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a b s t r a c t 

Surveillance data obtained by public health agencies for COVID-19 are likely inaccurate due to under- 

counting and misdiagnosing. Using a Bayesian approach, we sought to reduce bias in the estimates of 

prevalence of COVID-19 in Philadelphia, PA at the ZIP code level. After evaluating various modeling ap- 

proaches in a simulation study, we estimated true prevalence by ZIP code with and without conditioning 

on an area deprivation index (ADI). As of June 10, 2020, in Philadelphia, the observed citywide period 

prevalence was 1.5%. After accounting for bias in the surveillance data, the median posterior citywide 

true prevalence was 2.3% when accounting for ADI and 2.1% when not. Overall the median posterior 

surveillance sensitivity and specificity from the models were similar, about 60% and more than 99%, re- 

spectively. Surveillance of COVID-19 in Philadelphia tends to understate discrepancies in burden for the 

more affected areas, potentially misinforming mitigation priorities. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

While responding to public health emergencies, exemplified 

y the COVID-19 outbreak 2019-20, public health authorities rely 

pon accurate surveillance for cases. As with most communicable 

iseases, it is expected that COVID-19 disease would be hetero- 

eneously distributed in the population. Factors such as poverty, 

rowding, and access to resources may affect the transmission net- 

orks through which infections spread ( Patel et al., 2020 ). As such, 

ublic health surveillance programs need to tailor their approaches 

o identifying cases based upon this heterogeneity in a manner 

hat balances the need to capture all cases while ensuring the 

ighest-risk groups have access to testing. Yet given strapped bud- 

ets and insufficient resources, it is understandable that a surveil- 

ance program may ultimately not be tailored based on community 

ttributes alone. This is compounded by imperfections in diagnos- 
Abbreviations: ADI, Area Deprivation Index; COVID-19, Coronavirus Disease 

019; PCR, Polymerase Chain Reaction; SARS-CoV-2, Severe Acute Respiratory Syn- 

rome Coronavirus 2. 
∗ Corresponding author. 

E-mail address: ng338@drexel.edu (N.D. Goldstein). 
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ic tests ( Yap et al., 2020 ). The consequence of this is imperfect

ase detection: i.e. misclassification of infected as uninfected and 

ice versa. 

Broadly speaking, there are two processes that can drive this. 

irst, agencies that conduct public health surveillance (in the 

.S., state and local health departments) may not be aware of 

rue COVID-19 cases in the population; in other words, subopti- 

al sensitivity in that these cases can be considered “false nega- 

ives” in terms of surveillance. These unreported cases may arise 

rom both symptomatic and asymptomatic individuals. For those 

ho are symptomatic, limited testing capacity of the health de- 

artment – especially early in any epidemic – gives priority to 

ome occupations and demographics ( CDC, 2020a ). Even for in- 

ividuals tested (with a positive result) reporting delays may 

ean that at any given time surveillance data are incomplete. 

or those who are asymptomatic – by one estimate around 1 

n 3 persons ( Oran and Topol, 2020 ) – they likely would not 

eek health care, and thus not be tested becoming “false neg- 

tives” in surveillance. Relatedly, should sufficient testing capac- 

ty be reached and a priority approach is no longer needed, so- 

ial, structural, and spatial disparities may mean that some indi- 

iduals are unable – or unwilling – to engage with the health- 

https://doi.org/10.1016/j.sste.2021.100401
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sste
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sste.2021.100401&domain=pdf
mailto:ng338@drexel.edu
https://doi.org/10.1016/j.sste.2021.100401
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are system and consequently are also unknown to the health de- 

artment ( Patel et al., 2020 ). The second process that can drive 

mperfect case detection relates to the characteristics of the diag- 

ostic test itself: the polymerase chain reaction-based assay in use 

n the U.S. ( CDC, 2020b ). Among individuals who obtain a diag- 

ostic test for SARS-CoV-2, the virus that causes COVID-19 disease, 

mperfect assay sensitivity and specificity may lead to both false 

egative and false positive test results ( Yap et al., 2020 ). We have

vidence that this is indeed the case in Philadelphia ( Burstyn et al., 

020 ). Thus, even in a perfect system that captures all in- 

ected for testing, there may still be misclassification of COVID-19 

iagnoses. 

