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A B S T R A C T

The world is currently facing the coronavirus disease (COVID-19) pandemic which places great pressure on
health care systems and workers, often presents with severe clinical features, and sometimes requires admis-
sion into intensive care units. Derangements in nutritional status, both for obesity and malnutrition, are rele-
vant for the clinical outcome in acute illness. Systemic inflammation, immune system impairment,
sarcopenia, and preexisting associated conditions, such as respiratory, cardiovascular, and metabolic diseases
related to obesity, could act as crucial factors linking nutritional status and the course and outcome of COVID-
19. Nevertheless, vitamins and trace elements play an essential role in modulating immune response and
inflammatory status. Overall, evaluation of the patient’s nutritional status is not negligible for its implications
on susceptibility, course, severity, and responsiveness to therapies, in order to perform a tailored nutritional
intervention as an integral part of the treatment of patients with COVID-19. The aim of this study was to
review the current data on the relevance of nutritional status, including trace elements and vitamin status, in
influencing the course and outcome of the disease 3 mo after the World Health Organization’s declaration of
COVID-19 as a pandemic.
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Introduction

First recognized in December 2019 in Wuhan, Hubei province,
China, a novel coronavirus disease sustained by severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), then named corona-
virus disease (COVID-19), spread over six continents [1]. By March
11, 2020, the World Health Organization (WHO) declared COVID-
19 a pandemic. To date, >22,400,000 cases of SARS-CoV-2 infection
have been confirmed in 216 countries and >788,000 deaths have
been reported [2].

COVID-19 presents with a broad clinical spectrum, ranging
from asymptomatic and paucisymptomatic forms to mild upper
respiratory tract infections (RTIs) to severe pneumonia, even
resulting in acute respiratory distress syndrome (ARDS). Further
symptoms such as fatigue, headache, diarrhea, nausea and vomit-
ing, anorexia, and loss of taste and smell have been reported [3�5].
Extra-respiratory manifestations are frequent, and can include car-
diac complications; renal dysfunction; and gastrointestinal, neuro-
logic, and hematologic abnormalities [6], as SARS-CoV-2 has the
ability to penetrate different organs, including the lungs, pharynx,
heart, kidneys, liver, and brain [7].

Male sex, older age, comorbidities (mainly chronic lung dis-
eases, hypertension, and diabetes) are described as the most
important risk factors for outcome and mortality [4,8�10].
Although studies specifically assessing the role of a deranged nutri-
tional status in this type of patient are still sparse, a high frequency
of obesity in COVID-19 inpatients, with a median body mass index
(BMI) 30 kg/m2, and a trend for disease severity with increased
BMI values [11,12] has been reported. In this context, previous
observational data were mostly extrapolated after the H1N1 pan-
demic in 2009 [13,14]. A meta-analysis performed with 3059 indi-
viduals reported a higher probability for admission to the intensive
care unit (ICU) or death (odds ratio [OR], 2.01) for individuals with
BMI >40 kg/m2 [15]. Similarly Moser et al. observed the OR
increasing to 35.13 in individuals who were morbidly obese [16].
During the COVID-19 pandemic, Simmonet et al. reported that the
need for mechanical ventilation reached nearly 90% in patients
with a BMI >35 kg/m2, and in another study cohort of 5700
patients, 41.7% were obese [11,17].

Undernutrition appears to be elevated among these patients,
with a �52.7% prevalence in elderly inpatients [18], acting as a
negative prognostic factor, since it has previously been
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demonstrated that in-hospital malnutrition is associated to hospi-
tal length of stay (LOS), in-hospital mortality, and re-admission
rate [19�21].

In addition to over- and undernutrition, the crucial role of trace
elements must be considered as they are involved in the modula-
tion of immune responses. Indeed, derangements in nutritional
status have an important epidemiologic relevance: 1.9 billion indi-
viduals are affected by overweight (600 million by obesity),
800 million by chronic undernourishment, and >2 billion by
micronutrient deficiencies [22].

These considerations lead to the assessment of overall nutri-
tional status beyond merely anthropometric measurements, espe-
cially at the admission or first clinical evaluation, to identify the
factors that could influence the course of the disease. In this con-
text, ad hoc guidelines have been proposed to perform an adequate
nutritional approach [23] as an integral part of the treatment regi-
men, particularly when an etiologic treatment has not been discov-
ered or validated [24].

Aim

The aim of this study was to review the current data on the rel-
evance of nutritional status, including trace elements and vitamin
status, in influencing the course and outcome of the disease 3 mo
after the WHO’s declaration of COVID-19 as a pandemic.

Nutritional status, inflammation, immunity, and virus replication

As suggested by some Simonnet et al. [11], obesity could repre-
sent a major risk factor for SARS-CoV-2 infection, and could have a
crucial role in the course of the disease. As previously reported,
obesity may influence either the risk for infection or the outcome
once it is established, as observed during the H1N1 influenza A
pandemic in 2009 [25,26].

This could be mainly explained by the state of low-grade
inflammation provided by adipose tissue (AT), which accounts for
the modulation of immune responses (Fig. 1). AT itself contains a
large amount of macrophages, which represent the most abundant
immune cells, and therefore acts as a source of tumor necrosis fac-
tor (TNF) [27,28]. AT also produces interleukin (IL)-8, a chemokine
of innate immunity. Plasma IL-8 levels are increased in obese indi-
viduals, and are related to fat mass (FM) and the TNF-a system.
Fig. 1. Adipose tissue as an endocrine and paracrine gland creates an inflammatory micr
proinflammatory molecules, and is a source of IL-8. Indeed, leptin, which tends to be ove
mation cascade and modulating cell-mediated immunity. IL, interleukin; TNF, tumor necr
They then promote a stronger neutrophil activation and potential
tissue damage [29]. Acting as an endocrine gland, AT stores and
releases large amounts of molecules such as leptin, which has
structural similarity to other proinflammatory cytokines such as
IL-6, IL-12, and granulocyte colony-stimulating factor and plays a
crucial role in modulating both innate and adaptative immunity
[30]. Leptin has pleiotropic characteristics because it enhances
neutrophil chemotaxis in macrophages, which are even stimulated
for production of TNF, IL-6, and IL-12, and promotes modulation of
monocytes and dendritic cells [31,32]. Moreover, leptin seems to
regulate T-cell metabolism through the activation of mammalian
target of rapamycin (mTOR) complex, in particular upregulating
glucose uptake, and may drive CD4+ T cells to the production of
T-helper (Th)1-type cells, which in turn favors the release of the
proinflammatory cytokine interferon (IFN)-g. B lymphocytes also
accumulate in the AT and contribute to secretion of inflammatory
cytokines, such as IL-2 and IL-12, responsible for T-cell differentia-
tion [33�36].

