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Abstract

The scientific community and decision-makers are increasingly concerned about transparency and 

reproducibility of epidemiologic studies using longitudinal healthcare databases. We explored the 

extent to which published pharmacoepidemiologic studies using commercially available databases 

could be reproduced by other investigators. We identified a nonsystematic sample of 38 descriptive 

or comparative safety/effectiveness cohort studies. Seven studies were excluded from 

reproduction, five because of violation of fundamental design principles, and two because of 

grossly inadequate reporting. In the remaining studies, >1,000 patient characteristics and measures 

of association were reproduced with a high degree of accuracy (median differences between 

original and reproduction <2% and <0.1). An essential component of transparent and reproducible 

research with healthcare databases is more complete reporting of study implementation. Once 

reproducibility is achieved, the conversation can be elevated to assess whether suboptimal design 

choices led to avoidable bias and whether findings are replicable in other data sources.

Concerns about reproducibility of biomedical science have moved funding agencies, 

professional research societies, and journal editors to strengthen the transparency of the 
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research process in preclinical, clinical, and population health sciences.1–3 Transparency and 

reproducibility are intertwined concepts. There is general agreement that transparency can 

be achieved through a series of such measures as: (1) registration of study protocols before 

the initiation of research to increase the chance that all study results will become publicly 

available; (2) reporting guidelines to encourage complete description of all details necessary 

to reproduce study findings; and (3) making the actual research data available to other 

researchers to reproduce findings or make additional discoveries.4–7 Funding agencies, such 

as the National Institutes of Health and the Patient Centered Outcomes Research Institute, 

have made public statements about the necessity to make research data available for 

reproduction by independent research groups.8,9

Randomized clinical trials are at the forefront of activities to increase transparency and 

reproducibility. Regulatory agencies and journal editors require the registration of clinical 

trial protocols,10 and observational studies are increasingly encouraged to follow suit.4,11,12 

Randomized clinical trials have extensive guidelines and standards with regard to design, 

conduct, and reporting.13,14 After a consortium of pharmaceutical companies in the United 

States volunteered to make trial data publically available,15 the European Medicines Agency 

enacted a policy to make clinical reports submitted in support of a marketing authorization 

application or postauthorization submission publicly available.16

After these developments, the epidemiology research community produced several 

guidelines for observational studies that encourage completeness of study design reporting. 

These include elements such as clear description of setting, eligibility criteria, variable 

definition, measurement, bias, and study size.17,18 Although these guidelines facilitate 

transparency, Hernán and Wilcox19 explain that direct replication with new data collection, 

as done in preclinical experiments, is rarely possible for large prospective epidemiologic 

studies because of their long duration and high costs, making it even more urgent to 

encourage sharing of original research data.

However, observational studies that make secondary use of existing longitudinal healthcare 

databases can be reproduced relatively quickly at moderate costs when the source data (e.g., 

administrative healthcare claims or electronic medical records data) are made available 

through licensing and data use agreements. There are many examples in the literature of 

similar studies conducted by different investigators, sometimes using the same source data. 

In some cases, findings are reproduced, but, in others, findings can also be quite different.
20–23 Recognizing the importance of reproducibility, several organizations have created 

common data models, converting raw source data to fit standardized data table structures to 

facilitate use of validated code and software tools for rapid, high integrity safety analyses in 

different data sources.7,24,25

In database studies, reproducibility is the ability of independent investigators to obtain the 

same findings when applying the same design and operational choices in the same data 

source. This is in contrast to replicability, which would be the ability to obtain similar 

findings with application of the same design and choices in different data sources. For 

healthcare database studies, a near exact reproduction of findings within the same data 

source should be consistently achievable.
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Even with access to relevant healthcare databases and validated software tools to extract and 

analyze the desired cohorts, the ability to reproduce studies remains dependent on clear 

reporting of key design, operational, and analytic decisions. Currently, there are no 

published large-scale examinations of the reproducibility of healthcare database research 

that quantify this issue and highlight specific areas in which the situation could be improved. 

Our objective was to attempt reproduction of a select sample of healthcare database studies 

from the peer-reviewed literature. We look specifically to assess the transparency of 

information shared with the public and how closely findings could be reproduced.