We sought to understand the potential for bias in COVID-19 

patial surveillance data for Philadelphia, PA, while considering im- 

erfect case detection. The expected result is that the health de- 

artment will be better equipped to direct resources to the areas 

t greatest risk. In order to do this, we conducted a Bayesian un- 

ertainty analysis to estimate the plausible under- or over-counting 

ccurring in the community using only data that are known to 

he health department, a marker of community deprivation, pre- 

xisting knowledge about the prevalence of COVID-19, and accu- 

acy of laboratory testing. From the outset, we do not claim that 

e are able to fully recover the truth – existing data in situ can- 

ot reveal this – and in order to understand the magnitude of bias 

e must proceed by sacrificing identifiability of statistical models 

 Lash et al., 2009 ). Ours is rather an attempt to move beyond the

ommon practice of ignoring such misclassification, as noted by 

thers ( Shaw et al., 2018 ). 

. Methods 

.1. Data sources 

Deidentified, aggregated datasets representing COVID-19 cases 

n Philadelphia, Pennsylvania by ZIP code were retrieved June 10, 

020 from OpenDataPhilly ( City of Philadelphia, 2020a ). These data 

aptured SARS-CoV-2 testing throughout the city, both positive and 

egative test results, and are inclusive of all tests to this date. 

ny tests conducted by a private or public laboratory were re- 

uired to be reported to the City of Philadelphia per their regu- 

ations ( City of Philadelphia, 2020b ). Therefore, these data repre- 

ented surveillance counts of total number of tests, positive and 

egative, by ZIP code up to the date retrieved. There are 47 popu- 

ated ZIP codes in Philadelphia; at least one test was conducted in 

ach. As such, no ZIP codes were excluded from analysis. To ensure 

orrect linkage with other aggregated data (i.e., from the U.S. Cen- 

us, see below) we used a cross-walk from ZIP codes to ZIP Code 

abulation Areas ( UDS Mapper, 2020 ); for simplicity, we will con- 

inue to refer to these geographic units as “ZIP codes”. 

The total population size for each ZIP code was obtained from 

he 2018 American Community Survey 5-year estimates, the most 

ecent available. Area deprivation index (ADI) has previously been 

mplicated as a correlate of disease testing and reported cases of 

OVID-19 in several cities across the U.S. ( Bilal et al., 2020 ). Gold-

tein et al. (manuscript under review) demonstrate that catchment 

n a healthcare system is function of ADI, further cementing the 

mportance of using a marker of community deprivation in engage- 

ent with the health care system. ADI for each ZIP code was oper- 

tionalized as a Z-score composite of 2018 American Community 

urvey 5-year estimates of education, employment, income and 

overty, and household composition where a higher score indicates 

reater deprivation ( Messer et al., 2006 ). Conceptually, we believe 

hat ADI captures the hypothesized factors that may lead to differ- 

ntial testing for COVID-19 by ZIP code during the pandemic, and 

hus being captured in surveillance data, as well as heterogeneity 

n prevalence of the infection. 
2 
.2. Estimating prevalence and spatial distribution of COVID-19 

For each ZIP code i , aggregated counts of positive test results 

 Y i 
∗) obtained from the OpenDataPhilly divided by the under- 

ying population size ( N i ) served as the observed estimates of 

OVID-19 period prevalence throughout Philadelphia. The rela- 

ionship between the observed estimates and true prevalence ( r i ) 

f COVID-19 is a function of the sensitivity ( SN i ) and specificity 

 SP ) of the surveillance process. Rather than attempting to decon- 

truct the surveillance process into its constituent parts, which 

s both complex and nebulous, we assume an overall measure 

f program accuracy. We allowed sensitivity to vary by ZIP code 

s we hypothesized the implementation of the testing program 

iffered throughout the city resulting in select individuals not be- 

ng tested. Conversely, we utilized a single measure of specificity 

itywide, as once individuals are in fact tested, we do not expect 

IP code differences in false diagnoses. Further details on their 

perationalization are provided in the Statistical Analysis section. 

