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Wequantify the causal impact of humanmobility restrictions, particularly the lockdownofWuhan on January 23,
2020, on the containment and delay of the spread of the Novel Coronavirus (2019-nCoV).We employ difference-
in-differences (DID) estimations to disentangle the lockdown effect on human mobility reductions from other
confounding effects including panic effect, virus effect, and the Spring Festival effect. The lockdown ofWuhan re-
duced inflows toWuhan by 76.98%, outflows fromWuhan by 56.31%, andwithin-Wuhanmovements by 55.91%.
We also estimate the dynamic effects of up to 22 lagged population inflows fromWuhan and other Hubei cities –
the epicenter of the 2019-nCoV outbreak – on the destination cities' new infection cases. We also provide evi-
dence that the enhanced social distancing policies in the 98 Chinese cities outside Hubei province were effective
in reducing the impact of the population inflows from the epicenter cities in Hubei province on the spread of
2019-nCoV in the destination cities. We find that in the counterfactual world in which Wuhan were not locked
down on January 23, 2020, the COVID-19 cases would be 105.27% higher in the 347 Chinese cities outside
Hubei province. Our findings are relevant in the global efforts in pandemic containment.
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1. Introduction

Human mobility contributes to the transmission of infectious dis-
eases that pose serious threats to global health. Indeed, many countries
restrict humanmobility flows as part of their response plans (Bajardi et
al., 2011;Wang and Taylor, 2016; Adda, 2016; Charu et al., 2017). How-
ever, restrictions on humanmobility are controversial not only because
of their negative economic impacts, but also because of the uncertainty
about their effectiveness in controlling the epidemic. Even if restricting
human movement could lead to improvements in disease control and
reductions in health risks, it is empirically challenging to quantify the
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impact of human mobility on the spread of infectious diseases, and to
understand the detailed spatial patterns of how the infectious disease
spreads. Both granular disease occurrence data and human mobility
data (Charu et al., 2017) are hard to obtain; moreover, it is difficult to
disentangle the impact of humanmobility from other potential contrib-
uting factors (Ferguson et al., 2006; Hollingsworth et al., 2006). We ex-
ploit the exogenous variations in humanmobility created by lockdowns
of Chinese cities, and utilize high-quality data sets to study the effective-
ness of an unprecedented cordon sanitaire of the epicenter of COVID-19,
and provide a comprehensive analysis on the role of humanmobility re-
strictions in the delaying and the halting of the spread of the COVID-19
pandemic.1

The fast-moving 2019-nCoV that infected 17.5 million people and
claimed 682,612 lives as of July 31, 2020 is deteriorating into one of
the worst global pandemics.2 The virus first appeared in Wuhan in
1 Throughout the paper, we use 2019-nCoV as the official name for the Novel Coronavi-
rus according to theWorld Health Organization, and use COVID-19 as the name of the dis-
ease caused by 2019-nCoV.

2 Source: https://www.who.int/emergencies/diseases/novel-

coronavirus-2019.
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early December of 2019, spread mainly through person-to-person con-
tact (Chan et al., 2020), and rapidly reachedmore than 183 countries as
of March 21, 2020.3

However, the nature of the virus and its transmission was not pub-
licly known initially. Even though the Chinese state media reported
the first known death caused by the Novel Coronavirus on January 11,
2020, it did not register much public attention. On January 14, 2020,
theWorld Health Organization (WHO) announced that Chinese author-
ities had seen “no clear evidence of human-to-human transmission of
the Novel Coronavirus.” As the Chinese New Year – which fell on Janu-
ary 25, 2020 – approached, Chinese citizens across the country were
still traveling and gathering for various festive and social activities. In
fact, on January 18, 2020, more than 10,000 Wuhan families gathered
for the annualWuhan Lunar New Year banquet.4 These announcements
and events suggest that no public panic was sparked yet as of that date.
On January 19, 2020, the Chinese National Health Commission con-
vened and sent a team of epidemiologists to Wuhan to investigate the
outbreak of the Novel Coronavirus. On January 20, 2020, Dr. Zhong
Nanshan, a renowned epidemiologistwhowas leading the investigative
team, for the first time publicly confirmed on national TV that the Novel
Coronavirus could spread from human to human. This confirmation
caused great panic among the public. The search frequencies in Baidu,
the major Chinese search engine, of COVID-19 related keywords such
as “Coronavirus”, “Wuhan”, “Bat”, “SARS”, and “symptom” (in Chinese)
immediately surged (see Fig. A6), and the number of people leaving
Wuhan spiked (see Section 3 and Fig. A2). On January 23, 2020, the Chi-
nese central government imposed a lockdown in Wuhan, and within a
day also on the other cities in Hubei province, in an effort to quarantine
the epicenter of the outbreak.

The lockdown of 11million people inWuhan represents by then the
largest quarantine in public health history, which offers us an opportu-
nity to rigorously examine the effects of the city lockdown and under-
stand the relationship between human mobility and virus
transmission. We should point out that the Wuhan lockdown, which
lasted 76 days, was extremely strict. All air, train and bus travels into
and out of Wuhan were suspended, and all the highway and local
road accesses were blocked except for emergency, medical and supply
personnel. Residents were not allowed to leave their residence, and
food supplies were ordered via phone apps and delivered to the door-
steps by community organizations. The strictness of the lockdownmea-
sures was unprecedented.

