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A B S T R A C T   

The occupant density in buildings is one of the major and overlooked parameters affecting the energy con-
sumption and virus transmission risk in buildings. HVAC systems energy consumption is highly dependent on the 
number of occupants. Studies on the transmission of COVID-19 virus have indicated a direct relationship between 
occupant density and COVID-19 infection risk. This study aims to seek the optimum occupant distribution 
patterns that account for the lowest number of infected people and minimum energy consumption. 

A university building located in Tehran has been chosen as a case study, due to its flexibility in performing 
various occupant distribution patterns. This multi-objective optimization problem, with the objective functions 
of energy consumption and COVID-19 infected people, is solved by NSGA-II algorithm. Energy consumption is 
evaluated by EnergyPlus, then it is supplied to the algorithm through a co-simulation communication between 
EnergyPlus and MATLAB. Results of this optimization algorithm for 5 consequent winter and summer days, 
represent optimum occupant distribution patterns, associated with minimum energy consumption and COVID-19 
infected people for winter and summer. 

Building air exchange rate, class duration, and working hours of the university, as the COVID-19 controlling 
approaches were studied, and promising results have been obtained. It was concluded that an optimal population 
distribution can reduce the number of infected people by up to 56% and energy consumption by 32%. 
Furthermore, it was concluded that virtual learning is an excellent approach in universities to control the number 
of infections and energy consumption.   

1. Introduction 

Climate change, environmental issues, and the energy crisis has 
made energy management more important than before. Since buildings 
account for 30%–40% of society’s energy demand, they have the po-
tential to alleviate the worldwide energy-related issues [1]. In this 
context, according to the United States Energy Information Agency (EIA) 
[2], HVAC systems are responsible for about 42% of the electricity 
consumption in commercial buildings in the U.S. The presence of oc-
cupants in buildings is one of the most important parameters in the 
buildings that affect the energy consumption of HVAC systems. There 
are, however, other dominant parameters for the energy consumption of 
HVAC systems, but studies show that controlling the attendance time of 
people can be effective in managing building energy consumption [3–5]. 
Therefore, an optimum occupant presence schedule may significantly 
reduce the overall energy consumption of buildings. 

Occupants generate heat by their activity in buildings, which is 

added to the overall heat load of the buildings. This increases the energy 
consumption of cooling systems. Conversions in weather conditions 
such as solar radiation, wind speed and direction, and air temperature 
are the main parameters that determine the energy consumption of the 
building. Therefore, at different times of the day, HVAC systems would 
require various amount of energy to provide a desirable condition for 
occupants. Hence, by knowing the climatic conditions, it is possible to 
adjust the attendance of occupants effectively, so that fewer people 
would be present in the times that HVAC systems require more energy, 
and conversely, more people would exist in the building when HVAC 
systems require less energy. Implementation of this strategy in buildings 
can significantly reduce the energy consumption of the building, 
without using additional equipment or renewable energy systems. This 
strategy, however, is more effective in public places e.g. stores, offices, 
universities, service providers, etc. 

Another major objective of this study is to control the infection risk 
of COVID-19 and other respiratory viruses. Controlling the probability 
of contact is the most important strategy for controlling respiratory 
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viruses. The Coronavirus is transmitted among people through inhala-
tion and exhalation and also by direct contact with infected objects [6]. 
As the population density in a building increases, the probability of the 
virus transmission in both ways increases, and as a result, the number of 
infected people with the virus increases. Therefore, by recognizing virus 
transmission parameters, the probability of virus transmission in the 
building can be estimated and, it would be possible to provide an 
optimal occupant distribution pattern, which has the lowest number of 
infected people. 

Optimization algorithms are one of the most effective tools in energy 
modeling problems to characterize a global optimum value for a 
parameter as an objective function. These problems can inherently be 
single-objective or multi-objective optimization problems along with 
some constraints. In this context, metaheuristic algorithms are intelli-
gent solvers especially used for solving complex optimization problems 
[7]. Most of the building optimization problems are multi-objective 
problems and metaheuristic algorithms are usually utilized to solve 
these problems. 

The most famous multi-objective algorithms are NSGA-II [8], 
MOPSO [9], and SPEA2 [10]. Several applications of these algorithms in 
building optimization problems can be found in previous literature [1, 
11–15]. 

The extremely varied and unpredictable specifications of occupants 
in buildings have made them complex to model and being ignored in 
most of the previous building energy simulation studies. This simplifi-
cation creates a huge inaccuracy between the actual energy consump-
tion and the simulated one. Fortunately, in recent years, numerous 
studies have been conducted to understand occupant behavior in 
buildings. Huila et al. [16] and Menezes et al. [17] compared the ac-
curacy of building energy simulation with and without considering the 
presence of people inside the building. The results show that considering 
the occupants in the simulation generates more accurate results. 
Dedesco et al. [18] studied the effect of various occupant-related pa-
rameters e.g. number of occupants and presence duration of occupants 
on the energy consumption in hospital rooms. Rio et al. [19] have 
proposed a model for estimating the presence of occupants in a building 
to create an accurate energy simulation using data mining techniques. In 
order to find the best population density in a building, Kang et al. [20] 
studied the effect of occupant density on 105 buildings and derived a 

direct relationship between the number of occupants and the building’s 
energy consumption. Li and Yao [21], and Want et al. [22], considering 
the occupants, implemented machine learning techniques in modeling 
and predicting the energy consumption of buildings and concluded that 
occupant’s presence and behaviors are one of the most determinant 
factors in energy consumption of buildings. Sun et al. [23] proposed a 
framework for data-driven occupant behavior analytics in residential 
buildings and concluded that occupant’s effect on a building’s energy 
consumption is significant, whether it’s a residential or a commercial 
building. Jami et al. [24] adopted energy conservation measures in a 
student dormitory in Tehran by considering the occupant behaviors. 
They concluded that the accuracy of the energy conservation measures 
is highly associated with considering occupant energy behavior. 