While ZIP code serves as our geographic unit of analysis, it is 

mportant to note that communicable diseases do not follow arbi- 

rary mail delivery boundaries (unless, for example, a river served 

s a boundary and it was impossible to cross it). As such, a pri- 

ri we anticipated spatial autocorrelation in the data, and utilized 

oran’s I (empirical Bayes rate modification) and spatial correl- 

grams to test this hypothesis. Choropleth maps were created to 

epict the spatial patterning of COVID-19 throughout the city. Our 

ocus on ZIP codes as the unit of analysis is due to its utility to

ealth departments when publicly releasing data, such as maps of 

OVID-19 for a given jurisdiction: it is the smallest geographical 

dentifier allowed through the U.S. Health Insurance Portability and 

ccountability Act ( Code of Federal Regulations, 20 0 0 ). 

.3. Statistical analysis 

We employed a Bayesian modeling approach to determine the 

osterior distribution of true prevalence of COVID-19 by ZIP code 

n Philadelphia, accounting for potential bias in the surveillance 

rocess. We modeled several quantities simultaneously to consider 

he disease surveillance process Eqs. 1 –(4) . We assumed that the 

bserved cases Y ∗
i 

in each ZIP code were the sum of the observed 

nfected if truly infected Y t 
i 

and the observed infected if not truly 

nfected Y 
f 

i 
as 

 

∗
i = Y t i + Y f 

i 
(1) 

The number of true positive SARS-CoV-2 infected cases in ZIP 

ode i based on ZIP code surveillance was specified as 

 

t 
i ∼ Binom ( S N i , Y i ) (2) 

here SN i is the varying sensitivity of the surveillance process and 

 i is the unknown number of true positive SARS-CoV-2 infected 

ases in the i th ZIP code. The number of false positive SARS-CoV-2 

ests in ZIP code i based on ZIP code surveillance was specified as 

 

f 
i 

∼ Binom ( 1 − SP, N i − Y i ) (3) 

here SP is the specificity of the surveillance process and popu- 

ation size is N i . Finally, the number of true positive SARS-CoV-2 

nfected cases in ZIP code i based on true prevalence r i and popu- 

ation size N i was specified as 

 i ∼ Binom ( r i , N i ) (4) 

The quantity Y i is unknown and must be predicted from the 

odel. This specification was adapted from the work of Burstyn, 

oldstein, and Gustafson Burstyn et al., 2020 ). Two models ( Eqs. 5 

nd (6) were explored to model the true prevalence r of COVID-19 
i 



N.D. Goldstein, D.C. Wheeler, P. Gustafson et al. Spatial and Spatio-temporal Epidemiology 36 (2021) 100401 

i

l

r

 

w

a

σ
#

o

d

p

r

r

d

p

i

o

j

o

3  

p

w

Z  

W

f

p  

c

1

f

d

m

s

b

s

o

f

d

a

9

w

p

w

a  

w

S

i

t

o

p  

t

i

d

2

fl

w

g

F

M

Fig. 1. Distribution of estimates of SARS-CoV-2 testing and prevalence by ZIP code 

in Philadelphia, PA, reported by the Philadelphia Department of Public Health as of 

June 10, 2020. 
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n a given ZIP code i allowing for various parameter specifications: 

ogit ( r i ) = η0 + η1 ∗AD I i + u i (model #1) (5) 

 i ∼ Uni f ( a = 0 , b = 0 . 1 ) ( model #2 ) (6) 

Model #1 ( Eq. 5 ) specifies that the logit of true prevalence

as conditional on the background rate η0 , the effect η1 of ADI, 

nd unstructured random effects u i , where u i ~ Norm( μ = 0, 
2 = 1/ τ u ) and τ u is the precision of the random effect. Model 

2 ( Eq. 6 ) eschews conditioning on ADI and places a prior directly 

n true prevalence. 