In the COVID-19 scenario, patients show signs of an amplified
and severe hyper-inflammation response due to macrophage acti-
vation, known with the evocative term cytokine storm. In particu-
lar, IL-6 seems to be overproduced, thus inducing lung injury with
alveolar edema, hyalinosis (intraalveolar proteinosis), pneumo-
cytes viral cytopathic change, and immune cell infiltration [37].
Moreover, IL-6 inhibits natural killer (NK) cell cytotoxicity, which
are less able to kill target cells by perforin/granzyme-induced
apoptosis, thus amplifying overproduction of proinflammatory
cytokines [38].

Considering the lack of available data regarding the degree of
inflammatory response in the specific obese population with
COVID-19, we could speculate similar clinical findings described
for H1N1 influenza, in which IL-6, IL-15, IL-8, and TNF-a levels cor-
related with worse outcome and were significantly higher in obese
patients compared with lean ones [39].

In addition to obesity, malnutrition should be carefully evalu-
ated. In fact, one should consider the lack of AT as source of adipocy-
tokines, in which macrophages, cytotoxic T cells, and effector T cells
are less represented. These aspects induce changes in immunome-
tabolism and impaired protective response [36]. Regarding leptin
levels, which are reduced in starvation, an association with immune
defects was observed [40]. Moreover, T cells in fasting are less able
to produce IL-2 and IFN-g [35]. Other effects of undernutrition on
oenvironment, in which macrophages and B lymphocytes contribute to secretion of
rexpressed in relation to fat mass, acts with pleiotropic activities enhancing inflam-
osis factor.



D. Fedele et al. / Nutrition 81 (2021) 111016 3
the immune system are impaired complement activation and thy-
mic atrophy (the primary site of T-cell development) [41]. Inflam-
matory pathways could be even more detrimental in the case of
undernutrition as inflammation response has negative effects on
protein stores because of the catabolic effects of acute phase pro-
teins such as C-reactive protein and ILs, worsening a pre-existing
state of frailty [42]. Indeed, if the energy requirement is not met,
wasting will occur as mobilized amino acids are prioritized for the
synthesis of protein related to immune response [41].

As mentioned, available data about prevalence of undernutri-
tion in patients with SARS-CoV-2 infection are sparse. Li et al. eval-
uated the nutritional status of elderly inpatients with COVID-19
using the Mini Nutritional Assessment (MNA) and found that
27.5% were at risk for malnutrition and 52.7% were malnourished.
However, the authors did not perform a statistical association with
mortality or disease severity [18]. When considering the above
cited analysis on H1N1 and respiratory viruses, some researchers
have reported a fivefold increased risk for hospitalization in under-
weight individuals [16].

Taken together, these considerations should lead to accurate
population screening in order to interrupt the vicious cycle in which
inflammation status becomes abnormally overspread and leads to
disruption of tissue integrity, with poor outcomes (Table 1).

It has been hypothesized that nutritional status could influence
virus shedding and the potential for transmission. This hypothesis
has been reinforced by a study from Moriconi et al., which
observed that obese patients with COVID-19 require longer hospi-
talization and more intensive care and oxygen support; moreover,
they seem to have longer SARS-CoV-2 shedding [43].

In a study by Maier et al., the authors described a shedding of
influenza A virus 42% longer in symptomatic obese adults than in
nonobese patients (5.23 versus 3.68 d). Consequently, it would be
easier for virus to spread among other people [44]. This finding
could be due to the microenvironment, which, as discussed, is
characterized by low-grade inflammation. In animal models, a
change in virus population diversity with emergence of a more vir-
ulent phenotype was observed. It can be due to less IFN pressure,
which in normal status tends to inhibit viral replication [45].

In a study by Weger-Lucarelli et al. [46] in animal models
infected with alphaviruses, an altered viral replication was
observed and the authors hypothesized that the microenviron-
ment in the obese can be involved in persistent alphavirus replica-
tion, which may evolve in chronic disease.
Table 1
Nutritional status and immunity derangements

Overweight/Obesity Role

� Systemic chronic low�grade inflammation
� Increase in macrophages, TNF-a, IL�8, IL-6, IL-12
� Increase in leptin, neutrophil chemotaxis
� Increase in CD4+ T cells, Th1-ype cells, IFN-g
� Increase in B lymphocytes

� Am
� Cy
� IL
� Re
� W
� La

Undernutrition Role i

� Decrease in macrophages, cytotoxic and effector T cells
� Decrease in IL-2 and IFN-g release by T cells
� Decrease in leptin
� Thymic atrophy (primary site of T-cell development)

� Im
� Shi
� Fiv
� Infl
� Les
� Lac

IFN, interferon; IL, interleukin; TFN, tumor necrosis factor; TLR, Toll-like receptor.
Numbers within brackets represent reference citation; see the Reference section.
Conversely, undernutrition also can be associated with less
responsiveness for vaccines. This is because of the crucial role of
nutrition in modulating immune responses and lower production of
antigens [47]. An emblematic example was reported by Bhattachar-
jee et al. [48], who evaluated the association between infections and
the microbiome. In fact, the authors underlined the lower efficacy of
oral vaccines in children living in resource-poor countries. This
could be explained by diminution of antiviral T-cell responses due
to lack of mucosal bacteria [49], which also express Toll-like recep-
tor (TLR)-5, which is involved in vaccine responses [50].

An important role in immune function and responsiveness to
vaccines is played by micronutrients, which is discussed further.

Obesity-associated diseases and effects on COVID-19

Respiratory comorbidities and complications

Several clinical conditions, frequently complicating or associ-
ated to obesity, act as independent risk factors for a more severe
disease course in patients with COVID-19. According to the meta-
analysis by Wang et al., the most important are chronic obstructive
pulmonary disease (COPD; OR, 5.97), chronic cardiovascular dis-
ease (CVD; OR, 2.93), hypertension (OR, 2.29), diabetes (OR, 2.47),
and cerebrovascular disease (OR, 3.89) [51].