In this paper, we study four research questions. First, how does the
lockdownofWuhan affect populationmovement? Second, howdo pop-
ulation flows among Chinese cities, particularly outflows from Wuhan,
affect the virus infections in the destination cities? Third, are social dis-
tancing policies in the destination cities effective in reducing the
spread? Fourth, how many infections were prevented elsewhere in
China by the unprecedented Wuhan lockdown?We utilize datasets on
city-pair population migration and the within-city population move-
ments of each city at the daily level from Baidu Migration, and the
city-level daily number of infections from the Chinese Center forDisease
Control and Prevention (CCDC) during a sample period of January 1 to
February 29, 2020, covering 22 days before and 38 days after the city
lockdown on January 23, 2020, as well as the matched data from the
same lunar calendar period in 2019.

We first employ difference-in-differences (DID) estimation strate-
gies to disentangle the effect of Wuhan lockdown on human mobility
3 With a population of over 11million,Wuhan is the largest city inHubei, themost pop-
ulous city in Central China, and the seventh most populous city in China. The city is also a
major transportation hub, with dozens of railways, roads and expressways passing
through and connecting to other major cities, and home to 82 colleges and more than 1
million college students.

4 See Wei, Lingling, and Chao Deng. â€œChina's Coronavirus Response Is Questioned:
‘Everyone Was Blindly Optimistic’.â€ The Wall Street Journal, Dow Jones &; Company,
24 Jan. 2020, www.wsj.com/articles/china-contends-with-questions-over-response-to-
viral-outbreak-11579825832.
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reductions from other confounding effects including panic effect, virus
effect, and the Spring Festival effect. Our estimates show that the
Wuhan lockdown reduced inflow into Wuhan by 76.98%, outflows
from Wuhan by 56.31%, and within-Wuhan movements by 55.91%.
We find a clear inverted U-shape relationship between the lagged
days of the population inflows from Wuhan or other cities in Hubei
and the destination cities' new COVID-19 cases, with the largest impact
from the population inflows from the epicenter about 12 to 14 days ear-
lier.We provide evidence that imposing enhanced social distancing pol-
icies in 98 Chinese cities outside Hubei Province were effective in
reducing the impact of population inflows from the epicenter cities in
Hubei province on the spread of 2019-nCoV virus in the destination cit-
ies. Finally, we estimate that COVID-19 cases would be 105.27% higher
in the 347 Chinese cities outside Hubei province, in the counterfactual
world without the Wuhan lockdown.

Our study contributes to a fast-growing literature on 2019-nCoV in-
fection, mostly in the medical and public health fields (Huang et al.,
2020; Chan et al., 2020; Liu et al., 2020; WHO, 2003).5 Adda (2016)
uses a quasi-experimental variation to assess the effectiveness of public
health measures that are aimed at reducing interpersonal contacts, and
finds that the effectiveness of themeasures depends on disease charac-
teristics. Our results are also in line with the results of the latest model-
ing exercises (Chinazzi et al., 2020; Qiu et al., 2020; Chinazzi et al., 2020;
Li et al., 2020; Tian et al., 2020; Jia et al., 2020),whichmostly rely on cal-
ibrations of various virus-related parameters such as incubation period
and detection rates, and changes in travel flows. Lai et al. (2020) build a
travel network-based susceptible-exposed-infectious-removed (SEIR)
model to simulate the outbreak across cities in mainland China. López
and Rodó (2020) also use a modified stochastic SEIR model to explore
different post-confinement scenarios in many countries such as Spain,
Japan, New Zealand, and the U.S., and they find that the gradual de-con-
finement could be the best strategy to reduce the disease burden. Re-
cent literature also shows that non-pharmaceutical interventions
(NPIs) have a significant effect on reducing the virus reproduction
rates in the U.S., U.K, Italy, Spain, France, Australia, New Zealand, and
Singapore. The effectiveness of NPIs in reducing the estimated number
of infections varies substantially across countries, ranging from only
0.8% in the U.S. to 99.3% in Singapore (Flaxman et al., 2020; Milne and
Xie, 2020; Koo et al., 2020; Siedner et al., 2020).

To the best of our knowledge, this paper is the first to provide a
causal interpretation of the impact of city lockdown on humanmobility
and the spread of 2019-nCoV, and to clearly disentangle the lockdown
effects from other potential contributing factors such as panic and
virus effect, as well as the seasonal Spring Festival effect. Although our
study focuses exclusively on the impact of human mobility restrictions
on the spread of 2019-nCoV virus in China, our estimated results can
have general implications for other countries in their fight against the
Novel Coronavirus.

The remainder of the paper is structured as follows. In Section 2, we
describe the data sets and provide descriptive statistics. In Section 3, we
use various DID estimations to evaluate the lockdown effect on popula-
tion movements. In Section 4, we quantify the impact of lockdown on
the national spread of COVID-19. Section 5 concludes.
2. Data and descriptive statistics

2.1. Population migration data

We obtain inter-city population migration data from Baidu Migra-
tion, a travel map offered by the largest Chinese search engine, Baidu.
The data is based on real-time location records for every smartphone
5 This study is also related to disaster-inducedmigration,which has often occurred dur-
ing drought, flooding, earthquake and other destructive climatic phenomena (Munshi,
2003; Gray and Mueller, 2012; Lu et al., 2012).

http://www.wsj.com/articles/china-contends-with-questions-over-response-to-viral-outbreak-11579825832
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using the company's mapping app, and thus can precisely reflect the
population movements between cities.6 The Baidu Migration data set
covers 120,142 pairs of cities per day for 364Chinese cities between Jan-
uary 12 and March 12 in 2019, and between January 1 and February 29
in 2020. Note that, by the lunar calendar, the data covers the same pe-
riod of 24 days before and36days after the Spring Festivals, respectively
for the year 2019 and 2020. The daily inter-citymigration data consist of
2,977,899 city-pair observations each year. In addition, Baidu provides
the daily within-city mobility data for each city in the sample period,
which is a panel consisting of 21,840 city-day level observations each
year.