The models are completed with specification of all the prior 

istributions for the parameters. For Eq. 5 , the logit of true 

revalence of COVID-19 when ADI is equal to the citywide mean 

eceived a prior of η0 ~ Norm( μ = −3.5, σ 2 = 0.25 ), which cor- 

esponds to a prior 3% prevalence with an approximate standard 

eviation of 2%. It has been difficult to elucidate an informative 

rior on prevalence for Philadelphia due to a variety of factors, 

ncluding non-random sampling, biased tests, and heterogeneous 

utbreaks. Thus, our best estimate was informed by a neighboring 

urisdiction in Delaware that conducted sewage-based PCR testing 

f the most populous and urban county in the state and estimated 

% prevalence ( Wilson, 2020 ). The effect of ADI on the logit of true

revalence received a prior of η1 ~ Norm( μ = 0.04, σ 2 = 0.0016), 

hich was informed by effect estimates obtained from regressing 

IP code aggregated cases of COVID-19 by ADI ( Bilal et al., 2020 ).

e used a weakly informative prior τ u ~ Gamma( κ = 1, θ = 0.1) 

or the precision of the exchangeable random effects. For Eq. 6 , the 

rior r i ~ Unif( a = 0, b = 0.1) was set directly on true prevalence,

orresponding to a minimum and maximum prevalence of 0% and 

0%, respectively. These bounds represent our reasonable extremes 

or the true prevalence of COVID-19 in any ZIP code in Philadelphia 

uring our study period based on a seroprevalence study across 

ultiple cities ( Havers et al., 2020 ). The varying probability of ob- 

erved cases of COVID-19 if truly infected received an informative 

eta distribution, SN i ~ Beta( α = 14.022, β = 9.681). This corre- 

ponded to a median sensitivity of 59% with 5- and 95-percentiles 

f 42% and 75%, respectively. The probability of testing negative 

or COVID-19 if not truly infected received an informative beta 

istribution, SP ~ Beta( α = 100, β = 3.02). This corresponded to 

 median specificity of 95% with 5- and 95-percentiles of 94% and 

9%, respectively. Since the accuracy of the surveillance program 

as unknown in the study area, we assumed that surveillance 

erformed no better than the accuracy of the diagnostic test alone 

hich has an estimated sensitivity between the 70 and 90% range 

nd near perfect specificity ( Yap et al., 2020 ), and allowed a fairly

ide range of plausible values, allowing the data to inform where 

N i and SP are likely distributed. Full model details may be found 

n Appendix 1 in the Supplemental Materials. 

Heuristically, our models relate the observed prevalence to 

he true prevalence, r i , through the sensitivity and specificity 

f the surveillance process, where the observed prevalence 

 i = SN i r i + (1- SP )(1- r i ). In other words, the observed prevalence is

he sum of the observed infected if infected (true positives; defined 

n Eq. 2 ) and the observed infected if not infected (false positives; 

efined in Eq. 3 ), divided by number of residents in each ZIP code. 

.3.1. Simulation study 

Given the non-identifiability of our models and potential in- 

uence of prior specifications, we conducted a simulation study 

here the true sensitivity and specificity of the surveillance pro- 

ram, as well as the true prevalence in each ZIP code were known. 

ull details may be found in Appendix 2 in the Supplemental 

aterials. Briefly, we considered two choices of priors for η –
0 

3 
orm( μ = −3.5, σ 2 = 0.5) and Norm( μ = 0, σ 2 = 2.71) for mod- 

ls conditioned on ADI (i.e., Eq. 5 ) – and two choices of priors for 

N i – Beta( α = 14.022, β = 9.681) and Unif( a = 0.25, b = 0.75)

or both models (i.e., Eqs. 5 and 6 ) – and tested the model per-

ormance across 9 combinations of true mean prevalence (1%, 3%, 

nd 5%) and surveillance program mean sensitivity (30%, 50%, 70%). 

e found that our analysis required at least some informative 

riors on η0 , which are justified in context of COVID-19. Conse- 

uently, some may view our effort s as an uncertainty or bias anal- 

sis rather than true adjustment for misclassification, although we 

ntuit, based on previous experience ( Burstyn et al., 2020 ), that 

ome learning about true prevalence and misclassification param- 

ters was possible. 

For both our main analysis and simulation study, Bayesian mod- 

ling occurred in Just Another Gibbs Sampler via the r2jags pack- 

ge. Five chains were run for 50,0 0 0 iterations, discarding the first 

,0 0 0 samples for burn-in, and trimming to every 10th iteration. 

iagnostics included kernel density visualizations of the posterior 

istributions and traceplots. A parameter was considered to have 

onverged if its Gelman-Rubin statistic was less than 1.2. Poste- 

ior estimates are provided as the median with accompanying 95% 

redible intervals (CrI). The posterior distribution of Y i enabled a 

alculation of citywide true prevalence r = 

∑ 

Y i / 
∑ 

N i . All com- 

utational codes are available to download from https://doi.org/10. 