Several respiratory diseases could complicate an obesity condi-
tion, including obstructive sleep apneas and hypopneas (OSAHs),
obesity hypoventilation syndrome (OHS), asthma, and COPD
[52�54]. Under these conditions, the respiratory system is con-
stantly under stress as it exhibits �16% increase in ventilatory work
to meet oxygen demand, thus reducing the physiologic pulmonary
reserve in acute episodes (eg, pneumonia, ARDS) [55,56]. In addition
to these, he link between respiratory diseases and an increased sus-
ceptibility to influenza and bacterial pneumonia, with worse out-
comes from these conditions, has been proven [15,57] (Fig. 2).

Restrictive ventilatory pattern
Obesity is typically associated with a restrictive ventilatory pat-

tern, due to the excess AT hindering chest wall, diaphragmatic, and
basal lung expansion movements, finally resulting in airway resis-
tance, closure of peripheral lung units, ventilation-perfusion
abnormalities, and arterial hypoxemia. On spirometry, they result
in significantly lower functional residual capacity (FRC) and expira-
tory reserve volume (ERV), slightly reduced forced expiratory
in infectious diseases

plified inflammatory response
tokine storm
-6 overproduction and lung injury [37]
duced natural killer cell cytotoxicity [38]
orse outcome in obese patients with H1N1 influenza [39]
ck of available data for COVID-19 pandemic

n infectious diseases

paired protective response
ft to acute phase proteins synthesis and decrease in protein stores
efold increased risk for hospitalization for obese patients with H1N1 influenza [16]
uenza A virus 42% longer in symptomatic obese [43]
s TLR-5 expression and less response to vaccines [49,50]
k of available data for COVID-19 pandemic



Fig. 2. Obesity respiratory complications and their potential role in influencing COVID-19 course. Obese patients exhibit pulmonary alterations in which a proinflammatory
environment promotes release of immunomodulatory molecules, and a structural alteration that could worsen the outcome of viral pneumonia in terms of respiratory
exchanges and virus replication. IL, interleukin.
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volume in 1 second (FEV1), and forced vital capacity (FVC) [52],
whereas the FEV1/FVC ratio is usually unaffected except in the case
of extreme BMI values (>62 kg/m2) [58].

In the COVID-19 context, severe pneumonia are connected with
extensive pulmonary fibrosis (PF), where a further deleterious role
has been hypothesized for pulmonary lipofibroblasts in the alveo-
lar interstitium and closely similar to adipocytes, as they may
transdifferentiate into myofibroblasts that play an integral part in
the development of PF [59].

OSAHs
An obstructive component can be found in a whole series of

respiratory diseases. Among these, OSAHs occur in ~40% of the
obese population, as increased fat tissue deposition in the pharyn-
geal region and reduced operating lung volume lead to upper air-
way collapsibility and closures during sleep [60]. BMI, in addition
to neck and abdominal circumferences, affects both risk for OSAHs
(�90% for BMI >40 kg/m2) [61�63] and variability in the apnea-
hypopnea index, which defines the severity of the disease [64,65].
Notably, OSAH severity is associated with IL-6 levels in obese indi-
viduals [66], and likely is involved in the development of insulin
resistance [67,68].

In the COVID-19 scenario, OSAH may lead to a worse course of
the disease, even progressing to OHS and respiratory failure [69].

OHS
OHS presents with respiratory failure, severe hypoxemia, day-

time hypercapnia (partial pressure of carbon dioxide [PaCO2] >6
kPa), and pulmonary hypertension [59]. It occurs in >11% of obese
patients, with a proportional relationship between BMI and the
hypercapnia severity [70].

Makinodan et al. demonstrated a significant association
between PaCO2 values and higher serum leptin levels in obese
patients with OSAH, so it has been suggested that a different sensi-
tivity to circulating leptin could explain why many patients with
OSAH do not necessarily progress to OHS [71�74].

Although there is a lack of scientific data assessing OHS preva-
lence and incidence among COVID-19 patients, it is conceivable
that OHS, in a much more complex context within chronic inflam-
mation, metabolic, and cardiovascular alterations, could play an
important role in aggravation of the prognosis of patients with
COVID-19. In this regard, an emblematic case of OHS onset in a 23-
y-old man with OSAH, fatty liver disease, and dyslipidemia has
been reported [75].
Asthma
Asthma exhibits a typical obstructive ventilatory pattern and,

according to the meta-analysis by Beuther et al., is prevalent in
38% of overweight patients and 92% in those who are obese [76].
An increased AT mass is associated with an increased infiltration
by macrophages in obese individuals with asthma. Moreover vis-
ceral FM is an important source of mast cell progenitors, mediators
of allergy [58]. However, it is still debated whether a direct rela-
tionship exists between obesity and the traditional biomarkers of
airway inflammation in patients with asthma, as obesity does not
necessarily worsen airway inflammation in asthma [77,78]. Rather,
non-atopic mechanisms antagonizing therapies, such as the low-
grade systemic inflammation associated with obesity, may affect
glucocorticoid sensitivity [79,80].

Although data are limited, patients with severe and/or uncon-
trolled asthma and those with COPD appear to be at increased risk
for a more severe course of SARS-CoV-2 infection [81,82]. Although
asthma is not in the top 10 comorbidities associated with fatalities
among all-aged COVID-19 patients [83], it has been reported
among the most common comorbidities in younger patients with
COVID-19, with obesity and diabetes [84, 85]. At a pathogenetic
level, allergic sensitization and eosinophilic inflammation compro-
mise the integrity of the airway mucosa, thus fostering viral infec-
tions in the lower airways and limiting the ability of the
respiratory tract to clear viruses [86].

COPD
COPD is characterized by the progressive and largely irreversible

airflow obstruction and occurs predominantly in smokers [87].
Overweight and obesity prevalence is higher in the early COPD pop-
ulation (Global Initiative for Chronic Obstructive Lung Disease
[GOLD] stages 1 and 2), compared with the general population
[88,89], and low-grade inflammation and arterial hypoxemia lead to
a loss in skeletal muscle tissue and respiratory muscle performance,
thus predisposing the individual to increased morbidity and mortal-
ity [52,88,89]. Otherwise, undernutrition is more frequent in
patients with moderate to severe COPD (GOLD stages 3 and 4), with
an overall decline in BMI and decrease both in FM and fat-free mass
(FFM). BMI values <25 kg/m2 seem to adversely affect prognosis
[90]. Notably, COPD and obesity share a common association with
tobacco smoking, as obese individuals smoke more than the general
population, with a number of cigarettes smoked per day correlated
with elevated BMI and/or visceral adiposity [91�94]. In this regard,
a common biological basis for the regulation of appetite for food and
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tobacco, and thus the vulnerability to obesity and nicotine addiction,
has been suggested [95�97].