Specifically, the Baidu Migration data provides three migration in-
tensity indicators: the daily in-migration index (IMI) of a city, the daily
out-migration index (OMI) of a city, and the daily within-citymigration
index (WCMI).We convert the threemigration indices into the number
of populationmovements using the actual number of inter-city/within-
city population flows in Shanghai provided by the National Earth Sys-
tem Science Data Center (NESSDC). Appendix B provides the details of
how we convert the Baidu indices into the number of population
movements.

Appendix Table A1 presents the summary statistics of the popula-
tion flows at the city-pair-day level and city-day level. It shows drastic
declines in the average inflows, outflows, and within-city migration in
2020, compared to the same lunar period in 2019. The plummeting of
the migration statistics due to the Wuhan lockdown is also depicted in
Appendix Fig. A2.

2.2. Outbreak data

COVID-19 daily case counts are collected from China CDC, which pro-
vides daily updates on confirmed, dead, and recovered COVID-19 cases in
each city.7 Forty-one infectionswerefirst confirmed inWuhan on January
10.We plot the geographic distributions of sample cities and cases in Ap-
pendix Fig. A1. Panel B of Appendix Table A1presents the summary statis-
tics of COVID-19 data, and Appendix Fig. A3 plots the trends of daily
statistics of COVID-19 separately for the epicenter city of Wuhan, for
other cities in Hubei, and for cities outside of Hubei.8

We have many reasons for treating the officially reported COVID-19
cases in Wuhan and other cities of Hubei with caution, and differently
from the data of cities outside Hubei. As the epicenter of COVID-19,
the health care systems in Wuhan and other cities in Hubei were
overwhelmed by the sheer number of patients who needed laboratory
testing, especially in the early phases of the virus outbreak. As such,
the over-extended medical system in Wuhan and other cities in Hubei
might have caused delays in testing the patients who contracted
COVID-19; patients who contracted COVID-19 might have been self-re-
covered or died, before being officially tested; and some who were in-
fected might have been asymptomatic. Also, government officials in
the epicenter cities might have incentives to downplay the severity of
the outbreak, at least initially. These considerations impact how we
use the outbreak data in Section 4.

3. The impact of Wuhan lockdown on population movements

To suppress the spread of 2019-nCoV, the central government of
China imposed an unprecedented lockdown in Wuhan starting from
6 It is important to emphasize here that themobility data is about themovement of peo-
ple from one city to another based on geo-location services of the smartphones; as such a
person flowing out of city A to city B is not necessarily a resident of city A, but he/she must
have been to city A before moving to city B.

7 Source: http://2019nCoV.chinacdc.cn/2019-nCoV/.
8 The spike of confirmed cases observed on February 12 in Hubei Province is, for the

most part, the result of a change in diagnosis classification for which 13,332 clinically
(rather than laboratory) confirmed cases were all reported as new cases on February 12,
2020, even though theymight have been clinically diagnosed in the precedingweeks. Also
on February 13, 2020, a new Communist Party Secretary of Hubei started in his position.
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10 am of January 23, 2020, and in all but one other Hubei cities a day
later. As of February 29, 2020, 115 cities in 25 provinces issued different
levels of lockdown policies. Table A2 in the Appendix provides detailed
information about the various forms of population mobility control in
different cities.

3.1. Empirical challenges

There are several confounding factors in our attempt to causally
quantify the impact of lockdown on humanmobility, and on the spread
of infectious viruses. First, the virus outbreak happens right before the
Spring Festival of the Chinese Lunar New Year (which fell on January
25 in 2020), which causes the largest annual human migration every
year.9 Second, the virus itself, even in the absence of a mandatory lock-
down, may lead to curtailed human movement as people attempt to
avoid the exposure to the virus. We refer to this deterrence effect as
the virus effect. Third, for Wuhan and other nearby cities in Hubei,
there is a possible panic effect, in reaction to the virus.10 The panic effect
can lead to an increase in the population outflow from the epicenter of
the virus outbreak, and a decrease of the population inflow to the epi-
center, particularly Wuhan. The panic effect is likely to peak when the
government officially confirmed on January 20, 2020 that the Novel Co-
ronavirus can transmit from person-to-person.

3.2. Effects of various factors on inter-city population mobility

We first examine the impact of city lockdown on inter-city popula-
tion mobility, including inflow and outflow, between a city pair (i, j).
To disentangle the contributions of these confounding factors on
human mobility, we exploit many unique sources of variations in the
data, and employ several DID estimation strategies by comparing differ-
ent treatment and control groups. The DID specification can be de-
scribed as follows:

Ln Flowi; j;t
� � ¼ α þ β1 � Treat � Before1;t þ β2 � Treat � Before2;t

þβ3 � Treat � Aftert þ μ i; j þ θt þ εi; j;t
ð1Þ

where i, j, and t respectively index the destination city, origination city,
and date; the dependent variable, Ln(Flowi, j, t), is the logarithm of the
population flows from city j to city i at date t. The definition of Treat
varies by specific DIDdesigns, andwewill be explicit about its definition
below. The city-pair fixed effect μi, j is included to absorb the city-spe-
cific and the city-pair specific heterogeneities that may contaminate
the estimation of our interested coefficient β3. We also control for the
date-fixed effect θt to eliminate the time-specific impact, including the
Spring Festival travel effect. The standard errors are clustered at the
daily level.