Rising the occupant density in a building leads to an increase in the 
physical contact between the people as well as breathing more common 
air and consequently, increasing the number of infected people in the 
building. Some research projects have been devoted to investigating the 
effect of occupant density and comfort conditions on the virus trans-
mission rate [25,26]. In a recent study, Horo et al. [27] investigated the 
microbial dynamics and occupants interactions to understand the effect 
of building characteristics e.g. architectural design parameters, indoor 
moisture content, temperature, and lighting level as well as the occupant 
density, on the microbial survivability in buildings. Sari et al. [28] 
examined the affecting factors of the virus spread in the building and 
concluded that the occupant density is one of the most important factors 
in virus transmission. Kossi et al. [29] also examined the effect of indoor 
air quality conditions and population of pupils on respiratory infection 
in Canadian schools and demonstrated the importance of occupant 
distribution. Zhan et al. [30] evaluated the impacts of environmental 
conditions on the transmission of COVID-19 and studied virus trans-
mission in different conditions. Ronchi and Lovreglio [31] assessed the 
crowd modeling effects on the occupant exposures in the confined 
spaces and proposed EXPOSED crowd model, as an effective occupant 
presence model during pandemics. Guo et at [32]. compared different 
guideline approaches in HVAC operation during COVID-19 pandemic 
and concluded that maximizing the fresh air supply in HVAC systems is 
the most effective strategy to mitigate the COVID-19 infection risk. Wee 
MPH et al. [33] Evaluated different approaches to reduce the risk of 
COVID-19 transmission in a multibedded cohorted general ward setting 

Nomenclature 

S Sensible Generated Heat (W) 
M Metabolic Rate (W) 
T Temperature (◦C) 
RH Relative Humidity 
ṁ Mass Flowrate (kg/s) 
L Heat Load of Individuals (W) 
h Enthalpy (J/kg) 
fcl Ratio of Clothes Surface to the Body Surface (− ) 
Icl Thermal Resistance of the Garment (clo) 
hcl Convective Heat Transfer Coefficient (W/m2.K) 
P Partial vapor Pressure (Pa) 
IR Inhalation Rate (m3/hr) 
ERq Quanta Emission Rate (quanta/hr) 
IVRR Virus Elimination Rate (1/hr) 
t Exposure Time (hr) 
n Quanta Concentration (quanta/m3) 
R Virus Infection Risk (− ) 
T Total Exposure Time (hr) 
S Number of Present Occupants (− ) 
In New Infected People (− ) 
W Heat Loss (W) 

V Volume (m3) 
Csettling Virus Settling Rate (1/hr) 
Cinactivation Virus Inactivation Rate (1/hr) 

Subscripts 
min Minimum 
SA Supply Air 
out Leaving Air 
zone Thermal Zone Air 
cl Clothes 
c Cooling 
h Heating 
x Number of Occupants 
r Radiation 

Abbreviations 
NSGA-II Nondominated Sorting Genetic Algorithm II 
HVAC Heating, Ventilation and Air Conditioning 
COVID-19 Corona Virus Disease 2019 
PMV Predicted Mean Vote 
AER Air Exchange Rate (1/hr) 
PTAC Packaged Terminal Air Conditioner 
E Energy  
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and concluded that social distancing between patients is a must for this 
approach. Rahman et al. [34] also reported that social distancing and 
avoiding crowds are among the promising approaches to prevent 
transmission of respiratory viruses. Sun and Zhai [35] have suggested a 
prediction model for the airborne virus in confined spaces that takes into 
account the occupant density, ventilation rate, and the exposure time on 
the infection risk. They concluded that social distancing is a great 
approach to decrease the infection risk and also minimizes the required 
ventilation rate in buildings. 

COVID-19 pandemic has had irreparable damage to the world. Ac-
cording to the World Health Organization, 1.3 million people have 
passed away worldwide until 16 November 2020. In addition to health 
problems, COVID-19 has either completely disabled various industries 
or caused millions of dollars in damage for them. Research activities in 
academia can greatly help to mitigate this vital issue. In this regard, this 
virus must be precisely studied in different aspects to better understand 
the ways of minimizing the casualties and controlling the pandemic. 
Although various research studies have been conducted about COVID- 
19, due to the novelty of this virus, there hasn’t been enough time to 
comprehensively study the virus. Therefore, previous literature lacks an 
investigation of various factors that affect the transmission of COVID-19. 
This paper is set up to fill the gap in the related context and aims to 
better understand the characteristics of the virus to help control the 
pandemic along with energy consumption. On the other hand, Countless 
parameters are affecting the HVAC system’s energy consumption and 
COVID-19 infection risk in buildings which can be evaluated to conclude 
precise results e.g. occupant behavior, facial mask effect, occupant dis-
tribution, air exchange rate, building geometry, variable air exchange 
rate, working hours of building, exposure duration, occupant’s activity 
level, clothing, etc. [36]. However, in this paper, the most dominant 
factors i.e. the effects of different occupant distribution, air exchange 
rates, working hours, and class duration on the HVAC system’s energy 
consumption and the number of infected people with COVID-19 virus 
are investigated. Examining different occupant distributions lead to 
provide optimal schedules for the occupants in the buildings to align the 
internal load with the climatic conditions and to prevent crowding. By 
considering the energy consumption and the number of infected people 
as the objective functions, the multi-objective optimization problem has 
been solved by linking the virus infection risk and the EnergyPlus [37] 
outputs with the NSGA-II algorithm [8]. Simulations were conducted in 
5 consequent days in winter and summer for a case study university 
building in Tehran. Furthermore, the effects of ventilation rate, working 
hours of the university, and the class durations on the HVAC system’s 
energy consumption and the number of infected people with COVID-19 
have been precisely investigated to propose the best approaches for 
controlling the number of infected people and decrease the energy 
consumption in buildings. 

2. Material and methods 

In this multi-objective optimization problem, energy consumption 
and the number of infected people with COVID-19 are intended to be 
simultaneously minimized. Therefore, instead of a unique optimum so-
lution, a set of non-dominated solutions are being resulted. The decision 
variables of this problem are the number of occupants at different hours 
of the day. Therefore, the decision variables are discrete values from 0 to 
the maximum occupant capacity of the building. Various optimization 
algorithms have been developed to solve these sorts of problems [8–10, 
38]. Among the existing optimization algorithms, NSGA-II stands out as 
a perfect solver, which does not get stuck in a local optimum and per-
forms greatly in discrete problems. Besides, NSGA-II provides a 
well-distributed set of non-dominated solutions. The widespread use of 
NSGA-II in building optimization problems is a prove of these facts 
[11–13,15]. Therefore, NSGA-II is adopted for this work to solve the 
optimization problem and find the optimum daily occupant distribution. 

In the first step of this algorithm, a random set of occupant 

distribution pattern, that is called chromosomes is created in the size of 
the algorithm population. Chromosomes are a series of solutions (in this 
problem, different values of occupant distribution pattern) that arrange 
sequentially. In the next stage, these randomly generated chromosomes 
are evaluated by the predetermined cost functions, which are the 
number of COVID-19 infected people and energy consumption. Since 
this problem is a dual-objective optimization problem, each chromo-
some holds two values associated with two objective functions. So, these 
chromosomes cannot be compared regularly. For comparing these 
chromosomes, nondominated solutions are defined as: 

“X1 dominates X2, if and only if X1 is less than X2 in all values of the 
cost functions.” 

Besides the domination comparison, another factor called crowding 
distance that indicates the amount of accumulation of answers at a 
single point of space is used as a second approach of evaluating solu-
tions. In the solution space, if a chromosome is far from the others, it will 
have a more crowding distance value and makes the set of solutions out 
of integration, which is not desirable. This approach distinguishes the 
nondominated chromosomes and is stored to be used in the next itera-
tions. After passing the initial iteration of this algorithm, it keeps doing 
this process again but this time instead of generating random solutions, 
the set of nondominated solutions of the previous iteration are being 
supplied to the algorithm. According to the predetermined proportions 
of crossover and mutation populations, a set of chromosomes are being 
randomly chosen from the main population. 

