, especially those crossing the CBD areas. In 
practice, a (partially) shutdown of PT services is a serious decision for authorities, many related issues, such as equity and accessibility, 
should be considered to determine how to design the suspension of PT services in the pandemics. 

The influential passengers with large core numbers can be identified based on smart data and they should be suggested to isolate 
themselves or reduce travels for prevention purpose. In addition, all entities should cancel events with a high number of participants to 
avoid generating large k-core contact networks. However, the identification and privacy projection of influential passengers are the 
two ends of the balance for epidemic control. The government should also carefully achieve the trade-off between privacy and urgency 
in fighting against the spreading of epidemics. 

4.2. Limitations and future works 

Several limitations of this study are as follows: 1) Some parameters of the model (e.g., θℓ,θg) are determined by the authors’ as-
sumptions, which hurts the credibility of the results. Although we end up with a reasonable R0, suggesting the values of these pa-
rameters are reasonable, more parameter calibration jobs should be done in the future. 2) Policy evaluations are based on some ideal 
assumptions. In the real world, many unexpected results can happen. For example, closing bus routes may decrease people’s 

Fig. 20. Impact of isolating critical passengers. “base” and “k-core” scenarios indicate no isolation and isolation of people of core number ⩾k in the 
PEN, respectively. 
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accessibility to the hospital, thus, decrease the cure rate. The government should think cautiously from multiple perspectives before 
applying any control strategies. 3) This study did not model the contacts of passengers at trains due to difficulties in identifying the 
vehicles that passengers belong to. Future research can incorporate a transit assignment model (e.g., Zhu et al., 2017; Mo et al., 2020) 
to infer passengers’ boarding trains and construct the PEN by trains. Meanwhile, due to the large space in a train, the variation of 
transmission probability due to passengers’ spatial distribution should also be captured. 4) Other modes of transmission than contact 
transmission are not considered (e.g., infectious passengers contaminating surfaces), which may result in under-estimation of trans-
missibility of PT systems. 5) Population infected and mobility heterogeneity is neglected in this study. In reality, the infectious 
probability may depend on age, gender and health conditions. And people with different occupations may have various mobility 
characteristics (e.g., in Singapore, working pass holders and maids may not use PT frequently). The demographics distribution can be 
incorporated in the future. 

Future works include the following: 1) Elaborate on the SA contacts based on other data sources (e.g., mobile phone data) and 
extend N to the whole population. Due to a lack of data, the contacts of social activities are simplified and N is assumed to be PT users 
in this paper. Though PT users in Singapore account for 84% of the population, future research can combine different data sources to 
model the SA contacts for the whole population in more details (Wang et al., 2018). Given the challenges in collecting real-world 
trajectory data at the population level, future research can also model the epidemic spreading based on synthetic trajectory data. 
The synthetic data can be generated by combining household travel surveys and mobile phone data (Müller et al., 2020). And the data 
can include individual’s socio-demographic information to model infection heterogeneity. 2) Incorporate spatial effect and model 
transmission probability more finely. The current transmission probability between two individuals only depends on the contact 
duration. The contact distance, passenger density, and distribution on a vehicle can be considered in future research. 3) Conduct case 
studies in cities with COVID-19 outbreaks (e.g., Wuhan, New York City) to validate the model. These case studies can calibrate the 
model based on ground truth data, quantify the contribution of disease transmission by PT systems, predict the epidemic spreading, 
and evaluate the effects of different policies. 4) Incorporate the time-varying epidemic and mobility parameters to better predict the 
reality. Although this study does not attempt to predict and reproduce the COVID-19 spreading, the proposed model can potentially 
better fit the epidemic process, given the more fine-grained framework. However, the complexity in the real-world lies on the time- 
varying mobility and epidemic patterns. Future research can make the epidemic parameters (Θ) as time-dependent (Θ(t)), instead 
of constant, to better fit the reality. 5) Propose a generative contact network construction model. One of the computational bottle 
network in this paper is to construct individual-level contact network using smart card data. Future study can propose a generative 
network construction model with compressed demand and supply information. This can be used to easily conduct PT-based policy 
evaluation and scenario testing without heavily constructing actual contact network. 
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Appendix A. Worldwide COVID-19 control policies in urban PT systems 

In practice, since the outbreak of COVID-19 in late January 2020, a variety of epidemic control strategies in PT systems, such as the 
requirement of PT riders to wear face masks, the sterilization of bus and metro carriages, the adjustment of PT operation schedules, the 
closure of bus routes, etc., have been implemented during the outbreak of COVID-19. 