In Eq. (1), we include two pre-lockdown period indicators: Before1, t
is a dummy that takes value 1 for the period from January 11 to January
19, 2020 (4 to 11 days before theWuhan lockdown), which can be used
to examine the parallel pre-trend assumption in the DID analysis; Be-
fore2, t is a dummy that takes value 1 for the period from January 20 to
January 22, 2020, three days before the unprecedented Wuhan lock-
down, but after the official announcement that the virus can spread
from person to person. Before2, t allows us to capture the panic effect. Fi-
nally,Aftert is a dummy that takes value 1 for the sample period after the
Wuhan lockdown, between January 23 and February 29, 2020. The
omitted benchmark period is from January 1 to January 10, 2020.
9 The migration across China, which officially begins from about twoweeks before, and
ends about three weeks after, the Lunar New Year is often referred to as Chunyun (mean-
ing Springmovement). In 2019, approximately 3 billion tripsweremade during Chunyun,
see https://www.cnn.com/travel/article/lunar-new-year-travel-rush-

2019/index.html.
10 Keane and Neal (2020) find that both virus transmission and government policies can
significantly contribute to consumers' panic purchases.

http://2019nCoV.chinacdc.cn/2019-nCoV/
https://www.cnn.com/travel/article/lunar-new-year-travel-rush-2019/index.html
https://www.cnn.com/travel/article/lunar-new-year-travel-rush-2019/index.html
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3.3. Effects of various factors on within-city population mobility

We also estimate the effect of lockdown on the within-city popula-
tion movement utilizing the city-level data and a variety of DID specifi-
cations:

Ln WithinCityFlowi;t

� � ¼ α þ β1 � Treat � Before1;t þ β2 � Treat � Before2;t
þβ3 � Treat � Aftert þ μ i þ θt þ εi;t

ð2Þ

where i and t index the city and date. Ln(WithinCityFlowi, t) is the loga-
rithmof thewithin-city populationmovement for city i at date t. Similar
to Eq. (1), Treatwill be defined according to theDIDdesign.Before1, t, Be-
fore2, t and Aftert are defined in the same way as in Eq. (1). We include
the city fixed effects μi and date fixed effects θt. The standard errors
are clustered at the daily level.

3.4. Estimation results

Table 1 reports the results from three sets of regressions specified ac-
cording to Eq. (1) for inter-city inflows (Panel A) and outflows (Panel
B), and according to Eq. (2) forwithin-citymovement (Panel C).We im-
plement two models that differ in the estimation sample, and the defi-
nition of the control group.
Table 1
The effects of Wuhan lockdown on population movement.

Notes: This table reports the results of estimating Eqs. (1) and (2). The control and treat-
ment groups for Models 1–2 are described in the text. Fixed effects of city-pair and daily
are included in all columns in Panels A and B, andfixed effects of city anddaily are included
in all columns in Panel C. standard errors are clustered at the daily level. ***Significant at
the 1% level. **Significant at the 5% level. *Significant at the 10% level.

4

3.4.1. Model 1: Wuhan 2020 vs. Wuhan 2019
In Model 1, we compare the population movements of Wuhan in

2020 to itself in the samematched lunar calendar period in 2019, during
whichWuhan is free of virus outbreak and lockdown. Thus, the estima-
tion sample in Model 1 is the daily inflows into and outflows out of
Wuhan, as well as the daily within-city movements in Wuhan for
years 2019 and 2020.

Under Model 1, Treat takes value 1 if the destination city i (respec-
tively, the origination city j) is Wuhan and year is 2020 in Panel A (re-
spectively, Panel B). Panel C examines the within-city mobility, Treat
takes value 1 if the year is 2020. The control group is Wuhan 2019.
We interpret the coefficient estimate of Treat ∗ Before2, t as measuring
the panic effect of Wuhan 2020 relative toWuhan 2019; and the coeffi-
cient estimate of Treat ∗ Aftert as measuring both the lockdown and the
virus effects. The coefficient estimate of Treat ∗ Before1, t examines
whether the parallel trend assumption for DID is satisfied. The possibly
time-varying Spring Festival effects and the virus effects are both
absorbed in the day fixed effects.

The estimated coefficients on Treat ∗ Aftert remain negative, and eco-
nomically and statistically significant in all panels. The estimates sug-
gest that the lockdown of Wuhan, together with the deterrence effect
of the virus (the virus effect), on average reduces the inflow population
into, outflowpopulation from, andwithin-citymovements inWuhan by
91.94% (=1 − exp (−2.518)), 72.61% (=1 − exp (−1.295)), and
84.45% (=1 − exp (−1.861)), respectively, relative to the same lunar
calendar days in 2019. We also find that the coefficient on Treat ∗ Be-
fore2, t is significantly positive in Panel B and significantly negative in
Panel C, suggesting that the official confirmation of person-to-person
spread of COVID-19 creates a panic effect, causing an increase of outflow
fromWuhan of 106.06% (= exp (0.723)− 1), and a decrease of within-
city movements inWuhan of 24.04% (=1− exp (−0.275)), during the
three days after the confirmation of the person-to-person transmission
but before the city lockdown. However, we do not observe a statistically
significant panic effect for the population inflow into Wuhan, suggest-
ing that people in other cities were not yet sufficiently concerned
about the virus outbreak in Wuhan and did not avoid traveling to
Wuhan, even after the official confirmation of the person-to-person
transmission. Finally, the coefficient estimates for Treat ∗ Before1, t are
all statistically insignificant, suggesting that the parallel pre-trend as-
sumption is plausible.