RESULTS

In total, we reproduced 40 substudies from 31 publications within the Aetion platform and 

directly tested 6 protocols using Aetion and PROMPT-CM or de novo SAS programming. 

Of the reproduced studies, 13 included comparative assessments as well as descriptive 

characteristics for the studied population; all six of the direct test protocols were 

comparative studies. The directly tested study protocols, a list of studies considered for 

reproduction, and detailed comparisons of original and reproduced studies are available in 

the Supplementary Appendix S1.

Difficulty in reproduction of original studies was noted for several reasons: (1) code lists 

defining outcomes, covariates, and inclusion/exclusion criteria in original studies were not 

reported (11 of 31; 35.4%); (2) noncode list-based covariate definition unclear, for example 

calculation of dose or grouping of insurance types (4 of 31; 12.9%); and (3) timing of cohort 

entry, inclusion criteria, covariate assessment period, or enrollment period unclear (3 of 31; 

9.6%).

The difference in prevalence of binary characteristics for all reproduced descriptive or 

comparative studies and protocols are shown in Figure 1. There were 1419 differences 

(across 983 variables) in the reproduced studies and directly tested protocols. The median 

absolute difference was 1.7% for reproduced studies and 0.2% for direct testing of protocols. 

The interquartile ranges for reproduced studies were wider than for directly tested protocols, 

with outliers where the prevalence differences were >25.0%. For example, in study “RS05,” 

six outliers with prevalence differences >25.0% reflect differences in prevalence between the 

original study and reproduction within categories of a comorbidity score. This large 

difference may be partially attributable to lack of clarity regarding which version of the 

comorbidity score was implemented for the study and the absence of code lists or algorithms 

in the publication.

In Figure 2, circle plots A and B show the magnitude of differences in prevalence of binary 

characteristics between original and reproduced studies or direct tests within each exposure 

group of comparative studies. The innermost circle has a width of ±10 percentage-point 

difference in estimated prevalence for exposure and referent groups. This boundary was 

selected as it is commonly used as a rule of thumb to measure the presence of meaningful 

confounding. The innermost circle captures 425 of 452 (94.0%) of the measured binary 

characteristics overall, and 68 of 68 (100%) of the binary characteristics from direct testing 

of protocols (circle plot A). A small proportion, 4.0% of binary characteristics from 
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reproduced studies, had differences in prevalence >±10% and 2.9% had differences >±25% 

for both exposure and referent groups. However, the difference in prevalence between 

original and reproduced studies was of similar magnitude and direction for exposure and 

referent groups (e.g., differences were nondifferential with respect to exposure). Circle plot 

B shows the magnitude of standardized differences for continuous characteristics between 

original and reproduced studies or direct tests within each exposure group of comparative 

studies. The innermost circle represents a standardized difference of ±0.25. It contains 90% 

of all continuous characteristics and 100% of continuous characteristics from direct testing. 

Among the reproduced studies, 4.0% of continuous characteristics had standardized 

differences >0.5.

In Figure 3, the y-axis represents the unadjusted or adjusted measure of association from the 

original study or PROMPT-CM/de novo programmer implementation of a direct test 

protocol and the x-axis represents the adjusted measure of association from reproduction in 

Aetion. When the confidence interval crosses the diagonal, the point estimate of the original 

study is within the confidence limit of the reproduced study and vice versa. The diagonal 

line angle represents perfect calibration of reproduced adjusted measures of association. We 

observe that unadjusted and adjusted measures of association are generally well calibrated, 

with reproduction estimates of similar magnitude as the original estimates (chi-square 

goodness of fit within tertiles of log hazard ratio; unadjusted: P = 0.46, adjusted: P = 0.82). 

However, there were a few reproduced studies in which the confidence limits of original and 

reproduced studies did not overlap. The median difference for unadjusted measures of 

association for reproduced studies was 0.11 and 0.06, respectively, for directly tested 

protocols. For adjusted measures of association, the median differences were 0.14 and 0.04, 

respectively, for reproduced studies and directly tested protocols.