In the COVID-19 pandemic, the WHO has said that COPD and
ongoing smoking history contribute to worse progression and out-
come of disease [98], with higher severity and risk for death both in
COPD patients (OR,�4.38) and current smokers (OR, 1.98) [99�102].

Cardiovascular comorbidities and complications

The most common extrapulmonary complications of COVID-19
occur in the cardiovascular system because SARS-CoV-2 binds to
the transmembrane angiotensin-converting enzyme (ACE)-2 to
enter type 2 pneumocytes, cardiomyocytes, and perivascular peri-
cytes, followed by a severe cytokine storm (IL-6, IL-7, IL-22, IL-17,
etc). This may lead to myocardial, endothelial, and microvascular
dysfunction, and plaque instability, with cardiac injury, myocardial
infarction (MI), heart failure (HF), myocarditis, and arrhythmias
[103�108]. Katz et al. [109] reported that 28% of COVID-19 inpa-
tients presented cardiac complications such as coronary artery dis-
ease (CAD; OR, 2.70), HF (OR, 2.48), and cardiac arrhythmias (OR,
1.95), all of which are associated with an increased risk for in-hos-
pital death [110].

Ischemic heart disease
Overweight and obesity have been well recognized as major risk

factors for CAD [111�113], which is associated with a high inci-
dence rate, acute onset, and increased lethality, thereby posing a
serious threat to the life of the patient [114,115]. Risk for CAD seems
to be closely correlated with visceral obesity measures (waist cir-
cumference, waist-to-height ratio, waist-to-hip ratio, and the sagit-
tal abdominal diameter) compared with BMI value alone [114,116].

A greater risk for severe COVID-19 and death in patients with
pre-existing CVDs [117�120], such as CAD (severe illness OR,
6.85), HF (OR, 9.77), CVD events (OR, 8.89), and hypertension (OR,
4.56) has been reported [121]. Even cardiac troponin I levels are
higher in patients with severe COVID-19 than in those with milder
forms of disease [117,122]. In this context, in addition to the sys-
temic inflammation, the dangerous role of the epicardial adipose
tissue (EAT), which is more abundant in obesity and induces patho-
physiologic changes in cardiomyocytes, coronary artery endothe-
lial cells, and monocytes through a local inflammatory pathway,
has been suggested [123�127]. Similar effects on myocardial tissue
from EAT have also been suggested for cardiovascular complica-
tions in patients with COVID-19 [128].

Pulmonary embolism and thrombotic events
Obesity has been consistently and independently associated

with pulmonary embolism and thrombotic complications, even
after adjustments for age and other risk factors (OR, 2.2) [129].
Thrombotic diathesis can be related to the systemic chronic
inflammation and oxidative stress that cause the endothelium to
lose its antithrombotic properties. Moreover, a role is played by
impaired platelet reactivity, enhanced coagulation (elevated circu-
lating levels of von Willebrand factor, tissue factor, factor VII and
VIII, and fibrinogen), and impaired fibrinolytic system [130,131].
These effects may be further exacerbated by dysregulated expres-
sion and secretion of adipokines and microRNAs [131,132].

A high cumulative incidence of thrombotic complications in
critically ill patients with COVID-19 admitted to the ICUs, with a
higher risk for all-cause death (hazard ratio [HR], 5.4) has been
reported [133]. In an Italian cohort of 388 patients, thromboem-
bolic events occurred in 7.7% cases, corresponding to a cumulative
rate of 21% (27.6% ICU; 6.6% general ward) [134]. Although the
prevalence of obesity among these patients was not reported, it
has been noted that inpatients with more severe disease from
SARS-CoV-2 and with other risk factors, including obesity, have a
higher risk for thromboembolic events [135]. Even postmortem
examinations confirmed the high incidence of venous thromboem-
bolism in deceased patients with COVID-19 [136], with a pulmo-
nary picture characterized by small and mid-sized pulmonary
artery thrombosis, massive capillary congestion often accompa-
nied by microthrombi despite anticoagulation, diffuse alveolar
damage, edema, hyaline membranes, and pneumocyte and fibro-
blast proliferation [137,138]. Elevated D-dimer and fibrinogen lev-
els are commonly found in these patients [139,140], and an
association between serum homocysteine levels and imaging pro-
gression of pulmonary disease on chest computed tomography has
been found [141]. A direct role of SARS-CoV-2 in the pathogenesis
of systemic coagulopathy [142,143] has been suggested and it has
been hypothesized that heparin administration should be included
in the treatment of severe forms [144].

Hypertension
In the COVID-19 scenario, hypertension has been associated

with an increased risk for severe disease (OR, 2.49) as well as with
a similarly significant higher mortality risk (OR, 2.42), especially in
older individuals [145].

Excess weight gain, particularly when associated with
increased visceral adiposity, is a major cause of hypertension,
accounting for 65% to 75% of the risk for primary (essential) hyper-
tension [146], with a proportional relationship between BMI and
systolic and diastolic blood pressure (BP) values [147]. Among
pathogenetic factors, a crucial role is played by increased sodium
reabsorption [148�152], altered hemodynamics, renal dysfunc-
tion, autonomic nervous system imbalance, endocrine alterations,
oxidative stress and inflammation, and vascular injury. Most of
these factors interact with each other at multiple levels, and obe-
sity-related hypertension has been proposed as a distinct form of
hypertension [153].

A still controversial issue concerns the role of ACE inhibitors
(ACEIs) and angiotensin II receptor blockers (ARBs) on the course of
the COVID-19. An upregulation of the ACE-2 receptors, thus theoret-
ically increasing the risk for infection and severity of the disease, has
been suggested [154�157]. However, a significant difference in the
proportion of ACEI/ARBs medication between non-survivors and
survivors among COVID-19 hospitalized patients has not been
reported and no evidence that ACEI or ARBs affected the COVID-19
risk has been demonstrated [110,117,158,159]. In this regard, major
cardiology associations discourage the discontinuation of anti-
hypertensive therapy, as the acute risk for hypertension could exac-
erbate the clinical course and increase the mortality of patients with
COVID-19 [10,160,161].