3.4.2. Model 2: Wuhan 2020 vs. seven other lockdown cities 2020
In Model 1, the coefficient estimates of Treat ∗ Aftert provide an esti-

mate of the sum of the lockdown and the virus effects. In order to isolate
the lockdown effect from the virus deterrence effect, we considerModel
2, where the estimation sample consists of data of Wuhan and seven
other cities that went into partial lockdown on February 2 and February
4, 2020, 10 to 12 days after the lockdown of Wuhan.11 As we show in
Table A3 in the Appendix, these seven cities are more comparable to
Wuhan than other unlocked cities in terms of the epidemic situation
and other economic indicators, and thus provide a more reasonable
control group to partial out the virus effect. In particular, it is much
more plausible than using cities that were never locked down as control
cities to assume that the virus deterrence effect on human mobility in
the seven cities is similar to that in Wuhan.

The estimation sample forModel 2 consists of data fromWuhan and
the seven cities for the period between January 1 and February 2, 2020.
Note that during this period, none of the seven control cities were
locked down yet, though they soon would be. The definitions for Treat
variables are as follows. In Panel A, Treat takes value 1 if the destination
city i is Wuhan; in Panel B, Treat takes value 1 if the origination city j is
Wuhan; in Panel C, Treat takes value 1 if city i is Wuhan. The control
group consists of the seven cities.
11 These seven cities are summarized in Appendix Table A2.
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We find that the Wuhan lockdown significantly reduces the inflow
into, outflow from, and within-city movements in Wuhan by 76.98%
(=1 − exp (−1.469)), 56.31% (=1 − exp (−0.828)), and 55.91% (=
1 − exp (−0.819)), respectively. We interpret these as the pure lock-
down effect on population mobility related to Wuhan.

3.4.3. Summary
Based on our estimation of Models 1 and 2, Table 2 summarizes our

estimates of the panic effect, the virus effect, and the lockdown effect on
inflows into, outflows from, and within-city population movements in
Wuhan.

In Table 2, the lockdown effects are directly calculated from the cor-
responding coefficient estimates of Treat ∗ After fromModel 2 discussed
above; the panic effects are from the coefficient estimates of Treat ∗ Be-
fore2 in Model 1. For the virus effect, we recognize that the coefficient
estimates of Treat ∗ After in Model 1 incorporate both the lockdown
and the virus effects. Thus, we calculate the virus effect on inflows into
Wuhan to be exp(−2.518 − (−1.469)) − 1 = − 64.97%, on the out-
flows from Wuhan to be exp(−1.295 − (−0.828)) − 1 = − 37.31%,
and on the within-city flow in Wuhan to be exp(−1.861 − (−0.819))
− 1 = − 64.73%.

Because our models assume that the different effects enter
exponentially in explaining the flows - recall the natural log
specifications in Eqs. (1) and (2) - when we would like to calculate
the impact of two or more effects on the population flows, we
should not simply add the individual effects. For example, the
joint impact of the panic and virus effects on outflows out of
Wuhan is (1 + 106.06%) ∗ (1 − 37.31%) − 1 = 29.18%, instead of
the simple sum of 106.06 % + (−37.31%) = 68.75%.

4. Quantify the impact of lockdownon thenational spread of COVID-19

4.1. Inter-city flows and the 2019-nCoV transmission

Wenow examine the impact of humanmobility on the transmission
of 2019-nCoV. Considering that almost all the new COVID-19 cases out-
side Wuhan were confirmed after the Wuhan lockdown, while almost
all inter-city population flows occurred prior to the Wuhan lockdown
(see Appendix Figs. A2 and A3), we investigate the imported infections
by looking specifically at the impact of population inflows from cities in
the epicenter, namely,Wuhan and other cities in Hubei province, on the
new cases in the destination cities outside Hubei.

Recognizing that 2019-nCoV has a long incubation period, we esti-
mate a dynamic distributed lag regression model taking into account
that inflows from Wuhan with different lags may have differential im-
pacts on the current new cases in the destination cities. Most of the
medical literature states that the 2019-nCoV virus has amedian incuba-
tion period of five days, and some can have an incubation period of 14
days or more (see, e.g., Lauer et al. (2020)). Luckily, our data allows us
to incorporate the possibility that contact with an infected person
from Wuhan or other cities in Hubei can result in confirmed infections
in the destination city for up to 22 days.

The analysis focuses on the daily new confirmed cases in the post-
Wuhan lockdownperiod from January 23 to February 29, 2020, for cities
Table 2
Summarizing the panic effect, virus effect and lockdown effect on inter-city and within-
city population movements of Wuhan.