Crossover and mutation operators, increase the exploration power of 
the algorithm. These operators modify the components of parent chro-
mosomes and generate new sets of chromosomes that are called 
offspring (children). The crossover operator substitutes the components 
of a pair of answers. This substitution takes place in three ways: single 
point, double point, and uniform crossovers. In a single point crossover, 
the components of the chromosomes are cut off from a randomly 
selected point and are then substituted by each other. In a double point 
crossover, the components are cut off from two random points and are 
replaced by each other. In a uniform crossover, the components of a 
chromosome are multiplied by a random number between 0 and 1, and 
for another chromosome, the complement of this value is multiplied, 
and eventually, new chromosomes form by summarizing these two an-
swers. In this way, the population of children is generated [8]. Another 
essential operator is mutation. This operator mutates the components of 
a chromosome, generating new chromosomes. For mutation, three op-
erators i.e. swap, reversion, and insertion are utilized. Swap operator 
selects two random chromosome points and replaces them with each 
other to form a new chromosome. Reversion selects two random points 
in a chromosome and by reversing the order of the components between 
the two points, generates new chromosomes. The insertion operator 
selects two random chromosome points and the first component is 
transferred to the position before the second point. The selection of each 
of these operators for mutation is also considered randomly with equal 
probability. 

The populations of crossover and mutation are generated by 
applying the relevant operators on these chromosomes. The crossover 
and mutation populations are also evaluated by the objective functions. 
Eventually, these populations together with the main population are 
merged and after performing comparisons, non-dominated chromo-
somes are separated in the amount of predetermined algorithm popu-
lation size. This iterative process continues until the stopping conditions 
are met and a population of superior answers that have achieved the 
lowest values of the objective functions is obtained [39]. 

2.1. Energy simulation 

The objective functions of this optimization problem are COVID-19 
infected people count and HVAC system energy consumption, which 
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needs to be simultaneously minimized. COVID-19 infected people count 
is highly dependent on the occupant density, so the optimization algo-
rithm seeks an occupant distribution pattern that the infected people 
through a day is the lowest. Energy consumption as one of the objective 
functions is minimized by evaluating different occupant distribution 
patterns within a day in the building. Occupants in the building generate 
heat which is added to the heat load of the building. Therefore, occupant 
density affects the HVAC system’s energy consumption. To evaluate the 
energy consumption of different occupant distribution patterns, Ener-
gyPlus has been used. By importing building parameters and weather 
conditions, this powerful software calculates the energy consumption of 
building in a fast and accurate way. Eq. (1) shows sensible heat which is 
generated by the occupants. In this equation, M is the metabolic rate 
(W), T is the zone air temperature (◦C) and S is the generated sensible 
heat (W) [40]. 

S= 6.461927 + 0.946892M + 0.0000255737M2 + 7.139322T

− 0.0627909TM + 0.0000589172TM2 − 0.198550T2 + 0.000940018T2M

− 0.00000149532T2M2

(1) 

Latent heat (L) can also be easily calculated as follow: 

L=M − S (2) 

Fig. 1 shows generated heat by individuals in a university environ-
ment based on the temperature of the heat zone, calculated by ASHRAE 
standard 2004–2005 [41]. 

Eq. (3) shows the amount of cooling/heating energy that the air 
conditioning systems transfer to the zones [40]. In this regard, ṁSA is the 
mass flow rate of air that is sent through this system to the thermal zones 
(kg/s), hout is the enthalpy of leaving air from the system (J/kg) and hzone 
is the enthalpy of thermal zone air. RHmin is referring to the constant 
relative humidity condition which is the minimum relative humidity of 
the air within the zones. 

Q̇cooling,heating = ṁSA(hout − hzone)RHmin (3)  

2.2. Co-simulation 

This problem aims to find the optimum occupant distribution 
through a day in the building to minimize the objective functions (i.e. 
energy consumption and COVID-19 infected people). To do so, a 
connection between the objective functions and the optimization algo-
rithm should be made. COVID-19 infection equations are implemented 
in MATLAB and the other objective function, which is the energy con-
sumption is evaluated by EnergyPlus. The communication between the 
EnergyPlus and MATLAB is established using EnergyPlus Co-simulation 
Toolbox [42]. First, a set of different occupant distribution is evaluated 
by both objective functions. The amounts of objective functions for each 
occupant distribution pattern that is stored in a chromosome are eval-
uated by NSGA-II algorithm and the non-dominated chromosomes form 
a new set of occupant distribution patterns. In this stage, the next gen-
eration of children is generated by performing crossover and mutation 
operators on the non-dominated solutions. This iterative process keeps 
running until the stopping condition is met. Eventually, a set of 
non-dominated occupant distribution patterns that have the least 
amount of COVID-19 infected people and energy consumption, form a 
Pareto front. A general schematic of this process is presented in Fig. 2. 

Fig. 1. Heat generation rate by occupants in the classrooms for different zone 
temperatures. 

Fig. 2. The overall process of the optimization problem.  
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2.3. Thermal comfort 

Fanger’s thermal comfort model is utilized to determine the thermal 
comfort conditions of occupants in the building [43]. In this model, the 
PMV value is introduced as an indication for the thermal comfort con-
ditions of occupants. A positive PMV value denotes a feeling of warmth 
and conversely, a negative PMV value indicates a feeling of coldness for 
occupants. Accordingly, the ideal PMV value would be 0. Eq. (4) is 
utilized to calculate PMV in the zones [44]. 

PMV =
(
0.303e− 0.036M + 0.028

)
× L (4) 

In this equation, M is the metabolic rate (W) and L is the latent heat 
load of individuals (W), which is again calculated by the following 
equation: 

L=M − W − 0.0014M(34 − Ta) − 3.96×10− 8fcl
[
(Tcl+273)4

−
(
Tr +273

)4]

− fclhc(Tcl − Ta) − 1.7×10− 5M(5867 − Pzone)

− 0.00305[5733 − 6.99(M − W) − Pzone] − 0.42[(M − W) − 58.15] (5) 

In this equation, in addition to the production capacity by the ac-
tivity of individuals, heat loss from convection, radiation, and respira-
tion is also considered, in which W, fcl, hcl, Tcl , Tr and Pzone are the rate of 
heat loss due to the performance of work (W), clothing surface, 
convective heat transfer coefficient (W/m2), The surface temperature of 
the clothes (◦C), mean radiant temperature (◦C), and the partial vapor 
pressure of the thermal zone (Pa), respectively. fcl represents the ratio of 
the surface of the clothes to the surface of the body, which can be 
calculated by Eq. (6). In this equation, Icl is the thermal resistance of the 
garment (clo). 

