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A B S T R A C T

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19, a pandemic associated
with substantial morbidity and mortality. Despite of this, no vaccine or approved drug is available to eradicate the
virus. In this manuscript, we present an alternative study area that may contribute to development of diagnostic
biomarkers and therapeutic targets for COVID-19. We analyzed sixty SARS-CoV-2 genomes to identify regions that
could work as virus-encoded miRNA seed sponges and potentially bind to human miRNA seed sites and prevent
interaction with their native targets thereby relieving native miRNA suppression. MicroRNAs (miRNAs) are evo-
lutionally conserved single-stranded RNAs that regulate gene expression at the posttranscriptional level by dis-
rupting translation. MiRNAs are key players in variety of biological processes that regulate differentiation, de-
velopment and activation of immune cells in both innate and adaptive immunity. We find 34 miRNAs for positive-
sense viral RNA and 45 miRNAs for negative-sense that can strongly bind to certain key SARS-CoV-2 genes. The
disruption and dysfunction of miRNAs may perturb the immune response and stimulate the release of in-
flammatory cytokines altering the cellular response to viral infection. Previous studies demonstrate that miRNAs
have the potential to be used as diagnostic and therapeutic biomarkers. Therefore, its discovery and validation are
essential for improving the diagnosis of infection and clinical monitoring in COVID-19.

Dear Editor,

The SARS-CoV-2 outbreak started on December 2019 in China and
rapidly spread worldwide. This novel coronavirus can cause severe
acute respiratory syndrome and became an international health emer-
gency. Initial outbreaks in China involved 13.8% cases with severe, and
6.1% with critical courses (WHO, 2020). The immune response is vital
for the control and resolution of SARS-CoV-02 infections, while it can
also lead to cellular damage, associated with an exacerbated immune
response. There is a complex network of interaction between the virus
and infected host cells, in which microRNAs (miRNAs) have been re-
vealed to play a pivotal role (Girardi et al., 2018; Rupaimoole and
Slack, 2017).

MicroRNAs, the smallest endogenous regulatory non-coding RNAs,
play a central role in cell differentiation, proliferation and survival by
binding to complementary target mRNAs leading to translational in-
hibition or degradation. miRNAs are the crucial factor in a diverse
biological processes such as antiviral defense, oncogenesis and cell
development (Bartel, 2004). The miRNA-binding sites within viral
genomes are mostly located in the 5’and 3’non-translated regions
(NTRs) but have recently been found in the coding regions of viral
proteins (Girardi et al., 2018; Trobaugh et al., 2014; Zheng et al., 2013).
Various RNA viruses mimic or block the binding between a host miRNA
and its target transcript, a phenomenon mediated by the miRNA seed
site at the 5′ end of miRNA. We analyzed sixty SARS-CoV-2 genomes to
identify regions that could work as virus-encoded miRNA seed sponges
and potentially bind to human miRNA seed sites and prevent interac-
tion with their native targets thereby relieving native miRNA suppres-
sion.

We searched for miRNAs that shared 100% identity of the 8mer seed

region (Ellwanger et al., 2011) with SARS-CoV-02 genome regions,
both positive and negative-sense. Currently, the human genome con-
tains 2.654 mature sequences of miRNAs in miRBase database and >
1000 showed 100% of similarity between their seed sequences, im-
portant specific gene silencing motifs, and regions from the viral RNA.
We refined the search for miRNAs that interact with the SARS-CoV-2
genome with a perfect alignment of 11 nucleotides encompassing the
seed region.