Effect Infows Outflows Within-city

Panic effect −11.49% 106.06%⁎⁎⁎ −24.04%⁎⁎⁎

Virus effect −64.97%⁎⁎⁎ −37.31%⁎⁎⁎ −64.73%⁎⁎⁎

Lockdown effect −76.98%⁎⁎⁎ −56.31%⁎⁎⁎ −55.91%⁎⁎⁎

Notes: These effects are calculated based on the estimates reported in Columns (1) and (2)
of Table 1.
⁎⁎⁎ Significant at the 1% level.
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i that are outside Hubei province. Specifically, we run the following
regression12:

Ln 1þ NewCasei;t
� � ¼ α þ

X22
κ¼1

β1κ � Ln Inflowi;WH;t−κ � IWH;t−κ
� �

þ
X22
κ¼1

β2κ � Ln
X

j≠i; j≠WH; j∈HB

Inflowi; j;t−κ �
X

j≠i; j≠WH; j∈HB

I j;t−κ

0
@

1
A

þμ i þ θt þ εit ; ð3Þ

where i indexes the cities outside Hubei, and t ∈ {23,…, 60} indicates
the date.13 κ ∈ {1,…, 22} indicates the time lapsed from the inflows
from Wuhan or other Hubei cities until the current date t. Ln(1 +
NewCasei, t) is the logarithm of the number of new confirmed cases
in city i at date t. Inflowi, WH, t−κ and ∑j≠i, j≠WH, j∈HBInflowi, j, t−κ are
the inflows fromWuhan, and the inflows from the 16 other cities in Hu-
bei to city i, respectively, κ days prior to the focal date t. IWH, t−κ and
∑j≠i, j≠WH, j∈HBIj, t−κ respectively represent the active infected cases in
Wuhan and other cities in Hubei, κ days prior to the focal date t.14

Therefore, Ln(Inflowi, WH, t−κ ⋅ IWH, t−κ) measures the impact of the in-
fected fraction of the inflows fromWuhan κ days earlier on the new in-
fections in city i at date t. We control for destination city fixed effects μi
and date fixed effects θt.

Remark 1. The role of asymptomatic infected individuals in the trans-
mission of 2019-nCOV virus is now well understood (Rothe et al.,
2020). Our data, unfortunately, does not contain asymptomatic infec-
tion cases. However, to the extent that there is a constant ratio of
asymptomatic and symptomatic cases,which seems to be a plausible as-
sumption based on the current literature, our log-log specification using
only the number of symptomatic cases would not be affected by not in-
cluding the asymptomatic cases.

Note that in this regression we include only cities outside Hubei
Province for two reasons. First, Wuhan and other cities in Hubei
province are the outbreak epicenter, and we are interested in how
population outflows from these cities affect the destination cities'
COVID-19 cases. Second, the confirmed COVID-19 cases in Wuhan
and other cities in Hubei are likely to be inaccurate due to the rea-
sons aforementioned in Section 2. In contrast, the confirmed cases
in other cities are likely to be accurate, as their numbers are not
large enough to overwhelm their local health care system; and the
incentives to under-report are much weaker in cities outside of
Hubei.

The estimated coefficients β1κ and β2κ in Eq. (3) respectively rep-
resent the impact of the inflows from Wuhan and other cities in
Hubei κ ∈ {1,…, 22} days ago on the destination cities' new cases
today. They are respectively plotted in the left and right graphs of
Panel A of Fig. 1. We also fit a spline smoothed curve of the estimated
effects of the different lags of inflows from Wuhan and Hubei, which
both show a clear inverted U-shape relationship between the lagged
days of the population inflows from Wuhan or other cities in Hubei
and the destination cities' new COVID-19 cases. Interestingly, both
graphs show that the largest impact on the newly confirm cases
today in Chinese cities outside Hubei comes from the inflow popula-
tion fromWuhan or other cities in Hubei about 12 to 14 days ago. The
pattern exhibited in Fig. 1 is consistent with the hypothesis that the
12 Our log-log specification is based on the classical susceptible-infectious-removed
(SIR) model in epidemiology.
13 Date t=23 indicates the date of January 23, 2020, and t=60 the date of February 29,
2020.
14 Active infected cases stand for the cumulative active infections (total infections - total
healed - total death) in Wuhan at t − κ. Note that the total populations in Wuhan and
other cities in Hubei are constants that are absorbed in α in Eq. (3). Despite the fact that
the confirmed cases in cities in Hubei may be under-reported, as we will show in Section
3, the active cases are still informative about the underlying true infection rates.



A: Results of Estimating Equation (3)

B: Results of Estimating Equation (4)

Fig. 1. Dynamic impact of past inflow fromWuhan and from other cities in Hubei on daily new cases. Panel A: Results of estimating Eq. (3). Panel B: Results of estimating Eq. (4). Notes:
Panel A plots thedynamic effects of lagged inflows fromWuhan (left) and16 other cities inHubei (right) fromestimating Eq. (3). Panel B plots the difference between the estimated effects
of pre- and post-destination-lockdown inflows from Wuhan (left figure) and non-Wuhan cities in Hubei (right figure) on daily new cases in destination cities outside Hubei from
estimating Eq. (4). We add spline smoothing fit curves (in red) using the rcspline function and plot the 90% (the vertical gray whiskers) and 95% (the vertical black whiskers)
confidence intervals.
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incubation period of the 2019-nCoV is up to 12 to 14 days, and also
consistent with a shorter incubation period coupled with secondary
infections.

4.2. Effect of social distancing on virus transmission in destination cities

Social distancing at the destination cities is crucial in preventing the
possibly asymptomatic transmission from the source city (Chinazzi et
al., 2020) and quantifying the effect of social distancing on virus trans-
mission is especially relevant in the stage of pre-epidemic community
spread. This section studies the effectiveness of social distancing mea-
sures in the destination cities in reducing and containing the spread of
the virus.