fcl =
{

1 + 0.2Icl ; Icl < 0.5
1.05 + 0.1Icl ; Icl ≥ 0.5 (6)  

2.4. COVID-19 infection risk 

To calculate the risk of COVID-19 infection, the number of floating 
virus particles in the room is required. For this purpose, first, the 
calculation process of the number of virus particles in space is discussed. 
Riley et al. [45]. proposed a model (known as Wells-Riley model), which 
shows the exponential increase of the number of newly infected people 
with time for steady-state quanta levels. Later, Gammaitoni and Nucci 
[46] represented an upgraded model for Wells-Riley model, which is 
based on the change in quanta levels through time in confined spaces. 
This model has successfully been used in supermarkets [47], airplanes 
[48], and cars [49]. The differential equations in the Gammaitoni model 
are solved considering initial conditions to estimate the quanta con-
centration in a confined space at the time t. Some simplifying assump-
tions are considered to derive a proper equation to evaluate the quanta 
concentration in the building, which are as follow: the quanta emission 
rate remains constant, the period of the disease is longer than the time 
scale of the model, and the droplets are instantaneously distributed in 
the area [46,47]. These simplifying assumptions form Eq. (7). This 
equation shows the number of virus quanta in the space by considering 
affecting various parameters. Quanta is a definition used for infectious 
airborne particles. In this equation, n is the quanta concentration, which 
is simply the ratio of quanta particles to the volume of the building 
(quanta/m3), V is the volume of the building (m3), I is the number of 
infected people in the building, ERq is the virus particles that are 
distributed in the space by each inhale and exhale which depends on the 
characteristics of the virus. Furthermore, t represents the time of expo-
sure of the affected people in the space (hour), n0 is the initial concen-
tration of the virus particles in the space and IVRR represents the virus 
elimination rate, which can be calculated by Eq. (8) [50]. In this equa-
tion, AER represents the air exchange rate of the space (hr− 1), Csettling is a 
coefficient, representing the virus settlement (hr− 1) and Cinactivation is the 

virus inactivation rate (hr− 1). 

n(t)=
ERq.I
IVRR.V

+

(

n0 −
ERq.I
IVRR

)

.
e− IVRR.t

V
(7)  

IVRR=AER+ Csettling + Cinactivation (8) 

Accordingly, the concentration of virus particles in the building can 
be calculated by considering the characteristics of the virus and the 
building properties. After calculating the virus concentration, infection 
risk can be calculated for non-infected people. Eq. (9) is utilized to 
calculate the virus infection risk [45]. In this equation, n is the virus 
quanta concentration in space (quanta/m3) which is calculated by Eq. 
(7), T represents the exposed time of the occupants (hr) and IR indicate 
the inhalation rate of people (m3/hr). These parameters can be used to 
obtain the infection risk of people in the building. Furthermore, the 
number of infected people can be estimated by Eq. (10). In this equation 
R is the virus infection risk, S is the number of present occupants in the 
building and In is the number of newly infected people [51]. 

R=

⎛

⎜
⎝1 − e

− IR
∫T

0

n(t)dt

⎞

⎟
⎠ (9)  

In= S*R (10)  

3. Problem definition 

The non-dominated sorting genetic algorithm II (NSGA-II) has mul-
tiple adjustable parameters that need to be precisely determined to 
achieve the desired performance, comprising crossover proportion, 
mutation proportion, the population of chromosomes, and the number 
of iterations. Depending on the type of the optimization problem and the 
characteristics of the decision variables, these parameters have optimum 
values which can be obtained by performing several simulations and 
achieving suitable exploration and exploitation rates. There is not a 
certain value for these parameters and they vary by the characteristics of 
the problem. By running the algorithm several times, it has been realized 
that a crossover and mutation proportion of respectively 60% and 40% 
provides a suitable exploration and exploitation amount for this prob-
lem. Furthermore, it has been concluded that an algorithm population 
size of 100 makes a perfect balance between the performance and the 
speed of the algorithm. Running the algorithm with these parameters 
showed that after 20 iterations, no change is observed in the final an-
swers and the solutions have been already inclined to an optimum value. 
The empirically obtained optimum values of these parameters are given 
in Table 1. 

This problem is a dual-objective optimization problem aiming at 
minimizing energy consumption and the number of infected people with 
COVID-19 virus. The following equations are the constitutive optimi-
zation equations and constraints. 

Min Int =
∑5

d=1

∑19

t=8
(In(t, x)

)

(11)  

Min E=
∑5

d=1

∑19

t=8
(Ec(t, x(t))+Eh(t, x(t))

)

(12) 

Table 1 
Obtained optimum values for the optimization algorithm.  

Parameter Quantity 

Iterations 20 
Algorithm population count 100 
Crossover proportion 60% 
Mutation proportion 40%  
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∑19

t=8
x(t)= 1225 (13)  

5≤ x(t) ≤ 245 (14) 

Eq. (11) is stating the minimization of the infected people within 5 
days. In this equation Int as the first objective function, is the total 
number of infected people with the virus through the considered period 
that must be minimized. In(t, x) is the number of infected people in a 
certain hour of t and the occupant count of x. Int is obtained by sum-
marizing the infected people through the working hours of the day (i.e. 8 
to 19 within 5 days). Eq. (12) represents the second objective function 
which is also a minimization statement. This objective function is 
denoting the total energy consumption of the HVAC systems as E, which 
is a summation of cooling energy Ec and heating energy Eh in thermal 
zones. Cooling and heating energy consumptions also vary by the time 
(t) and the number of occupants (x). Therefore, t determines the 
different times of the day which has various climatic parameters (e.g. 
solar radiation, ambient temperature, and wind speed). on the other 
hand, x is the decision variable of this optimization problem which 
determines the values for objective functions. Eqs. (13) and (14) are the 
constraints of the optimization problem that represent the cumulative 
number of occupants in the building during a day as well as the mini-
mum and the maximum number of occupants in each hour. So, this 
multi-objective optimization problem searches for the optimum solu-
tions for the occupant distribution within a day, by considering the 
bounds of the occupant counts and the predetermined total number of 
present occupants. The final set of solutions will form a Pareto front, 
which represents the dispersion of solutions in the search space by 
considering the values of their objective functions. 

3.1. Building 

The case study building is a two-story university building designed 
by Sketchup 3D software. Fig. 3 shows the dimensions and orientation of 
this building. This building is considered to be located in Tehran, with a 

semi-arid climate and relatively high solar radiation [52]. Therefore, the 
utilization of solar energy is one of the most important parameters that 
determine the orientation of buildings in Tehran. Accordingly, most of 
the buildings in Tehran are north/south-oriented and so this building is 
considered to be oriented as north/south. 

