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details of CoV2 with MHCs shall be a promising point for instigating the vaccine development. Envelope
(E) protein, the smallest outer surface protein from SARS-CoV2 genome was found to possess the highest antige-
nicity and is therefore used to identify B-cell and T-cell epitopes. Four novel mutations (T55S, V56F, E69R and
G70del) were observed in E-protein of SARS-CoV2 after evolutionary analysis. It showed a coil>helix transition
in the protein conformation. Antigenic variability of the epitopes was also checked to explore the novel mutations
in the epitope region. It was found that the interactions were more when SARS-CoV2 E-protein interacted with
MHC-I than with MHC-II through several ionic and H-bonds. Tyr42 and Tyr57 played a predominant role upon
interaction with MHC-I. The higher AG values with lesser dissociation constant values also affirm the stronger
and spontaneous interaction by SARS-CoV2 proteins with MHCs. On comparison with the consensus E-protein,
SARS-CoV2 E-protein showed stronger interaction with the MHCs with lesser solvent accessibility. E-protein
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can therefore be targeted as a potential vaccine target against SARS-CoV2.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The novel severe acute respiratory syndrome coronavirus 2, also
known as COVID-19 is an enveloped single-stranded RNA virus, which
belongs to the family Coronavirdiae [1]. It was first identified at
Wuhan in China in December 2019 [2], and since then it is spreading
worldwide, resulting into deadly 2019-20 coronavirus pandemic (as
declared by WHO in March 2020) [3] that affected millions worldwide.
The virion comprises a nucleocapsid having phosphorylated nucleocap-
sid (N) protein and genomic RNA. The N-protein resides inside phos-
pholipid bilayers [4]. It is enclosed by the spike glycoprotein trimer
(S). The envelope (E) protein and membrane (M) protein (a type III
transmembrane glycoprotein) reside between the S proteins on virus
envelope [4]. E-protein is enigmatic and the smallest structural protein
and resides on the outer surface of the virus. During replication, a minor
portion of this protein gets integrated into the virion envelope and then
expresses itselfin the infected cell [5]. The remaining portion localizes at
the site of intracellular trafficking. Here, it takes part into CoV assembly
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and budding, so it is essential for virus assembly and maturation [5]. The
paramount cause for such a rapid spread of the virus is its alarmingly
contagious nature with high reproductive rate and person-to-person
transmission via respiratory droplets [6].

The progression of SARS-CoV-2 depends on the interaction between
individual's immune system (include genetics (such as HLA genes), age,
gender, nutritional status, neuroendocrine-immune regulation, and phys-
ical status) and the virus [7]. The clinical symptoms in patients affected
with SARS-CoV-2 are highly unusual plus dry cough followed by fever,
dyspnea, respiratory choking and viral pneumonia [7]. While fusing into
the cells, its antigen will be presented to the antigen presentation cells
(APC). Antigenic peptides are presented by major histocompatibility
complex (MHC; or human leukocyte antigen (HLA) in humans) and
then identified by virus-specific cytotoxic T lymphocytes (CTLs). How-
ever, SARS-CoV induces the generation of double-membrane vesicles
where replication occurs. This hinders host detection of their dsRNA [8].
APCs can also be affected by coronavirus [9]. As the mechanism of entry
is unknown for SARS-CoV2, therefore, to inhibit the immune illusion of
SARS-CoV-2, it is essential to design its specific drug.

Absence of effective therapeutics and vaccines against this novel
virus is further escalating the infection. Thus, it serves an immediate re-
quirement to conquer this virus and protect the human race. The
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conventional approach to the production of vaccines relies heavily on
antigen expression from in vitro culture models. On the other hand,
the complete genome sequencing of the SARS-CoV2 or COVID-19 virus
has been accomplished [10] (GenBank ID: MN908947.3). This has cre-
ated an excellent scope to design novel subunit vaccines against SARS-
CoV2 via reverse vaccinology approach. The more rapid in silico ap-
proach towards vaccine development would be extremely helpful in
this urgent scenario.

The study focuses on utilizing different epitopes of the envelope pro-
tein of SARS-CoV2 to pave a pathway for vaccine development. The ge-
nome of SARS-CoV2 comprises nine protein coding genes, with three
proteins (surface glycoprotein, envelope protein and membrane glyco-
protein) present on the outer surface of the virus. The envelope protein
has been identified to have the highest antigenicity in SARS-CoV2. The
mutations and conformational changes in the SARS-CoV2 over the evo-
lution were also studied. After identification of potential B-cell and T-
cell epitopes, allergenicity testing, analysis of hydrophobicity, toxicity,
host non-homology analysis and antigenic variation evaluation were
done. The B- cell epitopes are those peptides that are recognized by sur-
face immunoglobulins of B-cells, while T-cell epitopes are presented by
MHC-I and MHC-II, which are recognized by CD8+ and CD4+ T-cells,
respectively. These assessments would improve the performance of
the selected vaccine candidates. The study also performed docking of
human leukocyte antigens (HLA) with T cell epitopes to explore their
interactions. The binding affinity values and dissociation constant
values were also evaluated for SARS-CoV2 and MHCs complexes as
well as for their consensus protein complexes. It, therefore, focuses on
utilizing E-protein as a potential vaccine target and also provides cues
towards subunit vaccine development. Therefore this study would insti-
gate novel vaccine development against SARS-CoV2, which would, in
turn, serve as a boon towards the survival of the human race.