DISCUSSION

Decision-makers perceive randomized trials as high quality not only because baseline 

randomization will generally balance confounders, but also because of the stringent 

requirements for design, implementation, and reporting (either in a published manuscript or 

via regulatory registration). There is an assumption of a certain standard of conduct when 

discussing results of an randomized clinical trial that is not yet present for observational 

database studies, preclinical studies, or other sciences.26 The issue of nonreproducibility of 

preclinical studies was recently highlighted in a number of science and nature articles, in 

which separate attempts by pharmaceutical, medical, or other research groups were able to 

reproduce only 11–45% of published preclinical studies, often after significant efforts by 

reproducing investigators to communicate with the initial research teams regarding protocol 

details and procedures.1,2 Similarly, a recent JAMA article found that 35% of published re-

analyses of clinical trials had different conclusions than the original findings regarding 

which patients should be treated.27

Our study is the first large scale exploration of the reproducibility of peer-reviewed 

publications of database research ever conducted. With access to large healthcare databases 

that serve as data sources for many published studies, software tools designed to facilitate 

reproducibility, and an experienced team of pharmacoepidemiologists, we were able to 
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independently reproduce 31 studies and 6 protocols in approximately 4 months (0.6 person-

years of effort).

There is currently no gold standard defining reproducibility of a database study. In our view, 

reproducibility of database science is not a binary characteristic, it is a continuum. Studies 

with detailed and transparent reporting are easier to reproduce than studies that provide little 

detail on implementation. The absence of comprehensive public reporting on key operational 

definitions was the most common inhibitor of reproduction of studies by our team of 

independent investigators. In spite of this, among 31 peer reviewed publications, we were 

able to reproduce population descriptive measures and measures of association with a high 

degree of accuracy. The median difference in adjusted measure of effect between the original 

and reproduction for the studies we examined was reassuringly small and unlikely to have 

implications for clinical care.

The high accuracy in this reproduction effort can be attributed in part to the efforts of the 

reproduction team, a group of pharmacoepidemiologists with decades of experience, to 

make informed guesses regarding variable definitions or other key decisions when these 

were not clearly specified in the original articles. Intuiting the intent of the original studies 

was easier in situations in which possible variations for defining a condition were smaller. 

For example, although there are limited International Classification of Diseases ninth 

revision – Clinical Modification codes for a condition, such as hypertension, there could be 

dozens or hundreds of Read codes28 representing potentially relevant clinical concepts in 

data from the United Kingdom.

Although the median differences between original studies and reproductions were small, the 

range for a subset of characteristics within some reproduced studies could be quite large 

compared to the range observed with independent implementation of clearly outlined 

protocols. The need to make informed guesses contributed to the wide range in differences 

observed in reproduction, highlighting the need for greater transparency in reporting of 

database studies to enable complete reproduction of science.

Our study has several limitations. First, our identification of studies for reproduction was 

nonsystematic and should not be construed as representative of all database science. Future 

work to quantify reproducibility and transparency of database studies should incorporate a 

well-defined selection strategy with input from multiple stakeholders. Second, differences in 

how the Aetion platform and PROMPT-CM or de novo programmers interacted with source 

data (e.g., Aetion’s data connector vs. conversion of raw data to Sentinel common data 

model tables) could have contributed to differences in direct testing of protocols, however, 

our virtually identical results in direct testing alleviate that concern. Third, shifts in 

guidelines and practice for prescribing or indications for small nonoverlap in years for some 

of the original studies to the years of data accessible by the reproduction team could have 

contributed to differences. For more exact reproduction, accessing the exact same years of 

data for all studies would remove the confounding factor of time. A fourth limitation was 

that some studies were originally conducted by researchers employed by the data-holding 

organization and therefore had access to more detailed cost data than general researchers 

outside the organization. Finally, we did not attempt to reproduce studies that were not 
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cohort studies, required supplemental data linkage, or had obvious flaws in design. This does 

not mean that the excluded studies were not reproducible.