This building has 24 windows and 2 exit doors. The general prop-
erties of the considered building are given in Table 2. This building 
consists of 6 classrooms on each floor with a 48 m2 area, forming 12 
classrooms at all. As a rule of thumb, approximately 2.5 m2 area is 
considered for each student and so 19.2 students will fit in each class-
room, which by considering a teacher and rounding up, this number will 
rise up to 20 [53]. Therefore, the maximum number of present occu-
pants in the building (by considering the formation of all classes) will be 
240 people. Considering 5 permanent staffs working within the working 
hours, the maximum number of present people will be 245 people. It is 
assumed that the class durations are 1 h and each classroom forms 5 
classes per day. Therefore, having 12 classes at all in the building, 

Fig. 3. Dimensions and orientation of the case study university building.  

Table 2 
Case study building properties.  

Parameters Quantity 

Stories 2 
Windows 24 
Gross area 425 m2 

Height of walls 3 m 
Exit doors 2  

Table 3 
Specifications of the building constructions.  

Building 
Construction 

Components 
(Outside to 
inside) 

Thickness 
(cm) 

Thermal 
Conductivity 
(W/m.K) 

Overall heat 
transfer 
coefficient 
(W/m2k) 

External Wall stucco 2.5 0.6918 0.66 
Concrete 20 1.7296 
Wall 
Insulation 

5.5 0.0432 

Gypsum 1.27 0.16 
Internal Wall Gypsum 2 0.16 2.5 

Wall Air 0.36 0.024 
Gypsum 2 0.16 

Window Clear Glass 0.3 0.9 7.6 
Air 0.3 0.024 
Clear Glass 0.3 0.9 

Door Wood 5 0.15 3 
Ceiling Lightweight 

Concrete 
10 0.53 1.37 

Air 0.5 0.024 
Acoustic Tile 2 0.06 

Roof Roof 
Membrane 

0.95 0.16 0.23 

Roof 
Insulation 

21 0.049 

Metal Decking 0.15 45 
Ground Acoustic Tile 2 0.06 0.74 

Air 2 0.024 
Lightweight 
Concrete 

10 0.53  

R. Mokhtari and M.H. Jahangir                                                                                                                                                                                                             



Building and Environment 190 (2021) 107561

7

indicates that 60 classes with 1-h duration will be formed each day. 
Since the maximum number of present occupants in the building is 245 
people, and each classroom forms 5 classes per day, total number of 
daily present people would be 1225 people. Referring to Iranian uni-
versities, the working hours of the building is assumed to be from 8 a.m. 
to a maximum of 8 p.m., so hereby, different chromosomes are the 
distribution of occupants ranging from 8 a.m. to 8 p.m. 

The building materials have been determined the same as an office 
building according to the standard regulations of ASHRAE material HOF 
2005 [54] as well as the items used in Iran. The windows are double 
glazed with a single layer of air between the glasses and the doors are 
made of wood. Information on the specification of materials is collected 
in Table 3. According to ANSI/ASHRAE 62–2 [55], the appropriate 
amount of the air exchange rate (AER) for HVAC systems in the uni-
versities is considered to be 3 hr− 1. 

3.2. Internal loads 

The metabolic heat generation of the occupants in a classroom is 
reported as an average of 150 W per person [41]. The insulation level 
of occupant’s clothes is also determined to be variable for each season 
so that people in hot and cold seasons would have clothing insulation 
levels of 0.4 and 1.09 (clo), respectively [41]. Lightings are among the 
other major internal loads in this building. The appropriate level of 
lighting for the classrooms is 250 (lumens/m2) [56]. Therefore, to 
satisfy the favorable illumination rate for the occupants by taking into 
account the presence of people in different classes, the variable value of 

5 (Watts/person) is considered. Other existing loads in the building are 
computers, printers, smart appliances, etc. These loads are divided into 
two groups of fixed and variable loads. The amount of considered fixed 
loads e.g. CCTV cameras, control systems, electronic doors, etc., which 
are listed in Table 4, is 2000 Watts for whole thermal zones. Variable 
loads that depend on the number of people, including computers and 
laptops, is considered to be 100 Watts/person. 

3.3. HVAC systems 

For the HVAC system, Packaged Terminal Air Conditioner (PTAC) is 
utilized to provide the required heating and cooling for the occupants. 
This system consists of cooling and heating coils, an outdoor air mixing 
system, and a blowing fan [40]. Fig. 4 represents a schematic of a PTAC 
air conditioning system. 

The thermostats are adjusted by the thermal comfort conditions of 
the occupants, fixing the PMV value in the thermal zones in 0. Cooling 
coils, heating coils, and airflow are the decision variables that can 
interactively change to provide the determined PMV value. According to 
the World Health Organization’s suggestions for the HVAC systems 
performance during COVID-19, demand-control ventilation controls 
that change the outdoor flowrate by the occupants should be disabled 
[57]. So, a constant airflow is considered for HVAC systems to comply 
with WHO’s suggestions for controlling the COVID-19. Therefore, 
outside air’s flowrate is considered to be 3 (hr− 1). 

3.4. Energy consumption 

Thermostats are adjusted by the PMV of occupants and the HVAC 
systems are controlled according to these values. Setting the PMV value 
of 0 for HVAC systems will increase the sensitivity of the HVAC system’s 
energy consumption on the occupant density and in consequence, the 
results of the optimization will be more contagious. 

The presence of occupants at different hours of a day, makes elec-
tricity demand vary through these hours, so that the amount of gener-
ated heat by the occupants increases as the occupant density increases in 
thermal zones, leading to more energy consumption by the HVAC sys-
tems to establish thermal comfort. The simulations were conducted for 
two different periods of 5 consequent days in hot and cold seasons so 
that the effect of the occupant’s presence in each season on the elec-
tricity consumption of HVAC systems, becomes evident. 

Table 4 
Building internal loads.  

Constant Loads CCTV Cameras 2000 W 

Access Control systems 

Electronic Doors 

Security Computers 

Public Use Electronics 

Variable Loads Student’s Computers 100 W/person 
Laptops 
Laboratory Equipment 
Smart Board  

Fig. 4. Schematic of the PTAC air conditioning system [40].  
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3.5. Infection risk 

To estimate COVID-19 infection risk in the building, the initial step is 
to calculate the virus quanta concentration in each hour. By knowing the 
required values of climate conditions, virus parameters, and the occu-
pant’s specifications, virus quanta concentration can be calculated by 
Eqs. (7) and (8). To Calculate the number of already infected people (I) 
in Eq. (7), data about the worldwide infected people with the virus on 
August 3rd of 2020 were used [58]. According to these data, there have 
been about 6 million active cases of COVID-19 worldwide, on August 
3rd of 2020. On the other hand, according to the COVID-19 virus disease 
status report [59], only 20% of COVID-19 carriers are symptomatic and 
the rest are infected as asymptomatic patients. Thus, the total number of 
COVID-19 carriers is estimated as 30 million people, worldwide. 
Dividing this amount by the number of all human beings, the proportion 
of infected people with the virus equals to 0.38%, and the same amount 
is taken into account in calculating the number of infected people in the 
case study building. 