In China, the requirement of wearing face masks in PT systems has been successively implemented in many provinces since late 
January of 2020. In addition, a variety of PT operation control strategies have also been enforced in many cities. In cities of Hubei 
Province, especially in Wuhan, along with the lockdown policies to control the spreading of COVID-19, almost all PT services have 
been shut down since Jan. 23rd and 24th, whereas the patients with severe symptoms are transported by ambulance. After the 
lockdown and travel restrictions of Hubei Province, the PT operation adjustment strategies implemented in other Chinese cities were 
largely diverse. Different from Wuxi with only 8% of arterial bus routes kept running, in Nanjiang, another major city of Jiangsu 
Province, the PT services were still in operation but with shortened operation hours and dispatching frequencies. In Shanghai, both 
inter-provincial PT services and the bus services between rural districts like Qingpu and Jinshan were closed from Jan. 27th, but most 
of the urban PT services remained in operation by limiting the maximum passenger loads. 

Outside China, in Italy, where the reported COVID-19 cases dramatically increased in March 2020, the suspension of PT has been 
officially proposed in the Lombardy area, where the urban PT service (such as in Milan) was still in normal operation. In London, The 
Transport for London (TfL) is running reduced service across the network in London, closing up to 40 stations. No services of Waterloo 
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and City line was provided since March 30, 2020. Many US cities have seen reduced services, including Boston and Washington D.C., In 
cities of other countries with fewer COVID-19 reported cases (such as Singapore), the PT services were kept normal with more frequent 
sterilization. 

Appendix B. Impact of neglecting the MRT system 

In the case study, we neglect the passengers’ interaction in the MRT system since the smart card data cannot provide the direct 
contacts of passengers in the train. To capture the contact at the train, an detailed transit assignment model is needed to identify which 
train the passengers boarded given the origin, destination, and train schedule information. This is beyond the scope of this study. 
However, we can analyze the demand patterns of the MRT system and provide a simplified estimation for the impact of MRT system in 
the epidemic spreading. 

Fig. B.21 shows the demand distribution of MRT trips. Compared to the bus trips (Fig. 5), the temporal distribution patterns are 
very similar while the average demand of MRT is around 67% of the bus demand. For the MRT trip duration and frequency distri-
butions (Fig. B.22), both of them follow the exponential tail. The average trip duration for MRT is 26.88 min (14.55 min for bus), and 
the average trip frequency is 4.26 per week (6.34 per week for bus). 

According to Eqs. (3) and (2), the infection probability between two individuals are proportional to the contact duration (i.e., h(w,

β) is a linear function). Based on the theoretical solution method (Eqs. (17) and (18)), the epidemic spreading process can be quantified 
by the total contact duration (

∑
i,j∈N βX

i,j,t) and total squared contact duration (
∑

i,j∈N (βX
i,j,t)

2). As the demand patterns of MRT and bus 
trips are similar, we assume the contact time of passengers in the MRT is proportional to the trip duration (i.e., the average contact 
duration of MRT is 1.85 times that of bus). Therefore, the total contact duration in MRT is around 0.67 × 1.85 = 1.24 times that of bus, 
and the total squared contact duration in MRT is around 0.67 × 1.852 = 2.29 times that of bus. 

To estimate the impact of ignorance MRT, we add the inferred passengers’ contact duration in MRT to the total contact and squared 
contact duration, and calculate the new R0 for the status quo scenario. We test the add-MRT scenario. The estimated R0 is 3.192 
(compared to 2.667 for the scenario without considering MRT). Therefore, the omission of MRT reduces the R0 by around 16.3% based 
on the simplified estimation. Future research should capture passengers’ interaction on MRT to better model the epidemic process. 

Fig. B.22. Distribution of MRT trip duration and trip frequency (data of 4 weeks, the inset plots are in semi-log scale).  

Fig. B.21. MRT demand distribution. Numbers in x-axis represent the hour ID (e.g., 1 represents 0:00–1:00 AM). The number in brackets at the top 
of each sub-graph indicates the total daily ridership. 
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