Metabolic comorbidities and complications

Type 2 diabetes
Type 2 diabetes is a major contributor to disease severity and

mortality in all three known human pathogenic coronavirus infec-
tions, including Middle East respiratory syndrome (MERS-CoV),
SARS-CoV, and SARS-CoV-2 [162,163].

Depending on the global region, 20% to 50% of patients with
COVID-19 have diabetes, with an increased risk for severe compli-
cations such as ARDS, multiorgan failure (MOF) [163], need for
mechanical ventilation [164], and as high as a 1.5-fold risk for a
fatal outcome [165].

Several hypotheses could explain this increased severity of
COVID-19 infection in patients with diabetes, including impair-
ments in innate immunity (phagocytosis, neutrophil chemotaxis,
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and cell-mediated immunity), and both acute and chronic hyper-
glycemia (dysregulation in ACE-2 expression with higher cellular
vulnerability to the damaging effect of the virus). Even dipeptidyl
peptidase-4 enzyme, a functional receptor for the virus responsible
for MERS, could increase inflammation in type 2 diabetes [163].
Moreover, chronic inflammation, increased coagulation activity,
and potential direct pancreatic damage by SARS-CoV-2 might be
among the underlying mechanisms of the association between dia-
betes and COVID-19 [166].

Most patients with type 2 diabetes are obese, and the global epi-
demic of obesity largely explains the dramatic increase in the inci-
dence and prevalence of type 2 diabetes over the past 20 y [167,168],
a phenomenon recently termed diabesity [169]. Visceral adiposity
plays a crucial role in insulin resistance, as an increase in abdominal
girth or waist-to-hip ratio is associated with risk for type 2 diabetes,
metabolic syndrome, and CVD [170,171]. In the early stage of diabetes
mellitus, AT can be further stimulated by a plethora of molecules such
as acyl ghrelin [172]. In turn, AT affects metabolism by secreting
higher levels of glycerol, leptin, cytokines, proinflammatory substan-
ces, and non-esterified fatty acids [171,173,174].
Metabolic-associated fatty liver disease

In the course of COVID-19, Zheng et al observed a higher severe
illness risk (OR, 6.32) in obese patients with metabolic-associated
fatty liver disease (MAFLD), even after adjusting for age, sex, smok-
ing, diabetes, hypertension, and dyslipidemia, than those without
MAFLD [175,176], and Hussain et al. provided similar results [177].
Notably, advanced liver disease represents an increased risk for
infection and a severe course of COVID-19 [178], so that the Euro-
pean Association for the Study of the Liver (EASL) presented a posi-
tion paper addressing this topic [179]. Although a clinically
significant liver injury is rare and of relatively mild degree [180],
unless in patients with severe SARS-CoV-2 illness [181], abnormal
liver blood tests are common in the course of the disease [182]. A
higher persistence of these abnormalities from admission to dis-
charge in patients with MAFLD has been reported [173,183],
whereas MAFLD seems not to be related to an increased liver
SARS-CoV-2 uptake nor to changes in liver expression of genes
implicated in virus infection [184]. Moreover, MAFLD is often asso-
ciated with obesity and other metabolic risk factors, thus further
aggravating the severity of respiratory illnesses [185�188].
Role of sarcopenia

To our knowledge, no studies have specifically addressed the
effects of sarcopenia on patients with COVID-19. It is conceivable
that, as previously observed with other respiratory diseases, sarco-
penia may heavily influence the course and outcome of COVID-19,
especially in elderly patients. Individuals 60 to 70 y of age have a 5%
to 13% prevalence of sarcopenia and those �80 y of age have as
much as 50% [189]. According to this hypothesis, the Asian Working
Group for Sarcopenia proposed recommendations to evaluate and
manage secondary consequences of COVID-19 in the elderly [190].

Sarcopenia is a progressive, generalized skeletal muscle disor-
der associated with increased likelihood of adverse outcomes
including falls, fractures, physical disability, poor quality of life,
dependency in activities of daily living, and excess mortality
[191,192]. The European Working Group on Sarcopenia in Older
People performed a consensus on definition and diagnosis, stress-
ing that the role of low muscle strength as the primary parameter
of sarcopenia is better than lean mass in predicting adverse out-
comes. Low muscle quantity or quality allows confirmation of the
diagnosis, and low physical performance allows the determination
of severity [193].

Primary (or age-related) sarcopenia occurs in the absence of
specific causal factors and, at a pathogenetic level, systemic,
chronic, sterile, low-grade inflammation acts as a major contribu-
tor. This is also known as inflamm-aging [194�197] because senes-
cent cells acquire a senescence-associated secretory phenotype,
with slightly increased levels of proinflammatory cytokines (TNFa,
IL-6, nuclear factor-kB overactivation), thus muscle protein break-
down and synthesis are affected [198�202].

Secondary sarcopenia occurs when causes other than (or in addi-
tion to) aging are evident, such as systemic diseases (e.g., malignan-
cies) [203], loss of motor neuron units, diabetes mellitus, very low
25-hydroxyvitamin D levels [204], and physical inactivity (sedentary
lifestyle or disease-related immobility) [203,205,206]. Furthermore,
inadequate intake of energy or protein, as a result of anorexia, mal-
absorption, limited access to healthy foods, or limited ability to eat,
can lead to sarcopenia [193]. In a critical care setting with endotra-
cheal intubation required for mechanical ventilation, as many as
62% of patients develop post-extubation dysphagia due to tongue
weakness and tube-related oropharyngeal mucosal inflammation,
muscle atrophy, decreased proprioception, and laryngeal injury.
Thus, post-extubation dysphagia could severely limit resumption of
oral feeding [207�211], promoting undernutrition [212] and sarco-
penia of the muscles used for swallowing, and further worsening
dysphagia through a vicious cycle (sarcopenic dysphagia)
[213�216]. Notably,>3.2% of patients with COVID-19 required intu-
bation [217]. Moreover, myopathies and rhabdomyolysis are com-
mon extrapulmonary manifestations in flu infections, as confirmed
by the finding of atrophic/necrotic muscle fibers during muscle
biopsies, thus further worsening sarcopenia. Elevated serum crea-
tine kinase (CK) levels were found during the 2009 H1N1 flu pan-
demic, and were associated with higher LOS in ICUs, and increased
both pulmonary and non-pulmonary complications [218].