As shown in Appendix Table A2, within weeks after theWuhan and
Hubei lockdowns, various human mobility restrictions were imposed
on 98 other Chinese cities outside Hubei. As described in Table A2, the
“lockdowns” in destination cities varied in their degree of strictness,
from checkpoints at building entrances to establishing quarantine
zones, and from public transit shutdowns to strict limits on the inflows
into the city, outflows out of the city, as well as within-city population
movements. We interpret the human mobility restrictions in the desti-
nation cities as an enhanced social distancing policy, because the “lock-
down” rules in the destination cities are not as strict as those
implemented in Wuhan.
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Specifically, we estimate the following specification that is a modi-
fied version of the regression specification described by Eq. (3):

Ln 1þ NewCasei;t
� �

¼ α þ
X22
κ¼1

β1κ � Ln Inflowi;WH;t−κ � IWH;t−κ
� � � 1−Lockdowni;t

� �

þ
X22
κ¼1

γ1κ � Ln Inflowi;WH;t−κ � IWH;t−κ
� � � Lockdowni;t

þ
X22
κ¼1

β2κ � Ln
X

j≠i; j≠WH; j∈HB

Inflowi; j;t−κ �
X

j≠i; j≠WH; j∈HB

I j;t−κ

0
@

1
A � 1−Lockdowni;t

� �

þ
X22
κ¼1

γ2κ � Ln
X

j≠i; j≠WH; j∈HB

Inflowi; j;t−κ �
X

j≠i; j≠WH; j∈HB

I j;t−κ

0
@

1
A � Lockdowni;t

þ μ i þ θt þ εit ; ð4Þ

where Lockdowni, t is a dummy that takes value 1 if time t is a date after
destination city i's “lockdown” date, if at all; and 0, otherwise, where the
lockdown dates of the 98 cities outside Hubei are listed in Table A2. If
city i never implemented any formal lockdown policy, the dummy is al-
ways 0. Therefore, the coefficients, β1κ and β2κ, respectively, measure
the impact of the lagged inflows from Wuhan and other cities in Hubei
κ days earlier on the destination cities' current new cases before the
city's imposition of its “lockdown,” while γ1κ and γ2κ represent the ef-
fect on destination cities' current new cases of the inflows fromWuhan
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and other Hubei cities after the imposition of the city's lockdown. If en-
hanced social distancing that comes from the “lockdown policies” im-
posed at the 98 Chinese cities outside Hubei is effective in reducing
the spread of the virus from population flows from the epicenter of
the virus, then we expect that γ1κ and γ2κ to be smaller than β1κ and
β2κ, respectively.

We plot the estimated coefficients β1κ and γ1κ (respectively, β2κ and
γ2κ) in Panel A (Panel B) of Appendix Fig. A4, and their differences in
Panel B of Fig. 1 for the lagged effects of inflows from Wuhan (respec-
tively, 16 non-Wuhan cities in Hubei) on the daily new cases in destina-
tion cities outside Hubei. The estimated lagged effects of inflows from
Wuhan and other cities in Hubei before the destination city's lockdown,
if any, show little change compared to the coefficients in Panel A of
Fig. 1; however, the coefficient estimates of lagged inflows after the des-
tination city's lockdown policies appear to be statistically insignificant
on almost all lags. As shown in Panel B of Fig. 1, the differences between
the estimated effects pre and post the destination cities' lockdown pol-
icies are positive and statistically significant at 10% or lower level for
eight (respectively, three) of the first ten lagged population inflows
from Wuhan (respectively, 16 other cities of Hubei).

These results suggest that the enhanced social distancing policies
in the destination cities are effective in reducing the impact of popu-
lation inflows from the source cities of Wuhan and other cities in
Hubei on the spread of 2019-nCoV virus in the destination cities.
This in turn implies that population inflows from the epicenter con-
tribute to the spread of infection in the destination cities only before
the social distancing measures are applied; it appears that after
implementing their various control measures, cities adopting an en-
hanced social distancing policies can flatten the upward trajectory of
the virus infections.

4.3. How many COVID-19 cases were prevented by the Wuhan lockdown?

We next estimate the counterfactual number of COVID-19 cases that
would have occurred in other cities in the absence ofWuhan lockdown,
which would, in turn, require a counterfactual estimate of the outflows
from Wuhan to other Chinese cities, had there been no lockdown of
Wuhan. As shown in Table 2, in the absence of the Wuhan lockdown,
the virus effect and panic effects would have led to a 37.31% decrease
and a 106.06% increase in the outflow population fromWuhan, respec-
tively. Therefore, we would expect the outflows fromWuhan after Jan-
uary 23 to be

1−0:3731ð Þ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Reducton from Virus Effect

∗ 1þ 1:0606ð Þ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Increase from Panic Effect

¼ 1:29 ð5Þ

times the normal outflows fromWuhan to other cities in the counterfac-
tual world.

We use the daily level of outflows from Wuhan to a city in 2019 on
the same lunar calendar day as a measure of the normal outflow, and
multiple the number by 1.29 to obtain the daily counterfactual inflows
from Wuhan to the city, had there been no lockdown of Wuhan from
January 23, 2020. Using this estimation method, we find that on aver-
age, the estimated counterfactual outflows from Wuhan to the 347 cit-
ies outside Hubei between January 23 and February 29, 2020 would be
2,848,496, 5.99 times the actual population outflow to those cities dur-
ing the same period, which is 475,542.15

We denote the counterfactual inflows from j = Wuhan into city i at

date s ∈ {23,…, 60} from the above calculation as gInflowi,WH,s. We as-
sume that the Wuhan lockdown did not affect the within-city and
inter-city population movements in other cities, as well as the infected
cases in Wuhan. We also assume that all the control measures
15 Recall that outflows fromWuhan are not just residents of Wuhan; any travelers who
enteredWuhan forwhatever reason and then leaveWuhanwould be included in theWu-
han outflows measured by Baidu Migration data.