There are currently a number of guidance documents on the conduct6,29–33 and reporting of 

database studies.18 However, the lack of incentive for researchers to expend additional effort 

on open practices remains. We have demonstrated that factors contributing to lack of 

transparency and reproducibility of peerreviewed publications of database studies can be 

outlined and quantified. Quantifying the issues paves the way for measuring improvement 

with implementation of measures designed to raise the bar and incentivize changes in 

research culture and practice. For example, the Transparency and Openness Committee 

recently proposed eight universal standards to address the role that journals can play to 

promote transparency and openness in the sciences.3 The Transparency and Openness 

Committee standards provide concrete suggestions that journals can adopt to provide 

positive reinforcement and incentives for open reporting, such as encouraging recognition of 

researcher’s effort in creating appendices, data, code, and preregistered study protocols 

through citation of these materials as intellectual contributions as well as issuing badges or 

letters of recognition from journals for meeting openness standards.3 With the availability of 

electronic appendices in almost any scientific journal, word limits are no longer a barrier to 

detailed reporting. When study protocols detailing these decisions are not publically 

available via preregistration, then this information should be included as online appendices 

or made available as a citable resource for any peer-reviewed healthcare database study. 

Currently, there are no standards for contents of e-appendices, however, as the field moves 

toward greater transparency of reporting, there may be a need for guidelines regarding the 

contents of appendices detailing operational decisions.

Full reproducibility in healthcare database studies occurs when independent investigators are 

able to apply the same design and analytic choices to the same source data, and are able to 

obtain the same analytic population and estimated measures of association (or at least a near 

exact reproduction). The scientific community as a whole would benefit and the credibility 

of healthcare database studies would increase if greater effort were directed toward ensuring 

that public reporting for database studies contained sufficient detail to allow full 

reproduction. Without reproduction there can be no replication and without replication there 

can be little trust in our research output.

Our reproduction effort demonstrates that when reporting of details of study implementation 

are sufficiently transparent, healthcare database studies can be reproduced with great 

accuracy; however, there is great variability in the degree to which recently published 

healthcare database studies are reproducible. We contrasted the degree of variability in 

population characteristics and estimates for measure of association from independent 

implementation of clearly specified protocols with the variability observed using all 

publically available information to reproduce published database studies. In our 

investigation, the greatest driver of variability between the original and the reproduction was 

the lack of detailed code lists describing how original researchers defined their target 

population and its characteristics. Reporting details of the algorithms used to define the 

analytic population and its characteristics is a necessary component for transparency and 

reproducibility of healthcare database science that has been recognized in recent guidelines 
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for database studies, such as REporting of studies Conducted using Observational Routinely-

collected Data (RECORD).34 However, other inhibitors of reproduction included the lack of 

explicit reporting of key design choices. For example, the exact washout period for new 

users, the covariate assessment period, or the follow-up period. Which of these periods 

included the index date? Was a stockpiling algorithm used to account for dispensations with 

overlapping day’s supply? Was there allowance for an induction period before ascertaining 

outcomes? What were the reasons for censoring? Are inpatient outcomes defined as 

occurring on the date of admission, discharge, or somewhere in between? If an as-treated 

analysis was reported, how was adding or switching to other medications handled? These are 

all operational questions that researchers must make decisions about in programming code 

when making use of the longitudinal data streams available in large healthcare databases. 

However, these decisions frequently remain behind the scenes, as public reporting often 

lacks the degree of detail necessary for reproduction.

These key operational questions are the “gears and levers” that investigators adjust when 

using semiautomated software solutions, such as the Aetion platform or the US Food and 

Drug Administration (FDA) PROMPT tools to customize and implement database studies. 

Although key operational decisions cannot and should not be automated, newly available 

software tools can implement researcher’s choices with validated code and further facilitate 

transparency and reproducibility of studies via creation of reports with detailed description 

of those decisions for online appendices.

Our large scale reproduction demonstrates the need for a joint effort by researchers, journal 

editors, regulators, healthcare technology assessment organizations, and other stakeholders 

to continue working on creative solutions for facilitating transparency and reproducibility of 

database studies. Once complete documentation and full reproducibility of specific analyses 

has been achieved, the next step for database science in healthcare is replication and 

elevation of the conversation to seek understanding of whether different causal contrasts led 

to different results or whether suboptimal design and analytic choices led to avoidable bias.