The sarcopenic phenotype is typically associated with malnutri-
tion due to low dietary intake (starvation, inability to eat), reduced
nutrient bioavailability (e.g., diarrhea, vomiting), or high nutrient
requirements (e.g., inflammatory diseases such as cancer or organ
failure) [219,220]. However, sarcopenia can occur as a loss of lean
body mass in the context of excess adiposity (sarcopenic obesity)
[221], as obesity increases the fat infiltration into muscle and low-
ers physical functioning [222�225].

The association between sarcopenia and respiratory function
impairment has been widely described [226,227], with lower dia-
phragmatic muscle thickness and peak expiratory flow rate (PEFR)
rates (245 versus 310 L/min in sarcopenic and non-sarcopenic
patients, respectively) [228] leading to a specific definition of respi-
ratory sarcopenia based on the PEFR values [229]. Moreover, frailty
often overlaps with sarcopenia, although a broader syndrome char-
acterized by vulnerability and a higher state for risk followingminor
stressor events has been described [226]. Even obesity could deteri-
orate respiratory function through an overburden on breathing
associated with respiratory muscle mass loss [230,231].

In this context, body composition assessment plays a crucial
role in differentiating lean mass from FM, thus grading the severity
of sarcopenia in malnourished patients and recognizing sarcopenic
obesity, with a reduced muscle mass despite a normal or even
increased BMI [232].

Role of trace elements and vitamins

Trace elements and vitamins play a fundamental role in the
modulation of immune response and their deficiency can influence
the course of the disease (Table 2).



Table 2
Roles of trace elements and vitamin deficiency in worsening COVID-19 course and outcome

Trace element or vitamin Deficiency and suggested role in COVID-19

Selenium
� Antioxidant role, ROS balance in inflammatory processes � Immune function impairment, lower T cells, lymphocyte-mediated toxicity, and NK cell

activity [234]
� Increase in virus replication and genomemutation rate (especially for RNA viruses) [237]
� Higher pathogenic H1N1 subtypes in influenza A virus [238]
� Higher death rate in COVID-19 patients in low-selenium regions [240]

Zinc
� Reduces ROS in viral infections � Higher risk for lower respiratory tract infections

� Inhibition of RNA-dependent RNA polymerase, which inhibits viral replication in corona-
virus respiratory tract infections [243]

� Proposed supplementation to enhance the clinical of chloroquine/hydroxychloroquine
efficacy in the COVID-19 treatment [246]

Copper
� Role in immunity, antimicrobial action due to copper toxicity
� Enhance in macrophage activity in lung infection

� Immune function impairment
� Role in viral replication in H1N1 influenza [255]
� Proposed supplementation as an adjuvant within COVID-19 treatment [250]

Vitamin D
� Immunomodulatory and antioxidant action
� Role in CVDs and DM

� Higher COVID-19 incidence in patients with lower vitamin D [264]
� Higher COVID-19 fatality rate in severe vitamin D-deficient countries [265]
� Proposed vitamin D at loading dose administration [266�268]

Ascorbic acid
� Immunomodulatory and antioxidant action � Lower severity and mortality from pneumonia in individuals with higher serum vitamin

C values [272,273]
� Intravenous administration could reduce mechanical ventilation requirement through

the amelioration of lung injury [274]
� No consensus for supplementation in COVID-19, suggested 1.5 g/kg body weight admin-

istration as safe [275]
Vitamin A
� Role in immune competence
� Immunomodulatory action

� Lower serum levels during infections (acute phase response), transiently and propor-
tionally to the severity of the disease [280]

� Lower FVC and higher risk for invasive pathogens and severity in lung infections in
patients with lower vitamin A [278]

� Suggested adjunctive administration in COVID-19 patients since reduced morbidity and
mortality in measles�related pneumonia, HIV infection, malaria [239]

Vitamin E
� Immunomodulatory and antioxidant action � Supplementation as protective in upper respiratory infections in elderly patients [283]

� Increased virulence as deficient in animal models [284]
� Lack of available data for COVID-19 pandemic

CVD, cardiovascular disease; DM, diabetes mellitus; FVC, forced vital capacity; NK, natural killer; ROS, reactive oxygen species.
Numbers within brackets represent reference citation; see the Reference section.
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Selenium

It has been largely recognized that selenium has pleiotropic
properties that are important for health status. Selenium exerts its
functions through 25 selenoproteins that act as antioxidants, such
as glutathione peroxidases (GPx) which is involved in control of
reactive oxygen species (ROS) during inflammatory processes.
Redox balance is recognized as a critical factor in the progression
of viral infection [233�235].

Nutritional selenium deficiency effects the immune response,
resulting in less proliferation of T cells, lymphocyte-mediated toxic-
ity, and NK cell activity [236]. It appears to influence the course of
viral infections by limiting elevation of ROS, whereas biosynthesis of
antioxidant enzymes is reduced in the infected cells, and influencing
virus replication by increasing the rate of the genome mutation,
especially for RNA viruses [237]. It has been found that selenium sta-
tus could influence the outcome of influenza A virus, as seen in stud-
ies that correlated lower selenium concentration and infection by
the highly pathogenic H1N1 subtype of influenza A virus [238].
Other implications are severity of tissue inflammatory infiltration
and emergence of more virulent virus subtypes [237].

As pointed out by Zhang et al. [239], selenium could be a choice for
treatment of COVID-19, but it has also been hypothesized that it plays
a crucial role in the emergence and spread of SARS-CoV-2. Because
selenium concentrations in China vary between the lowest and the
highest values in the world, some researchers have analyzed hair sele-
nium concentrations, observing amuch higher death rate in COVID-19
patients from low-selenium regions [240]. These findings should open
discussion of considering eventual selenium supplementation, taking
into account that a selenium overload could be detrimental in influ-
encing immune response to vaccines [236].

Zinc

According to a report published by the WHO in 2013, it is esti-
mated that zinc deficiency affects about 33% of the world’s popula-
tion, with estimates ranging from 4% to 73% across subregions and
1.4% of deaths worldwide (0.8 million) were attributed to zinc defi-
ciency: 1.4% in men and 1.5% in women. It is also responsible for
~16% of lower RTIs [241].