281/zenodo.4116290 . 

. Results 

.1. Naïve analysis 

As of June 10, 2020, there were 111,497 documented tests in 

hiladelphia, of which 23,941 (21%) were classified by the labora- 

ory as positive for SARS-CoV-2. With a total population more than 

.5 million, this translates to a testing rate of 71 tests per 1,0 0 0

ndividuals and an observed prevalence of 1.5%, assuming a negli- 

ible number of repeat tests per individual. Testing and observed 

revalence varied by ZIP code, with a range of 45–177 tests per 

0 0 0 individuals and the observed prevalence of 0% to 3.1% ( Fig. 1 ).

bserved positive tests per capita exhibited weak spatial depen- 

ency across the city (Moran’s I = 0.10, p = 0.08); the total num- 

er of tests per capita did not appear to be spatially autocorrelated 

Moran’s I = 0.01, p = 0.3). The choropleth map in Fig. 2 demon-

trates heterogeneity in observed prevalence of COVID-19 across 

he city, with highest burden in 19126 (3.1%) and 19136 (2.7%), and 

he lowest burden in 19106 (0.5%), 19127 (0.5%), and 19113 (0%). 

https://doi.org/10.5281/zenodo.4116290
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Fig. 2. Choropleth map of the estimates of COVID-19 prevalence by ZIP code in 

Philadelphia, PA, reported by the Philadelphia Department of Public Health as of 

June 10, 2020. 
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.2. Simulation study 

The full results of the simulation study may be found in Ap- 

endix 2 of the Supplemental Material. Modeling prevalence con- 

itioned on ADI under the prior specifications for η0 ~ Norm( μ = - 

.5, σ 2 = 0.5) and a Beta prior on SN i resulted in posterior distri- 

utions all centered around 3% prevalence, while modeling preva- 

ence conditioned on ADI under the prior specifications for η0 ~

orm( μ = 0, σ 2 = 2.71) resulted in posterior distributions span- 

ing unrealistic values of hypothesized prevalence. Placing the 

rior directly on prevalence, r i ~ Unif( a = 0, b = 0.1), resulted in

osterior distributions that were markedly narrower than the prior 

nd that largely captured the true prevalence in their credible in- 

ervals. Results were robust to the alternative specification SN i ~

nif( a = 0.25, b = 0.75). The two approaches that used informative 

riors on prevalence, that is, η0 = Norm( μ = -3.5, σ 2 = 0.25 ) and 

 i ~ Unif(a = 0, b = 0.1), appeared to have comparable performance 

hen true prevalence was 3% or higher and true sensitivity was at 

east 50% on average. Based on the results of the simulations, we 

sed the informative priors η0 ~ Norm( μ = -3.5, σ 2 = 0.5) for the 

odel conditioned on ADI and SN i ~ Beta( α = 14.022, β = 9.681) 

or both models. 

.3. Bayesian adjusted analysis 

All models demonstrated good mixing of chains (Supplemen- 

al Material, Appendices 3 and 4) and all models successfully con- 
Fig. 3. Posterior distributions of estimated (boxplots) and observed (as

4 
erged with parameter-specific Gelman-Rubin statistics uniformly 

 1.2. Fig. 3 depicts the ZIP code level posterior estimates for the 

wo models alongside the observed prevalence estimates obtained 

rom surveillance data. Qualitatively, the models tended to yield 

imilar posterior distributions when the observed prevalence was 

round 2%. In ZIP codes with lower observed prevalence, the model 

onditioned on ADI (model #1; Eq. 5 ) tended to have higher pos- 

erior values compared to the model with the prior placed directly 

n true prevalence (model #2; Eq. 6 ), whereas in ZIP codes with 

reater prevalence, model #1 tended to have lower posterior val- 

es compared to model #2. In other words, the model conditioned 

n ADI had posterior distributions of prevalence values that were 

ore similar to the prior. 

