Skip to main content
. 2020 Dec 15;122:102893. doi: 10.1016/j.trc.2020.102893
 1: Initialize Si,0, Ei,0, Ii,0, Ei,0 for all i=1,2,...,N.
 2:fort=1,2,...,Tdo
 3: fori=1,2,...,Ndo
 4:  ifSi,t-1=1then
 5:   Calculate βi,j,tI and βi,j,tE
 6:   Assign Ei,t=1 with probability jIβi,j,tI+jEβi,j,tE.
 7:   Let Si,t=1-Ei,t, and Ii,t=0, Ri,t=0.
 8:  else ifEi,t-1=1then
 9:   Assign Ii,t=1 with probability γ.
10:   Let Ei,t=1-Ii,t, and Si,t=0, Ri,t=0.
11:  else ifIi,t-1=1then
12:   Assign Ri,t=1 with probability μ=μr+μd
13:    Let Ii,t=1-Ri,t, and Si,t=0, Ei,t=0.
14:  else
15:   Assign Ri,t=1, and Ii,t=0, Ri,t=0, Si,t=0.
16:  p¯tX=(1/N)iNXi,t for all X{S,I,E,R}.
returnp¯tX for all t{1,2,...,T}, and X{S,I,E,R}.