A wide spectrum of immune response, both regarding innate
and adaptive immunity derangements, occurs in zinc deficiency
conditions. Zinc deficiency can result in reduced polymorphonu-
clear cell (PMNs) chemotaxis and phagocytosis and regulation of
NADPH oxidase activity, involved in destruction of pathogens after
phagocytosis. Zinc deficiency also causes increased production of
proinflammatory cytokines such as IL-1B, IL-6, and TNF-a and
compromised modulation of NK cell activity, especially in the set-
ting of major histocompatibility complex (MHC) class I. Thymic
atrophy and subsequent T-cell lymphopenia and reduction of



8 D. Fedele et al. / Nutrition 81 (2021) 111016
premature and immature B cells with consequently reduced anti-
body production are other effects of zinc deficiency [242].

Zinc in binded as divalent cation to metallothioneins (MTs) and is
released as a mechanism to reduce ROS generated by viral infections.
Moreover, MTs have been classified as IFN-stimulating genes and
their upregulation has been observed in response to measles virus,
influenza, HIV, and hepatitis C virus. In the context of influenza and
other RTIs sustained by coronavirus and metapneumovirus, the inhi-
bition of RNA-dependent RNA polymerase, which inhibits viral repli-
cation, has been observed (in vitro) [243].

Various studies evaluated the effect of zinc supplementation in
viral diseases, finding a prophylactic effect and reduced duration of
symptoms [243�245], whereas other studies did not report a con-
vincing effect on viral load or immune responses [242]. Some
researchers have suggested a possible role of zinc supplementation
in enhancing the clinical efficacy of chloroquine/hydroxychloro-
quine used for treatment of COVID-19, as chloroquine has charac-
teristics of a zinc ionophore, specifically in lysosomes, which may
result in a more efficient RNA-dependent RNA polymerase inhibi-
tion of intracellular SARS-CoV-2 replication [246]. However, the
effective utility and recommendations for use of chloroquine/
hydroxychloroquine must be effectively established and serious
concerns remain, mostly about its cardiotoxicity [247�249].

Copper

Recently, some researchers have suggested a possible involve-
ment of copper as an adjuvant in treatment of COVID-19. The ratio-
nale of this suggestion comes from the observation that severe
copper deficiency has adverse effects on immune function, espe-
cially in elderly people where marginal or severe deficiency of cop-
per is a strong possibility. Because copper and zinc are
competitively absorbed from the jejunum via MT, high doses of
zinc (>150 mg/d) can result in copper deficiency in healthy indi-
viduals [250].

The role of copper during infections has been previously investi-
gated. Elevated levels of copper could attack microbes through cop-
per toxicity [251], in particular during lung infections, in which an
uptake in macrophages was observed [252]. Nearly all of copper con-
tent of the serum (95%) is bound to ceruloplasmin, whose levels are
increased in response to inflammation, trauma, or infection, in order
to facilitate copper delivery to sites of infection [253]. Moreover, there
is also an activation of immune response, as seen by Kelley et al., who
observed that after providing a diet with lower content of copper,
peripheral blood mononuclear cell proliferation and secretion of the
IL-2 receptor in the culture medium were reduced [254]. Interest-
ingly, some researchers have reported a specific role of copper in viral
replication, as in the case of influenza A/WSN/33 (H1N1) as a critical
step in RNA and protein syntheses [255].

However, these observations should not be taken as advice for
COVID-19 treatment, even in consideration of the possible toxic
effect of copper overload.

Vitamin D

Considering the rate of vitamin D deficiency and insufficiency, it
can be considered a global health problem that has characteristics
as a pandemic. It has been estimated that ~30% of children and 60%
of adults worldwide are vitamin D deficient and insufficient,
respectively [256]. The severity of 25-hydroxyvitamin D deficiency
is stratified into mild (<20 ng/mL), moderate (<10 ng/mL), and
severe (<5 ng/mL) [257]. Pregnant women, individuals with
increased skin melanin, abstinence from direct sun exposure
(which explains the higher prevalence in higher latitudes), and
obese children and adults are considered at high risk for deficiency.
A prevalence of vitamin D deficiency is 35% higher in obese indi-
viduals regardless of latitude and age [256,258].

Vitamin D acts as an immunomodulator and as an antioxidant,
with an important role in CVDs and diabetes mellitus [256]. It is
also involved in protection against viral RTIs and acute lung injury,
as observed in ARDS, in which there is reduced lung permeability
by modulation of renin�angiotensin system activity and ACE-2
expression [259�262]. Thus, vitamin D deficiency has been reason-
ably correlated to COVID-19 as a pathogenic factor. This hypothesis
is corroborated by analysis of vitamin D prevalence and COVID-19
spreading and mortality observed in the Northern Hemisphere in
contrast to the Southern Hemisphere [263]. Hastie et al. analyzed
data available from 348 598 UK Biobank participants and found
that median 25-hydroxyvitamin D concentration measured at
recruitment was lower in patients who subsequently developed
COVID-19 [264]. Daneshkhah et al. observed that the age-specific
COVID-19 fatality rate was highest in Italy, Spain, and France, all of
which are European countries with the highest incidence of severe
vitamin D deficiency [265]. These findings suggest that measure-
ment of serum 25-hydroxyvitamin D is necessary in patients
infected with SARS-CoV-2 in order to identify the ones at highest
risk. Once identified, a supplementation dose should be adminis-
tered. Caccialanza et al. suggest cholecalciferol supplementation
according to blood tests results (50 000 UI/wk and 25 000 UI/wk if
25-hydroxyvitamin D <20 ng/mL and �20 to <30 ng/mL, respec-
tively) [266], whereas Ebady et al. propose a 100 000 IU start dose
of cholecalciferol followed by 50 000 IU/wk for the second and
third week [267]. According to the most recent guidelines for
nutrition management in the ICU, a single high dose (500 000 IU)
can be safely administered within the first week [268], and it could
be reasonably applied for COVID-19 patients, although no evidence
exists to date. To our knowledge, there is no clear consensus about
the administration of cholecalciferol in COVID-19 patients, neither
a proven efficacy as adjuvant therapy, even though some research-
ers suggest this is a possible application [269].

Ascorbic acid

Overt vitamin C deficiency known as scurvy, is rare especially in
high-income countries; however, a less pronounced deficiency
(defined as a serum concentration <11.4 umol/L) is more common,
with rates as low as 7.1% in the United States and up to 73.9% in
northern India. Risk factors include alcohol intake, tobacco use,
low income, male sex, patients on hemodialysis, and those with
overall poor nutritional status [270].