.3.1. Model #1 conditioned on ADI 

After accounting for bias in the surveillance data, the poste- 

ior citywide true prevalence was 2.3% (95% CrI: 2.1%, 2.6%). As 

ith the naïve estimates, we observed heterogeneity in the pos- 

erior prevalence proportions throughout the city, with a low of 

.9% (95% CrI: 0.5%, 1.7%) in ZIP code 19106 to a high of 4.2% (95%

rI: 3.4%, 5.4%) in ZIP code 19126. Overall posterior surveillance 

ensitivity and specificity were 58.9% (95% CrI: 42.1%, 75.9%) and 

9.8% (95% CrI: 99.7%, 100%), respectively. Sensitivity varied across 

IP codes from a low of 45.0% (95% CrI: 27.6%, 65.7%) in ZIP code 

9106 to a high of 69.1% (95% CrI: 53.7%, 83.1%) in ZIP code 19126 

 Fig. 4 ). 

Posterior prevalence of COVID-19 demonstrated a heterogenous 

istribution throughout the city ( Fig. 5 a) and were similar in pat- 

erning to the observed prevalence estimates ( Fig. 2 ) albeit scaled 

p in magnitude. Certain ZIP codes appeared more likely to have 

ias than others ( Fig. 6 ), with ZIP code 19120 (observed prevalence 

f 1.6%, posterior prevalence of 2.4%) having the greatest antici- 

ated number of missed cases in the city at 541 (95% CrI: 161, 

,138). Posterior distributions for other parameters may be found 

n Appendices 3 and 4 in the Supplemental Material. 

.3.2. Model #2 not conditioned on ADI 

After accounting for bias in the surveillance data, the posterior 

itywide true prevalence was 2.1% (95% CrI: 1.8%, 2.6%), with a low 

f 0.3% (95% CrI: 0.01%, 0.9%) in ZIP code 19127 to a high of 4.9%

95% CrI: 3.5%, 7.6%) in ZIP code 19126. Overall posterior surveil- 

ance sensitivity and specificity were slightly lower than model #1: 

7.6% (95% CrI: 37.0%, 76.4%) and 99.6% (95% CrI: 99.4%, 99.8%), re- 

pectively. As compared to model #1, sensitivity was less hetero- 

eneous across ZIP codes ( Fig. 4 ). 

Posterior prevalence of COVID-19 were again heterogenous 

hroughout the city yet only slightly differed from the patterning 

epicted in model #1 ( Fig. 5 b). As with model #1, certain ZIP codes

ppeared more likely to have bias than others, although there 

as greater uncertainty in the posterior distributions in model #2 

 Fig. 6 ). 
terisks) prevalence of COVID-19 by ZIP code in Philadelphia, PA. 
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Fig. 4. Posterior distributions of COVID-19 surveillance sensitivity by ZIP code in Philadelphia, PA for model #1 conditioned on the area deprivation index (ADI) and model 

#2 not conditioned on ADI. See text for details. 

Fig. 5. Choropleth map of medians of posterior distributions of COVID-19 preva- 

lence by ZIP code in Philadelphia, PA for A) model #1 conditioned on the area de- 

privation index (ADI) and B) model #2 not conditioned on ADI. See text for details. 
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5 
. Discussion 

In this investigation we observed that 1) the prevalence of 

OVID-19 in the community is likely underestimated based on pos- 

erior sensitivity of surveillance, 2) this underestimation is het- 

rogenous by ZIP code in the city, 3) false diagnoses play a min- 

mal role in overall reported cases based on near perfect posterior 

pecificity. It is critical that public health have the best possible 

ata to plan and respond to public health crises as they unfold, 

ather than relying upon statistical adjustment, such as ours. But if 

mpirical estimates of accuracy of surveillance are not possible to 

btain (as is the case early in any epidemic) decisions that are en- 

hrined in policy must account for likely bias informed from anal- 

ses such as ours, rather than either pretending that surveillance 

ata are perfect, or making qualitative unarticulated judgements 

bout the extent of bias in the data (as is regrettably common- 

lace in epidemiology). Resources were limited during the early 

andemic including testing kits, healthcare personnel, and per- 

onal protective equipment ( CDC, 2020a , 2020c , 2020d ). Any de- 

iation between the surveillance of true cases of COVID-19 and re- 

orted cases can impact allocation of these precious resources in 

erms of when and where they are most needed. A key consider- 

tion of health departments is where known cases are occurring 

s they distribute resources depends upon this geospatial surveil- 

ance. For example, examining Fig. 2 , which depicted the preva- 

ence of COVID-19 cases based purely on known cases to the health 

epartment, one may reach different conclusions as to the magni- 

ude of the outbreak compared to Fig. 5 , which depicted the esti- 

ate of true prevalence. 