METHODS

Identification of studies

We used a nonsystematic snowball strategy to identify 38 healthcare database studies 

published in the peer-reviewed literature between 2008 and 2014 and available through 

PubMed (Figure 4). Suitable candidate publications for this evaluation of reproducibility 

included cohort studies conducted in databases licensed by Brigham and Women’s Hospital 

or Boehringer Ingelheim, the two groups that conducted this study. These databases included 

the MarketScan claims database from Truven (United States), the United Healthcare claims 

data from the Clinformatics DataMart by Optum (United States), and the Clinical Practice 

Research Datalink primary care electronic medical record databases (England).

We only attempted to reproduce cohort studies that used a study design compatible with the 

FDA Prospective Routine Observational Monitoring Program Tool – Cohort Matching 

(PROMPT-CM)35 for active drug safety surveillance. This tool allows semiautomated cohort 

identification, creation of baseline covariates, and follow-up for outcomes within the 
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Sentinel Program’s distributed data network.36 We did not attempt to reproduce studies that 

required access to supplemental linked data or chart reviews. Small nonoverlap in years of 

data available to the original investigators and the reproduction team was allowed if there 

were no new drugs in class entering or exiting the market and no factors likely to influence 

the descriptive characteristics of the studied population in the nonoverlapping time were 

identified. We excluded five articles implemented in a way that violated fundamental design 

principles, such as inclusion of immortal time or inconsistent temporality (e.g., defining 

exposure after start of follow-up). Another two articles were excluded from reproduction 

because only adjusted results were reported without sufficient detail on key operational 

parameters necessary to implement the study. In the 31 articles remaining, we allowed 

reproduction of multiple substudies per article (e.g., a study among prevalent users and a 

study among incident users or studies among patients <65 or ≥65 years of age).

For the purpose of this study, we considered all publicly available information for each 

study, including the article itself, appendices, additional online materials published on the 

journal website, or materials explicitly referenced in the article and available online.

Reproduction of studies

Historically, reproducing a study conducted in a healthcare database involved independent 

double programming. This resource-heavy and time-consuming strategy would not have 

been viable for the dozens of studies that we planned to replicate. Therefore, we used the 

Aetion Evidence Platform (Aetion, New York, NY); specifically the Aetion Safety, Aetion 

Effectiveness, and Aetion Population Description applications. Common to these 

applications is a cohort selector with a semantic interface and a library of stored definitions 

for exposures, outcomes, and confounder variables based on user specifications. 

Methodological details concerning cohort identification, including a Consolidated Standards 

of Reporting Trials patient flow diagram, and statistical analyses are provided via an 

automated reporting tool.

Identification of the relevant analytic population and all statistical analyses used in 

reproduction applied the methods, as described in the original publications. When the 

description of study implementation was insufficiently detailed, the reproduction team made 

educated guesses about the intent of the original investigators and adapted code lists/

algorithms from other articles studying similar conditions.

Direct reproduction of protocols: Aetion analytics vs. accepted standard approaches

In addition to replicating studies in the peer-reviewed literature, we developed six protocols 

and directly examined reproducibility by executing the protocols via the Aetion platform and 

either the Sentinel Program’s extensively validated, open source PROMPT-CM35 tool or 

independent programming with SAS software (SAS Institute, Cary, NC). We chose the 

PROMPT-CM modules as a current standard because these preprogrammed SAS macros 

have been comprehensively tested in a controlled data environment and are currently in use 

by the FDA for active drug safety surveillance.35,37 Detailed information about the modular 

programs, including program code, can be found at www.mini-sentinel.org. The PROMPT-

CM tool is designed to run on source data that has been converted to table structures 
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specified in the Sentinel common data model. We directly tested four protocols with Aetion 

and PROMPT-CM using United Healthcare as source data; these protocols were based on 

previously published analyses.38–40 The remaining two protocols tested comparability of 

study findings using Aetion and de novo SAS programming with Medicare Claims Synthetic 

Public Use Files41 as source data and were based on examples in the user manual.42

We conducted direct testing of study protocols in addition to reproduction of published 

database studies for two reasons: (1) to provide a baseline of how closely one can expect 

results to align when investigating teams independently implement the same protocol with 

different software tools (either Aetion PROMPT-CM or de novo SAS programming); (2) to 

verify that results from Aetion are not specific to the platform (a proprietary software tool). 