7

implemented by other cities after the Wuhan lockdown remain in
place. Thus the parameter estimates of the dynamic lag effects of in-
flows from Wuhan and other cities in Hubei, estimated in Eq. (3), re-
main valid as an epidemiological diffusion equation that is not
affected by human mobility restrictions that result from the Wuhan
lockdown; the lockdown only affected the human flows.

With these considerations in mind, we simulate the counterfactual
number of COVID-19 cases, had there been no Wuhan lockdown, on
date t ∈ {23,…,60} (i.e., from January 23 to February 29, 2020) in cities
i outside Hubei by the following equation:

Ln 1þ gNewCasei;t
� �

¼ α̂ þ
X22
κ¼1

β̂1κ � Ln gInflowi;WH;t−κ � IWH;t−κ

� �

þ
X22
κ¼1

β2κ � Ln
X

j≠i; j≠WH; j∈HB

Inflowi; j;t−κ �
X

j≠i; j≠WH; j∈HB

I j;t−κ

0
@

1
A

þ μ̂ i þ θ̂t þ ε̂i;t ;

ð6Þ

where β̂1κ and β̂2κ are coefficient estimates obtained from regressions
specified in Eq. (3) and μ̂ i and θ̂t are the estimated city fixed effects
and date fixed effects, respectively, from the same regression. Note that
in predicting the counterfactual infections without the Wuhan lock-
down, we use the counterfactual inflows from Wuhan to city i for days
after January 23 gInflowi,WH,s discussed previously.

In Fig. 2, we present the counterfactual estimates (in the dotted
curve) of COVID-19 cases had there been no Wuhan lockdown, and
the officially reported cases (in the solid curve) for cities outside
Hubei. The gap between the estimated counterfactual number of infec-
tion cases and the officially reported cases on the bottom figure repre-
sents the number of COVID-19 cases prevented by the Wuhan
lockdown. As of February 29, 2020, the officially reported number of
COVID-19 in the 347 cities outside Hubei province was 12,623, but our
counterfactual simulation suggests that there would have been around
25,911 cases, had there been no Wuhan lockdown. That is, the COVID-
19 cases would be 105.27% higher in 347 cities outside Hubei as of Feb-
ruary 29, in the counterfactual world in which the city of Wuhan were
not locked down from January 23, 2020. Our findings thus suggest
that the lockdown of the city of Wuhan from January 23, 2020 played
a crucial role in reducing the imported infections in other Chinese cities
and halted the spread of 2019-nCoV virus.

We show that, the daily new infections would gradually decline and
stabilize at around 400 cases from February 18 onwards in the counter-
factual world. In the short term, the estimated daily new cases in the
counterfactual world would not converge to the real world reported
cases. The results suggest that the social distancing measures imple-
mented elsewhere in China would not work as well in containing the
spread of 2019-nCOV virus unlessWuhan was locked down on January
23, 2020. It also reflects the challenging situationsmany countries expe-
rienced in containing the spread of virus, where strict lockdowns of the
virus epicenters were not imposed early.

We also attempt to estimate the magnitude of the undocumented
infection cases in Wuhan and other cities in Hubei province during the
early stages of the epidemic. In Appendix Cwe present themethodology
and results. We find that there were substantial undocumented infec-
tion cases in the early days of the 2019-nCoV outbreak in Wuhan and
other cities of Hubei province, but over time, the gap between the offi-
cially reported cases and our estimated “actual” cases narrowed
significantly.

5. Conclusion

In this paper, we provide valuable causal evidence on the role of
humanmobility restrictions on the containment and delay of the spread
of contagious viruses, including the 2019-nCoV virus that is now ravag-
ing the world. We find that the lockdown of Wuhan reduced inflows to
Wuhan by 76.98%, outflows fromWuhan by 56.31%, andwithin-Wuhan



A: Daily Cases

B: Cumulative Cases

Fig. 2. Counterfactual of infected cases elsewhere in China. Panel A: Daily cases. Panel B: Cumulative cases. Notes: This figure plots the counterfactual estimation on the COVID-19 cases in
347other cities inChina ifWuhan hadnever been under a government-ordered lockdown (in the dotted curve), and traces theofficially reportedCOVID-19 cases in cities outsideHubei (in
the solid curve). The top figure depicts the model's counterfactual prediction and the actual of daily infection cases, and the bottom figure depicts the evolution of cumulative cases from
January 23 to February 29, 2020.
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movements by 55.91%;we also find a substantial virus deterrence effect
on population mobility. We estimate the dynamic effects of up to 22
lagged population inflows from Wuhan and other Hubei cities, the epi-
center of the 2019-nCoV outbreak, on the destination cities' new infec-
tion cases. We find that the lockdown of Wuhan significantly reduced
the populationmobility and that the enhanced social distancing policies
in the destination cities effectively reduce the impact of population in-
flows from the epicenter cities in Hubei on the spread of 2019-nCoV.
Using counterfactual simulations with these estimates, we find that
the lockdown contributed significantly to reducing the total infections
outside Hubei. Specifically, we find that in the counterfactual world in
which the city of Wuhan were not locked down from January 23,
2020, infections would be 105.27% higher in the 347 Chinese cities out-
side Hubei province. Lockdowns of virus epicenters, if they can be iden-
tified before the virus widely spreads, may be an important policy
instrument in the fight to contain a fast-moving pandemic.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jpubeco.2020.104272.
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