As discussed earlier, ERq is the number of virus particles that are 
released into space by each inhalation and exhalation. This amount 
depends on the characteristics of the virus, metabolic activity of occu-
pants, and the viral respiration rate of the individuals which is a function 
of the amount of virus per milliliter of mucus (cv (mL-1)) and the 
quanta-RNA correction factor (ci). Table 5 shows the virus production 
rate for well-known viruses. According to Table 5, ERq for light activ-
ities, which is also suitable for classroom activities, is reported as 142 
(quanta/hour) [47]. 

The settlement rate of a virus is the amount of virus that settles on the 
ground within an hour. This value depends on the height of the gener-
ating source at which the virus is above the ground and the speed at 
which the virus lands on the ground. The height from the ground which 
is the distance between the occupant’s mouth and the ground is gener-
ally considered as 1.5 m and the settling velocity is equal to 0.0001 m 
per second [68]. Therefore, the virus settling rate becomes 0.24 (hr− 1). 

The inactivation rate is the proportion of the virus that inactivates 
through an hour. This value is calculated based on the virus half-life 
coefficient, which for COVID-19 is 0.63 (hr− 1) [47,69]. Also, the 
initial value of the virus in space (n0) at the beginning of classes is equal 
to 0. 

Eqs. (9) and (10) are used to calculate the risk and ultimately the 
total amount of infected people. In these equations, IR indicates the 
inhalation rate of infected people with the virus, which is equal to 0.96 
hr− 1 for light activities and the same for classrooms [47]. On the other 
hand, the exposure duration of occupants (T) which is the duration of 
classes is 1 h. It should be noted that the results of these formulas are 
limited to the respiratory transmission of the virus and other factors such 
as the transmission of the virus through direct and indirect contacts, as 
well as the effect of the mask in reducing the spread of the virus, are not 
considered in this study. 

According to Eqs. (7)-(10), virus quanta concentration is directly 
related to the number of already infected people, which is determined by 
the occupant density in the building. As a result, as the occupant density 
increases, the virus quanta concentration value would increase, and 
consequently, infection risk and the number of newly infected people 
will increase. Fig. 5 shows the number of virus concentration for the 
university building. 

This figure shows the exponential relationship between quanta 
concentration and time. According to this figure, virus particles increase 
with the occupant density and as time passes, they start to inactivate and 
settle, and eventually, the existing virus particles in the building incline 
to a constant value which is determined by the other parameters. Fig. 6 
represents the infection risk of occupants depending on the number of 
occupants in the building and exposure duration. 

According to this figure, the more exposed the occupants are to 
others, the greater the risk of infection would be. Furthermore, as the 
occupant density increases in the building, the risk of infection, and 
accordingly the number of infected people would increase. According to 
this figure, staying 15 min in this building exposing to 300 occupants has 
the same infection risk as staying 60 min exposed to 100 people. 

4. Result and discussion 

4.1. Validation 

EnergyPlus is utilized for the energy simulation of this problem. 
Therefore, the equations and parameters of this model for the energy 
analysis are pre-defined in EnergyPlus. Many validations for this soft-
ware have been presented in various studies [70–72] which validates the 

Table 5 
Quanta generation rate for various viruses.  

Virus name Quanta generation rate (hr− 1) Ref. 

COVID-19 1–1000 [60] 
Influenza 15–500 [60–63] 
Rhinovirus 1–10 [60] 
Tuberculosis 1–50 [62,64–66] 
SARS 10–300 [61,67] 
Measles 570–5600 [45]  

Fig. 5. Changes in the virus quanta concentration over time with different numbers of occupants for the university building.  
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results of this software in building energy simulations. 
For COVID-19 virus infection risk, the number of infected people 

with the virus depends on a large number of indeterminate parameters 
that cannot be measured easily, which makes it difficult to accurately 
model this phenomenon. Moreover, there are many complex ways of 
virus transmission between people, but in this article, only the respira-
tory transmission risk is studied. In order to validate the mathematical 
model for estimating the number of infected people with the virus, data 
from several universities in the United States have been used as the 
validation references, which are gathered in Table 6 [73]. 

Infections that are reported by the universities, happen through 
various transmission mechanisms. Since the studied mathematical 
model only takes into account infection through droplets, the reported 
infections in the universities need to be limited to this mechanism for the 
sake of validation. It is reported that about 78–85% of COVID-19 

infections happen through droplets and close contacts with infected 
cases [74]. Therefore, by considering only the reported infections that 
have happened through droplets, the accuracy of the model varies from 
70% for the Central Michigan University to a maximum of 96% for the 
University of Washington. The resulted errors are mainly systematic 
errors (bias), which are originated from the inherent uncertainties (e.g. 
ignoring the facial masks, not having access to the actual presence 
pattern of students, ignoring the immune systems of occupants, etc.) 
[75,76]. Since no validations have been performed in this context 
before, there is no pre-specified acceptable range of accuracy for this 
validation. However, accuracy of the model in most of the cases is within 
the accepted accuracy range of some other related research models [77, 
78]. Therefore, the results successfully confirm the mathematical model. 

4.2. Cold season 

As a representative period for cold weather conditions, the range of 
January 1st to January 5th of 2020 has been chosen for the simulations. 
Fig. 7 shows the climatic conditions of the region in the mentioned 
period. It is concluded from Fig. 7.a that the HVAC systems have been 
able to adjust the PMV value to a constant number of 0 during work 
hours in variable climate conditions and therefore, it confirms the 
functionality of these systems. 

The result of this optimization problem would be a set of non- 
dominated chromosomes that form a Pareto front. This set of solutions 
provide a collection of the best possible solutions for the problem. The 
resulted Pareto front for the abovementioned period is shown in Fig. 8. 
According to this figure, the minimum number of infected people is 

Fig. 6. The relation between the infection risk with the exposure time and number of present people in the building.  

Table 6 
Virus transmission model’s validation data.  

University Name Total 
Students 

Closing 
Date 

Reported 
Infections 

Modeled 
Infections 

University of 
Berkeley 

31348 10 March, 
2020 

123 115.22 

University of 
Washington 

32000 20 March, 
2020 

249 220.56 

Central Michigan 
University 

19431 11 March, 
2020 

16 8.77 

Stanford 
University 

17249 10 March, 
2020 

99 71.51  

Fig. 7. (a) PMV value during the period of simulation and the ambient and building temperatures. (b) Wind speed and solar radiation levels for the case study during 
the winter days. 
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33.25 and the minimum energy consumption has resulted as 907.7 Wh/ 
m2 within 5 days. 

To make a comparison between the best and worst scenarios in terms 
of both energy consumption and infected people, a reverse optimization 
operation was performed which maximizes the objective functions. The 
obtained results of the best and worst occupant distributions in this 
building, based on the energy consumption and the infected people with 
the virus are given in Fig. 9. 

Fig. 9 represents a set of best and worst population distributions 
during the run period, for both objective functions. 