Accurate estimates for true prevalence of COVID-19 for a 

iven jurisdiction has been an area of great interest to the pub- 

ic health community but are still difficult to obtain: even our 

nalysis required an informative prior, which should be defen- 

ible. Fortunately, historical data that justify informative priors 

re beginning to emerge from ongoing multi-faceted surveillance 

fforts, such as studies of seroprevalence surveys. In a study of 

esidual blood specimens obtained from commercial laboratories 

cross ten geographic sites in the U.S., age- and sex-standardized 

eroprevalence of SARS-CoV-2-specific antibodies, which would 

ndicate current or past infection, were reported as high as 

.9% (95% confidence interval: 5.0, 8.9%) in the New York City 

etropolitan area to as low as 1.0% (95% confidence interval: 0.3, 

.4%) in the San Francisco Bay area ( Havers et al., 2020 ). The

hiladelphia metropolitan area had a seroprevalence of 3.2% (95% 

onfidence interval: 1.7, 5.2%) and is in line with our citywide 

osterior prevalence. The authors estimated that in Philadelphia 

here were 6.8 infections per 1 reported case. It is important 

o note that the specimens obtained from the laboratories did 

ot reflect a random sample of the population: these were in- 

ividuals who sought healthcare for specific reasons, which may 

ave biased the estimates reported by Havers et al. Testing the 
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Fig. 6. Bias in the surveillance data of COVID-19 by ZIP code in Philadelphia, PA for model #1 conditioned on the area deprivation index (ADI) and model #2 not conditioned 

on ADI. See text for details. Missed cases (number of people) is the difference between the posterior median expected count (number of people) and the surveillance observed 

count (number of people). 
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ewage for presence of the viral genetic material has been one 

nnovative solution to address some of these concerns 

 Peccia et al., 2020 ). One such application at the county level 

oted a prevalence near 3%: 15 times the number of cases 

aptured via surveillance at the time ( Wilson, 2020 ). 

Our analysis found one Philadelphia ZIP code in particular that 

as alarming: 19126. In consultation with the health department, 

e determined this particular ZIP code contained three nursing 

omes (personal communication, Philadelphia Department of Pub- 

ic Health). Congregant settings can serve as an ideal environment 

or respiratory disease transmission. In a study among residents 

f a large homeless shelter in Boston, 36% ( n = 147) had a pos-

tive polymerase chain reaction assay, suggesting active infection 

 Baggett et al., 2020 ). A large outbreak at a single location could

n fact drive the reported positive tests in surveillance data from 

 single ZIP code. Thus, we emphasize that methodological work 

uch as ours requires knowledge of the surveillance and demo- 

raphic processes to interpret the data. 

Further complicating case detection has been concerns with the 

iagnostic test that is employed by health departments in the U.S. 

mong those tested, imperfect accuracy of the laboratory assay can 

ake the difference between a false positive based on the clini- 

al findings that are attributable to another cause, or a false neg- 

tive based on lack of clinical findings consistent with COVID-19. 

s such, testing has crucial implications on surveillance so that 

e can formulate a more informed response to the pandemic. De- 

pite the rapid development and deployment of various laboratory 

esting platforms by multiple parties, including nucleic acid testing 

nd serological assays, limited data exist on the accuracy of these 

latforms ( Yap et al., 2020 ). A limited body of existing research has

uggested suboptimal sensitivity (in the range of 60-80% is likely 

ealistic); the consequence of which is a large number of false neg- 

tive test results. That is, individuals who may have SARS-CoV-2 

nfection, the virus that causes COVID-19 disease, are not always 

eing correctly diagnosed via the PCR test, and subsequently, not 

eported to public health authorities, thereby potentially spreading 

he infection to susceptible individuals. 