Vitamin C mainly plays an essential role in protecting the cells
from oxidative damage; improves neutrophil migration and che-
motaxis; promotes the proliferation, differentiation, and matura-
tion of T and possibly also B lymphocytes; and has an inhibitory
effect on secretion of proinflammatory cytokines [271]. A link
between vitamin C status and RTIs has been observed, as a lower
mortality rate from pneumonia was reported in patients with
higher serum vitamin C values [272]. Recently, Carr et al. evaluated
vitamin C status in a cohort of patients with pneumonia and
observed a depletion compared with healthy controls. In particu-
lar, the more severe patients in ICUs had significantly lower vita-
min C levels [273]. This latter study was not performed in patients
with COVID-19 and no data are available regarding vitamin C sta-
tus in these patients. The potential role as an immunomodulator
and antioxidant lead to administration of ascorbic acid in critically
ill patients, and various studies have been performed, even if there
are some discrepancies regarding the administered doses. A recent
systematic review concluded that intravenous (IV) administration
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of vitamin C could reduce dependency on mechanical ventilation,
possibly through the amelioration of lung injury, without affecting
overall mortality [274].

To date, there is no consensus or proven efficacy of supplemen-
tation of ascorbic acid in COVID-19 patients but some researchers
advise a possible use of IV supplementation as addressed by an
expert panel document from the National Institiutes of Health that
a regimen of 1.5 g/kg body weight could be considered safe and
without major adverse events [275].

Vitamin A

Vitamin A (all-trans-retinol) deficiency is rarely seen in high-
income countries. Nonetheless, the prevalence of vitamin A defi-
ciency is ~30% among children <5 y of age worldwide and nearly
50% in young children in South Asia and sub-Saharan Africa [276].

Vitamin A acts through its metabolites and is involved in vari-
ous processes from embryogenesis to adulthood, such as normal
organogenesis, immune competence, tissue differentiation, and
the visual cycle [277]. Deficiency of vitamin A can be caused by
several conditions, including severe infections, malabsorption,
liver disease, iron and zinc status, fat intake, xenobiotics, protein-
energy malnutrition, and alcohol consumption [278]. Xerophthal-
mia is the hallmark of vitamin A deficiency and is the most com-
mon cause of preventable blindness in children, as well as other
clinical manifestations including impairment of the humoral and
cell-mediated immune system. In particular, mucosal integrity and
Th2-mediated responses are compromised [277,279,280]. In cases
of infections, during the acute phase response a decrease in serum
retinol is observed, in a proportional manner to the severity of
infection. This decrease is transitory and serum retinol typically
returns to preinfection levels within a few days [280].

Regarding respiratory tract, vitamin A plays a central role dur-
ing lung development and alveolar function in the prenatal period,
although in the postnatal stage, it is essential for lung growth,
alveolarization, and plays a main role in resistance and elasticity,
and repair and remodeling of lung. Consequently, vitamin A defi-
ciency can be associated with a low FVC, an indicator of airway
obstruction and a strong predictor of mortality in asymptomatic
adults without chronic respiratory conditions. It also can cause
squamous metaplasia of the respiratory epithelium, with a
decrease in mucus production, which increases the risk for inva-
sive pathogens and severity of lower RTIs [278].

To our knowledge, there are no available data regarding vita-
min A status in patients with COVID-19, thus its involvement in
possible worsening of lung damage, virulence, and progression
could only be hypothesized. Because administration reduced mor-
bidity and mortality in different infectious diseases, such as mea-
sles, measles�related pneumonia, HIV, and malaria, Zhang et al.
suggest that vitamin A supplementation could be considered
adjunctive to other medications for SARS-CoV-2 infection [239].

Vitamin E

Vitamin E is a family of related compounds, including a-, b-, g-,
and d-tocopherol. Its most important role is as an antioxidant, as it
limits the detrimental effects of peroxyl radicals on cellular surfa-
ces, in particular for polyunsaturated fatty acids (PUFAs) [281].
Vitamin E also acts as a mediator in cell and humoral immune
responses in animals and humans, increasing lymphocyte prolifer-
ation, immunoglobulin levels, antibody responses, NK cell activity,
and IL-2 production. It has been described reduction of prostaglan-
din E2 production by the inhibition of cyclooxygenase activity
mediated through decreasing nitric oxide production, modulation
of Th1/Th2 balance, higher NK activity, and lower IL-12 production
and migration [282]. Some researchers have reported a protective
effect of vitamin E supplementation on upper respiratory infec-
tions in elderly patients [283], and there could be an increased vir-
ulence in cases of deficiency, as seen in animal models [284].
However, although to our knowledge no data concerning the asso-
ciation between vitamin E status and COVID-19 have been
reported, it cannot be ruled out as a potential factor in diminishing
the inflammatory state in these patients.

Conclusions

Although the nutritional status in patients with COVID-19 has
been poorly investigated, preliminary reported evidence as nutri-
tional derangements are associated with a worse course and out-
come of the disease, as likely with a greater susceptibility to
infection. Obesity plays a major role because it represents a prog-
nostic risk factor and relates to worse outcomes independently
from age, sex, and other comorbidities. Malnutrition and deficiency
of trace elements likely act as factors strongly affecting the COVID-
19 course, most likely because of their high prevalence estimated
among the world population. Several pathogenetic mechanisms
may explain the complex interaction between nutritional status
and SARS-CoV-2 infection and disease, including systemic inflam-
mation, immune system impairment, sarcopenia, and pre-existing
associated diseases, such as respiratory, cardiovascular, and meta-
bolic complications and comorbidities in obesity.

Because an etiologic and definitively effective treatment for
COVID-19 has not yet been performed, the factors associated with
the risk for disease severity should be recognized and managed,
including nutritional status derangements, as the significant prog-
nostic relevance of an early and adequate nutritional intervention,
even in critical patients, has been widely demonstrated. Indeed,
international guidelines recommend a thorough nutritional assess-
ment at the first evaluation and then periodically during the course
of the disease, in order to early perform a reasonable nutritional
intervention as an integral part within the treatment and manage-
ment of COVID-19 patients. Further studies will necessary to fully
investigate these aspects, thus improving and tailoring the therapy
in an individualized and precision medicine view. In this sense, the
COVID-19 era may represent an opportunity to highlight the rele-
vance of nutritional status as a critical point of host response to
infections, therapies, and vaccines.
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