Table 1. Characteristics of studies in meta-analysis.
Authors | Region | Design | Size | NAFLD | No-NAFLD | Basic data | NOS Score | |||
---|---|---|---|---|---|---|---|---|---|---|
Years | ||||||||||
Right | Left | Right | Left | |||||||
Sang Tae Hwang, | Kangbuk | Cross-sectional | 2917 | 13.54% | 10.90% | 8.22% | 9.01% | Gender, age, BMI, waist, HBP, FPG, HDL, LDL, triglyceride, GGT, HOMA-IR, AST, ALT, DM, Hypertensionsm, Diabetes, smoking | 6 | |
2010 | Korea | |||||||||
Stadlmayr | Oberndorf | cohort | 1211 | 25.32% | 28.01% | 16.93% | 15.03% | age, BMI, Waist, HBP, TG, LDL, HDL, Triglycerides, Uricacid, Fastingglucose, Fastinginsulin, OGTT1, OGTT2, HOMA-IR, HbA1c, GGT, AST, ALT, Erythrocytesedimentationrate, CRP, Haemoglobin |
6 | |
2011 | Austria | |||||||||
Nadege T. Touzin | San Antonio | cohort | 233 | 26.60% | 22.34% | 25.90% | 28.06% | Gender, age, BMI, Ethnicity, HDL, LDL, triglyceride, GGT, HOMA-IR, AST, ALT, DM, Hypertensionsm, Diabetes, smoking, NAFLD | 6 | |
2011 | USA | |||||||||
Huafeng Shen | New York | Cross-sectional | 580 | 13.42% | 12.15% | 10.81% | 10.27% | Gender, age, BMI, Race, Tobacco use, Alcohol use, Diabetes, Hypertension, Dyslipidemia, Family history of colorectal cancer | 5 | |
2013 | USA | |||||||||
K.-W. Huang | Taipei | cohort | 1522 | 11.29% | 8.06% | 5.21% | 5.43% | gender、Age、Follow-up、BMI、Waist、Waist-to-height ratio、Fasting glucose、ALT、AST、Cholesterol、HDL、LDL、Triglyceride、Hypertension、Diabetes、Smoking、Metabolic syndrome | 7 | |
2013 | China | |||||||||
Vincent Wai-Sun Wong | HongKong | cohort | 380 | 23.62% | 18.59% | 8.84% | 13.81% | Age, years, Gender, Ever smoker, Colorectal cancer in first degree relatives, BMI, Waist, Fasting glucose, Total cholesterol, HDL, LDL, Triglycerides, ALT, AST, Diabetes, Hypertension, Hepatic triglyceride content, Steatosis grade, Lobular inflammation, Ballooning, Fibrosis stage | 7 | |
2014 | China | |||||||||
Qin-Fen Chen | WenZhou | Cross-sectional | 2409 | 11.25% | 20.42% | 11.53% | 17.85% | Gender, Age, Weight, Height, BMI, SBP, DBP, FPG, TG, TC, HDL-C, LDL-C, ALT, AST, NAFLD, MS, Smoking, Alcohol | 7 | |
2017 | China | |||||||||
Young Joo Yang | Chuncheon | cohort | 1023 | 10.66% | 10.88% | 12.54% | 10.48% | Age at diagnosis (years), BMI, SBP, DBP, Triglycerides, HDL, LDL, Fasting glucose, CEA, MetS | 7 | |
2017 | Korea | |||||||||
Xiao-Jun YU | ShangHai | Cross-sectional | 673 | 12.21% | 36.01% | 12.90% | 56.69% | Gender, age, BMI | 6 | |
2018 | China | |||||||||
John William Blackett | New York | Cross-sectional | 369 | 21.14% | 10.57% | 15.85% | 6.10% | Age, Gender, Surveillance, Metabolic syndrome comorbidities, Hyperlipidemia, Obesity, Diabetes | 8 | |
2019 | USA | |||||||||
Zhou-Feng Chen | WenZhou | Cross-sectional | 764 | 24.05% | 75.95% | 27.68% | 72.32% | Age, BMI, SBP, DBP, Triglycerides, HDL, LDL, Fasting glucose, CEA, Differentiation | 7 | |
2018 | China |