We chose to use the Aetion platform to carry out the large scale reproduction of healthcare 

database studies because it required less person-time to implement per study than either 

PROMPT-CM or de novo SAS programming.

Metrics to quantify reproducibility

In order to quantify the reproducibility of studies, we focused on two categories: (1) 

reproduction of the patient cohort and (2) reproduction of the statistical analysis. For the 

former, we compared population descriptive measures between our reproduction and the 

original published study; for the latter, we compared measures of association. Others have 

used metrics, such as a kappa statistic, in which original and reproduced studies are defined 

as concordant if they are on the same side of null, as well as a binary metric in which 

concordant results are defined as having a ratio of reproduction to original estimates 

between 0.5 and 1.5.43 However, these metrics may be overly generous in classifying 

reproductions as concordant with original studies. Requiring only that estimates are on the 

same side of null or have magnitude within 50% leaves considerable room for meaningful 

differences in both the operational aspect of how the estimate was obtained and how such an 

estimate might be interpreted clinically. We chose to use metrics that focus on absolute 

differences and calibration in order to provide a more nuanced picture of the degree to which 

studies are reproducible.

Population descriptive measures

We computed the difference in prevalence of binary characteristics as well as standardized 

differences for continuous characteristics reported in the original and reproduced studies 

(Table 1). Differences closer to 0.0 reflect a closer match between original and reproduced 

studies. We also calculated differences and standardized differences for population 

characteristics in direct testing of protocols using PROMPT-CM35 or de novo programming 

with SAS (SAS Institute, version 9.3) and Aetion. For comparative studies (as opposed to 

descriptive studies), these differences were computed within exposure group.

Measures of association

We computed absolute differences for crude and adjusted relative measures of association 

(e.g., hazard ratio) for comparative studies. We produced calibration plots for original and 

reproduced measures of occurrence and association and report a Chi-Square goodness of fit 

statistic.
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Refer to Web version on PubMed Central for supplementary material.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

The scientific community and decision-makers are increasingly concerned about 

transparency and reproducibility of biomedical science.

WHAT QUESTION DID THIS STUDY ADDRESS?

Recent high profile efforts to reproduce preclinical and clinical studies have drawn 

attention to this issue; however, there has not yet been a large-scale effort to evaluate 

reproducibility of healthcare database studies.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

With sufficient transparency in reporting, healthcare database studies can be reproduced 

with great accuracy; however, there is great variability in the degree to which recently 

published healthcare database studies are reproducible. The reproduction team made 

informed guesses in >50% of reproduced studies, highlighting the need for greater 

transparency in reporting.

HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND 
THERAPEUTICS

Detailed reporting of key design choices and codes used to characterize the analytic 

population are a necessary component for reproducibility of healthcare database studies. 

Barriers to reproducibility can be outlined and quantified, paving the way for measuring 

improvement with implementation of measures designed to incentivize changes in 

research culture and practice.
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Figure 1. 
Differences in binary characteristics for all reproduced (N = 40) and protocols (N = 6). Dir = 

directly tested protocol; Rep = reproduced study.
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Figure 2. 
Differences in population characteristics by exposure group for comparative studies. (a) All 

binary characteristics in reproduced studies (N = 13) or direct test protocols (N = 6). (b) All 

continuous characteristics in reproduced studies (N = 13) or direct test protocols (N = 6). A. 

All binary characteristics in reproduced studies (N = 13) or direct test protocols (N = 6). B. 

All continuous characteristics in reproduced studies (N = 13) or direct test protocols (N = 6). 

○ Reproduced comparative study. • Direct test protocol.
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Figure 3. 
Measures of association in reproduced comparative studies (N = 13) and protocols (N = 6). 

(a) Unadjusted. (b) Adjusted. A. All binary characteristics in reproduced studies (N = 13) or 

direct test protocols (N = 6). B. All continuous characteristics in reproduced studies (N = 13) 

or direct test protocols (N = 6). ○ Reproduced comparative study. • Direct test protocol.
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Figure 4. 
Consolidated Standards of Reporting Trials diagram.
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