Additionally, and central to our research question, the avail- 

bility and distribution of diagnostic tests has not been equitable 

 Bilal et al., 2020 ). The Centers for Disease Control and Preven- 

ion advises a priority-based approach to testing for the SARS-CoV- 

 virus, the etiologic agent, based on age, occupation, and mor- 

idity ( CDC, 2020a ). Indeed, this has been adopted and adapted 

n Philadelphia through a 4-tier testing prioritization approach 

 Vital Strategies, 2020 ). Until sufficient tests are available and any- 

ne who seeks testing can be tested, disparities will persist. This 

ncludes asymptomatic persons who wish to be tested: by one es- 

imate, at least 30% of total cases (and as high as 45%) may be

symptomatic ( Oran and Topol, 2020 ). Thus, any analysis of histor- 

cal secondary data needs to take into account potential proxies of 
6 
esting prioritization, such as the area deprivation index we have 

sed. Indeed, from our perspective this motivates the application 

f model #1, which conditioned true prevalence on ADI, as a pre- 

erred model. 

There have been other efforts – both Bayesian and frequentist 

to quantify and adjust for misclassification of infectious diseases 

aptured through a surveillance process. Vaccine effectiveness 

tudies may be biased by not taking into account underreporting 

nd changing case definitions for pertussis, a reportable respira- 

ory disease commonly called whooping cough ( Goldstein et al., 

016 ). Specifically, they observed that sensitivity of surveillance 

aried from a low of 18% to a high of 90% depending upon 

ssumptions about the amount of underreporting of true cases 

n the city. This had the consequence of biasing estimates of 

accine effectiveness between 32 to 95%. In a study of bias in 

yme disease surveillance, Rutz et al. noted that misclassification 

f disease resulted in an underestimation of probable and con- 

rmed cases by 13% ( Rutz et al., 2019 ). Principle reasons for this 

isclassification were similar to our hypotheses about COVID-19 

urveillance: inaccurate diagnosis, complex surveillance resulting 

n missed cases, and incomplete reporting. A study by Bihrmann 

t al. examined misclassification of paratuberculosis in cattle, and 

hether this diagnostic error impacted spatial surveillance of the 

isease ( Bihrmann et al., 2016 ). Although they observed mean- 

ngful nondifferential misclassification of the disease (diagnostic 

est sensitivity ~50%), after adjusting in prevalence modeling, this 

id not impact the observed spatial patterning suggesting the 

isclassification was homogenous across geographies. 

We acknowledge the following limitations and strengths to this 

ork. First, our measures of surveillance sensitivity and specificity 

ay not be directly actionable. That is, we are unable to identify 

learly where in the process the greatest bias is introduced in the 

ata. For example, it may be that the diagnostic test has been suf- 

ciently refined to leave only a trivial number of false negative and 

ositive cases, and that the priority testing approach is solely re- 

ponsible for the missed cases. Unfortunately, we cannot make any 

onclusions about the individual steps in the surveillance process. 

econd, we make a strong assumption that our models were cor- 

ectly specified lest our results could be biased. Third and relat- 

dly, our models were dependent upon an informative prior for 

rue prevalence, yet our prior was based on non-Philadelphia data, 

ecause as far as we know, more directly applicable data were 

ot available. The simulations provided a level of re-assurance that 

ven with a miss-specified model or prior, reasonable approxima- 

ion of true prevalence was still possible. Nevertheless, an impor- 

ant feature of our Bayesian modeling approach is the flexibility to 

est these various scenarios once improved surveillance data and 

rior knowledge become available. Our approach is also readily 

daptable to other locales and time periods. By simply swapping 

n the reported surveillance data and estimates of true prevalence 
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nd the ADI effect, this analysis can be recreated for any jurisdic- 

ion, or updated for real-time analysis. 

In conclusion, biases in surveillance of COVID-19 in Philadel- 

hia tend to understate discrepancies in burden for the more 

ffected areas, potentially leading to bias in setting priorities. 

atient healthcare may be jeopardized if resources are incorrectly 

llocated as a result of this inaccuracy and subsequent failure 

o identify plausible worst-case scenario as is desirable for risk 

anagement. Our hope is that the improved maps in this study 

hat account for surveillance inaccuracies can aid the Philadelphia 

epartment of Public Health better direct resources to the areas 

t greatest risk. Beyond this jurisdiction, we have demonstrated a 

eneralizable method that can be used for other locales responding 

o epidemics and dealing with imperfect surveillance data. 
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