Thus, we find 34 miRNAs for positive-sense viral RNA and 45
miRNAs for negative-sense that can strongly bind to certain key SARS-
CoV-2 genes. Once a candidate miRNA has been found, it becomes es-
sential to identify its targets to understand the molecular mechanisms
underlying the effect on the infection. We therefore conducted a lit-
erature review in this study to reveal the potential of these miRNAs in
the immunopathogenesis and potential treatment possibilities of SARS-
CoV-2 disease. Notably, these miRNAs play an important role in studies
with pulmonary and cardiac disorders, including lung cancer, asthma,
pneumonia, cardiac fibrosis, among others (Table 1). For example,
Bertrams and collaborators analyzed transcriptional networks of per-
ipheral blood mononuclear cells to identify central regulators and po-
tential biomarkers in community-acquired pneumonia (CAP), and acute
exacerbations (AE) that are episodes of aggravated chronic obstructive
pulmonary disease (COPD) symptoms and often co-occur with re-
spiratory infection. They identified several microRNAs, e.g. miR-545-3p
and miR-519c-3p, which separated AECOPD and CAP (Bertrams et al.,
2020). Already, Huang and collaborators show that a host miRNA, miR-
1290, is induced through the extracellular signal-regulated kinase
pathway upon Influenza A (IAV) virus infection and is associated with
increased viral titers in human cells and ferret animal models. These
findings point to a host species-specific mechanism by which IAV
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upregulates miR-1290 to disrupt vimentin expression and retain virus
ribonucleoprotein in the nucleus, thereby enhancing viral polymerase
activity and viral replication (Huang et al., 2019).

The differentially expressed (DE) miRNAs exhibit promising po-
tential for COVID-19 screening. MiRNAs levels can be monitored at
different stages during the progression of the infection on severely ill
patients. DE miRNA between early stages of infection and late stages
could potentially be used to aid anticipate prognosis. Thus, these small
RNA molecules may function as favorable clinical biomarkers for dis-
tinguishing the different clinical progressions of COVID-19, treatment
strategy selection, and outcomes. For example, SARS-CoV-2 infection
leads to fast activation of innate immune cells and change in the levels
of many pro-inflammatory effector cytokines, such as TNF, IL-1β, IL-6,
IL-8, G-CSF and GM-CSF, as well as chemokines, such as MCP1, IP10
and MIP1α, that are elevated in patients with COVID-19 (Huang et al.,
2020). The deregulated expression of some miRNAs can modulate
translation of transcripts occasioning in a decrease in the levels of im-
munomodulating factors that can inhibit or originate the inflammatory
response, thus acting as molecular brake to regulate inflammation
(Boldin et al., 2011). The expression levels of these miRNAs may offer
promising diagnostic value and severity prediction of inflammatory
response for COVID-19.

The role of cellular miRNAs is crucial when they are proviral, or
when a longer, persistent infection is established. A fantastic example of
use microRNAs is a significant reduction in virus titres (> 300-fold)
without no sign of a rebound in viral titres, even after discontinuation
of treatments in the Hepatitis C virus infection (Rupaimoole and Slack,
2017). The miRNA-based therapeutics for Hepatitis C virus infection is
performed using a antimiR (AntimiR-122), which had designed to bind
directly to the mature strand of the targeted miRNA-122 and thus to
induce a functional blockade. The miR-122 upregulates the replication
of the Hepatitis C virus RNA genome, having a key role in promoting
viral RNA stability (Jopling, 2005). miRNAs can be used as an entry
gate into regulatory networks that could be explored to find new un-
conventional therapeutic targets. Moreover, the use of antisense oli-
gonucleotides to block viral genome, can be the most straightforward
and easy to implement way toward new drugs therapy. For example, in
one study researchers developed four artificial microRNAs (amiRNAs)
that were designed to target different regions of Chikungunya virus
(CHIKV) genome. These amiRNAs significantly inhibited CHIKV re-
plication significantly (up to 99.8%) (Saha et al., 2016). In medicine,
miRNAs have been revealed as novel, highly promising biomarkers and
as attractive tools and targets for novel therapeutic approaches. As
candidate miRNAs begin to proceed toward clinical trials in virology
field, the landscape of both diagnostic and interventional medicine will
arguably continue to evolve.
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