Fig. 9.a is representing a population distribution pattern with the 
lowest energy consumption in the building, which is 907.7 Wh/m2. 
According to this figure, a slight depression in the bars has happened at 

noon and about 150 occupants are present in the opening hours. This 
pattern can be utilized in buildings to consume the lowest amount of 
heating energy in the buildings. In this scenario, the maximum number 
of present occupants in a particular time is 150, meaning that no more 
than about 7.5 classes per hour should be held during these days to 
achieve the lowest amount of energy consumption. 

Fig. 9.b represents a pattern with the lowest infected people counts. 
The population distribution in the building within a day is almost uni-
form with an average amount of about 100 people. This is resulted in 
forming 5 classes per hour within these days. The total amount of 
infected people by this optimum pattern through 5 winter days is 33.24 
people. 

Fig. 9.c shows the case with the highest energy consumption within 

Fig. 8. Set of possible solutions for the optimization problem in winter days.  

Fig. 9. Minimum and maximum amounts of energy consumption and infected people in 5 consecutive days in winter. (a) Case with the lowest energy consumption of 
907.7 Wh/m2. (b) Case with the lowest infected people of 33.24. (c) Case with the highest energy consumption of 1332.3 Wh/m2. (d) Case with the highest infected 
people of 75.16. 
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this period. According to this figure, the population distribution is non- 
uniform and in some particular times of the day it reaches up to the 
maximum number of 245 occupants, while in some other hours it has the 
minimum number of 5 people. By comparing this figure with Fig. 9.a, it 
is observed that the occupant distribution patterns of these cases are 
opposite. The consumed amount of energy in this pattern is 1332.3 Wh/ 
m2, which is 47% more than the optimal model, shown in Fig. 9.a. 

Eventually, Fig. 9.d shows a pattern with the highest number of 
infected people. According to this figure, at certain times of the day, the 
number of occupants in the building are 245 and at the other certain 
hours, it is the minimum amount of 5, forming an extremely uneven 
population distribution. In this case, 75.16 people are infected with the 
virus within 5 days, which is 126% more than the optimal scenario of 
Fig. 9.b. This population distribution occurs when all the classes are 
simultaneously formed at certain hours of the day while no classes are 
formed at some other hours of the day, which as a result, drastically 
increases the number of infected people. Therefore, the occupant dis-
tribution in a building in winter has a major impact on the number of 
infected people and the energy consumption in the building. 

Fig. 10. a) PMV values during the period of simulation and the ambient and building temperatures. (b) Wind speed and solar radiation levels for the case study 
during the summer days. 

Fig. 11. Set of possible solutions for the optimization problem in summer days.  

Fig. 12. Minimum and maximum amounts of energy consumption and infected people in 5 consecutive days in summer. (a) Case with the lowest energy con-
sumption of 3163.7 Wh/m2. (b) Case with the lowest infected people of 33.46. (c) Case with the highest energy consumption of 3311.6 Wh/m2. (d) Case with the 
highest infected people of 59.58. 
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4.3. Hot season 

As a representative period for hot days, the range of July 1st to July 
5th of 2020 has been considered for simulations. The parameters of the 
simulation are the same as the cold seasons. Fig. 10 shows the climatic 
conditions of the region in the considered periods. From Fig. 10.a it can 
be concluded that the cooling systems have been able to fix the PMV 
value to 0 as well, just like Fig. 8. 

The set of optimum solutions for this optimization problem, forming 
a Pareto front, is shown in Fig. 11. According to this figure, the case with 
the minimum number of infected people has 33.46 infected people and 
the case with the minimum amount of energy consumption has 3163.7 
Wh/m2 energy consumption. 

Just like the winter case, discussed in section 4.3, a maximization 
problem is solved to identify the worst population distribution pattern 
and compare the results with the optimum ones. Fig. 12 represents the 
best and worst occupant presence pattern in the building in terms of 
energy consumption and the number of infected people. 

Fig. 12.a belongs to the case with the lowest energy consumption. In 
this model, the population distribution is not uniform and varies be-
tween the maximum and minimum count of 245 and 5 within a day, 

which results in the minimum energy consumption of 3163.7 Wh/m2 for 
5 days. According to the figure, the occupant distribution is aligned with 
the climatic conditions. 

Fig. 12.b shows the population distribution pattern with the lowest 
number of infected people with the virus in summer days, which is 33.46 
people within 5 days. According to this figure, the distribution of oc-
cupants within the working hours is almost uniform, with an average 
amount of 100 people, which is a result of forming 5 simultaneous 
classes per hour in the building, almost the same as Fig. 9.b. 

Fig. 12.c represents the highest energy consumption in the building 
through the run period. This pattern leads to consumes 3312.67 Wh/m2 

energy, which is 5% more energy than the case with the least energy 
consumption (Fig. 12.a). Therefore, it can be concluded that the occu-
pant distribution doesn’t tend to have a strong impact on the building’s 
energy consumption in the summer days, unlike the winter days. 

Fig. 12.d shows the occupant presence pattern with the highest 
infected people with COVID-19 virus. This pattern results in 59.58 infec-
ted people in summer, which is 78% more than the optimum pattern ob-
tained from Fig. 12.b. Therefore, the occupant distribution in this building 
within the summer days, has a major effect on the number of infected 
people, while having a slight impact on the overall energy consumption. 

Fig. 13. The relationship between the number of people and building air exchange rate with the COVID-19 infection risk.  

Fig. 14. The relationship between the air exchange rate with the energy HVAC energy consumption and the number of infected people with COVID-19 in 
the building. 
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4.4. Sensitivity analysis 

As shown in Eqs. (7) and (9), there are many parameters for speci-
fying the infected people numbers and also the building energy con-
sumption. Among these affecting parameters, the air exchange rate is 
one of the most important factors, determining the energy consumption 
and the number of infected people with the virus. According to Fig. 4, it 
is clear that in winter, the outdoor air temperature is less than the 
desired temperature in the room so that heating coils will require much 
more energy to adjust the room’s temperature. In the same way, in 
summer the outdoor air temperature is higher than the adjusted tem-
perature in the thermal zones and as a result, the cooling coils would 
require more energy to be able to retain the zone’s temperature in 
desirable conditions. So almost at any time of the year, increasing the 
fresh air flowrate would result in higher HVAC energy consumption in 
the building. The results obtained by Guo’s study also confirms this fact 
[32]. On the other hand, according to Eqs. (7)-(10), an increase in the 
outside air flowrate would result in more virus elimination rate (IVRR) 
in the zone and accordingly fewer existing virus particles in the room. 
Therefore, the risk of infection would decrease exponentially, and the 
number of infected people would fall. So, assuming that the other pa-
rameters of the virus transmission equation are constant, the time of the 
year wouldn’t affect this relationship and an increase in the fresh air 
flowrate would result in more virus elimination rate and will decrease 
the number of infected people with the same amount. Fig. 13 shows the 
relationship between the occupant count and air exchange rate with the 
COVID-19 infection risk in the building. 

To understand the effect of the air exchange rate and ventilation of 
the building on the energy consumption and the number of infected 
people, many air exchange rate values were considered for the building 
and the objective functions were evaluated for each. Fig. 14 represents 
the results of this analysis. According to this figure, as the air exchange 
rate increases, the number of infected people with the virus decreases 
exponentially, but the building energy consumption also increases. Air 
exchange rate value of 2.8 hr− 1 is obtained as the optimum value where 
two objective functions meet and can be introduced as the balance point 
for the building. 

As another important parameter in determining the energy con-
sumption and the number of infected people with COVID-19, the 
working hours of the university were further studied and analyzed. 
Extending the working hours of buildings means increasing the times 

that occupants are present in the building and therefore, HVAC systems 
need to operate longer. With any extension in the working hours of the 
building, despite having less dense occupant distribution within the day, 
HVAC systems would require more energy to provide the desired ther-
mal conditions for the occupants in these hours. So, extending the 
working hours of the building results in extra energy consumption in 
HVAC systems that varies by the temperature difference of the indoors 
and outdoors. As discussed earlier, extending the working hours of a 
building leads to a less occupant density within a day. According to Eqs. 
(7)-(10), less occupant density in a building comes with a lower number 
of already infected people (In) in the building. In consequence, this will 
decrease the virus particles in the building and so fewer people would be 
infected with the virus. Therefore, assuming that other parameters of 
virus transmission remain constant, any extent in the working hours of 
the buildings results in a lower number of infected people. In this regard, 
a uniform population distribution within a day was considered, and by 
changing the working hours of the university and the building, energy 
consumptions and the number of infected people were examined. 
Accordingly, the starting hour of the building is considered to be 6 a.m. 
and the closing hours vary from 2 p.m. to 9 p.m. The results of this 
investigation are shown in Fig. 15. According to this figure, as the 
number of working hours of the building increases, the population 
density decreases and so the number of infected people decreases as 
well, but the HVAC energy consumption rises. Moreover, it is concluded 
that increasing the working hours of the building from 12 to 13 h, de-
creases the number of infected people by 7.67% and in contrast, energy 
consumption in winter and summer increased by 24.11% and 5.4%, 
respectively. 

As another essential parameter affecting the number of infected 
people with COVID-19 and energy consumption, class duration time is 
examined. The class duration time is denoted as the exposure time (T) in 
Eq. (9), which has a direct relationship with virus infection risk and also 
with energy consumption. In the previous simulations, class durations 
were considered to be 1 h. In both winter and summer, any extension in 
the class duration means that HVAC systems need to work longer to 
provide thermal comfort for the occupants. So, it can be concluded that 
when a part of class time is dedicated to virtual learning to decrease the 
class duration, it is expected to have less energy consumption in the 
building. On the other hand, as the class duration is extended, the 
exposure time for the present occupants (T) increases. According to Eq. 
(7) and Fig. 5, virus quanta concentration in the building is indirectly 

Fig. 15. Changes in HVAC energy consumption and the number of infected people with COVID-19 in the building with different building working hours in winter 
and summer. 
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related to the time. So, as time passes, virus particles start to settle and 
deactivate and finally harmonize by the exhalation rate of the infected 
people and the air exchange rate. But on the other hand, Eq. (9) proves 
that longer exposure in a space with infected people increases the risk of 
infection. In general, it turns out that shortening the class duration re-
sults in a lower number of infected people. 

For further investigating the impact of class duration on the objective 
functions, the population distribution of the lowest infected people case 
in winter is selected as a study case. Fig. 16 represents the results of this 
examination. According to Fig. 16, it can be seen that reducing the class 
duration from 60 min to 40 min results in a reduction of 49.6% in the 
number of infected people with COVID-19 and respectively 28% and 
28.6% in energy consumption in winter and summer. Eventually, it can 
be concluded that reducing the class duration by allocating a part of it to 
virtual education, can have a significant impact on reducing the number 
of infected people and also energy consumption. 

5. Conclusion 

The purpose of this study was to investigate the impacts of the 
presence of occupants, air exchange rate, class duration, and working 
hours of a university building on the HVAC system’s energy consump-
tions and the number of infected people with COVID-19 in buildings. 
Many parameters affecting COVID-19 infection risk and energy con-
sumption exist in buildings, and in this paper, the four most dominant 
parameters that were more controllable and also their information were 
accessible, were chosen to study their effects on the objective functions. 
However, the results of this study show a strong relationship between 
these parameters and the objective functions. 

Most of the COVID-19 infections happen in public places, so by 
changing the occupant distribution pattern in these places, it was 
concluded that a uniform population distribution pattern can reduce the 
number of infected people by up to 56%. On the other hand, the most 
optimal population distribution in terms of energy consumption is one 
that varies by the climatic conditions, which can reduce energy con-
sumption by up to 32%. Additionally, it was concluded that with 
increasing the ventilation rate in buildings, the number of infected 
people greatly falls, but conversely, the HVAC system’s energy con-
sumption increases. Another examined important parameter is the 
working hours of the building. It was seen that extending the working 
hours of the university can reduce the number of infected people and 
shorter working hours in buildings can reduce the energy consumption 
in buildings. Furthermore, it was observed that as the class duration 

decreases, the number of infected people and the HVAC energy con-
sumption in the buildings decrease as well. 

Eventually, it can be concluded that during the global pandemic of 
COVID-19 or any other respiratory viruses, increasing the ventilation 
rate in the building as much as possible, reducing the class durations, 
and increasing the working hours of the university, can greatly reduce 
the number of infected people with the virus. Moreover, Virtual learning 
can be applied fully or along with in-person classes, which would reduce 
student attendance on campus. On the other hand, in non-epidemic 
conditions, by reducing the ventilation rate in the building, shortening 
the class durations and the working hours of the university, it is possible 
to save a significant amount of energy in the buildings. Therefore, by 
choosing the right approach with a proper tradeoff, it is possible to 
minimize the number of infected people by any virus and the HVAC 
energy consumption in buildings. 

Accordingly, towards eradicating the COVID-19 and any other res-
piratory viruses, governments should particularly focus on public places 
and enforce new rules. In this regard, all buildings are recommended to 
maximize the ventilation rate to reduce the infection risk and decrease 
the ventilation rate up to the allowed rate to consume less energy. 
Buildings that can schedule occupant’s presence (e.g. universities, 
clinics, beauty salons, etc.) can utilize a uniform population distribution 
pattern to significantly reduce the infection risk of COVID-19 and other 
respiratory viruses and utilize a climate-adaptive population distribu-
tion pattern to decrease the energy consumption. Buildings that have 
multiple attendees in a day (e.g. universities, malls, stores, clinics, etc.) 
can extend the working hours and shorten the presence time of occu-
pants to minimize the infection risk and can decrease the working hours 
to consume less energy. 
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