2. Materials and methods

2.1. Identification of most antigenic outer protein of SARS-CoV2 and se-
quence analysis

COVID19 genome has GenBank ID: MN908947.3. Out of essential
three proteins (E, M and S protein) that constitute the outer surface of
the virus, E protein was identified as most antigenic executing Vaxijen
v2.0 [11] server (VaxiJen score: 0.6025), while M and S protein has
lower VaxiJen score of 0.5102 and 0.4646, respectively. Thus E protein
is the most powerful antigen and has potential to elicit highest immune
response. Through the usage of Virus-mPLoc [12], the localization site in
the host cell where the viral protein resides after its fusion, was ana-
lyzed. To analyze the evolutionary divergence of E-protein of SARS-
CoV2 with that of other CoV strains, the homologous sequences (having
sequence identity >50% and query coverage >90%) were retrieved uti-
lizing PSI-BLAST [13]. All the E protein sequences other than envelope
protein of SARS-CoV2 were used to build a consensus sequence utilizing
Unipro UGENE software [14]. The pair-wise alignment using EMBOSS
WATER [15] was performed between the E-protein of SARS-CoV2 and
the consensus sequence of E-proteins of closely related viruses to reveal
the amino acid changes that accumulated in E-protein of SARS-CoV2.
Phylogenetic tree comprising all the homologous proteins was con-
structed using Phylogeny.fr, where the alignment was achieved through
MUSCLE and the tree was constructed by PhyML program using maxi-
mum likelihood algorithm [16].

2.2. Modeling modeling of SARS-CoV-2 E-protein and the consensus E-protein

For building the three-dimensional structures of SARS-CoV-2 E-
protein and the consensus E-protein, first, Swiss Model [17] and
Phyre2 [18] were utilized for homology modeling and fold recognition
processes, respectively. These two methods failed to predict the com-
plete 3D structure, so the ab-initio method using QUARK [19] was
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utilized. The ab-initio molecular modeling relies on de novo prediction
of protein's 3D structure from its amino acid sequence without using
template information. [19].

2.3. Energy minimization and molecular dynamics of modeled protein

The modeled proteins were then subjected for energy minimization
using ModRefiner to remove the distorted geometries and the most in-
teractive state was tried to achieve in terms of backbone topology, hy-
drogen bonding, atomic orientation etc. [20]. Distortions in the loop
regions were further optimized using ModLoop to achieve proper con-
formation of Y- angles [21].

3DRobot [22] was utilized to generate conformations (decoys) of the
modeled structures. It uses TM-align to select templates from the PDB
library [22]. Replica exchange Monte Carlo simulation was utilized to
generate decoys using the templates [22].An atomic-level two-step iter-
ative energy minimization procedure was utilized to remove steric
clashes. Thus, improved hydrogen bonding network was achieved by
using this procedure [22]. In this study, 9 decoys were generated from
each of the two models using RMSD cut-off 12 A.

2.4. Selection of the modeled structure

Protein models were checked to have no residues in the disallowed
region in Ramachandran plot through PROCHECK [23] and the ERRAT
value was also analyzed [24]. Through Protein Quality Predictor
(ProQ) server, overall protein quality was checked through LG score
and MaxSub score [25]. For a model to have satisfying quality, the LG
score>1.5 and MaxSub score>0.1 is desired [25]. Z-score was also eval-
uated by ProSA for supporting the proper protein quality [26]. The best
models were selected based on the aforementioned parameters.

2.5. Conformation analysis

The extent of conformational deviation between E-protein of SARS-
CoV-2 and other related viruses were predicted through comparison
of different structural units like helices, 319 helices, coils, strands etc.
were calculated through STRIDE [27]. This would help to understand
how the E-protein of SARS-CoV-2 has been structurally evolved from
other related viruses.

2.6. B-cell and T-cell epitope identification and analysis

ABCpred server [28] using neural network algorithm helped to pre-
dict the B-cell epitopes, keeping 0.5 as threshold and amino acid length
as 10. The T-cell epitopes of MHC-1 and MHC-II were predicted using
two IEDB servers through neural network algorithm [29,30]. These
servers also identified the most probable HLAs where the epitopes
bind [30,31]. MHC-1 binding T-cell epitopes were also predicted by
NetCTL1.2 server [32] and the consensus predicted epitopes by two
servers were considered. The antigenicity of the individual predicted
epitopes was then carried out by VaxiJen v2.0 [11]. The AllerTOP v.2.0
server [33] was utilized to predict which epitope peptides are probable
allergens. The epitopes that were found to be non-allergens were con-
sidered for further analysis. The prediction of net toxicity and hydro-
phobicity of epitopes were carried out through ToxinPred server [34].
To avoid epitopes demonstrating cross reactivity against the host's
own proteins, host non-homology assessment was performed by sub-
jecting the epitope sequence to BLASTp [35] against human proteome.
The e-value cutoff of 0.01 was set. No epitopes must be homologous to
human's own protein to avoid autoimmune responses.

2.7. Antigenic variability of SARS-COV-2

The antigenic variability was determined using Pepitope analysis [36].
It is calculated from:
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Pepitope = (number of amino acid differences in the dominant
epitope) <+ (total number of amino acids in the dominant epitope).
The pPepitope Calculated was based on residual differences between epi-
tope regions of SARS-COV-2 E-protein and the corresponding residues
of the E-protein of the consensus sequence.

2.8. Molecular docking and interaction studies

The docking of the E-proteins (SARS-CoV2 and consensus) with the
predicted most probable binding HLAs was carried out using PatchDock
[37] to analyze their interactions and binding affinity. PatchDock has
shown very high efficiency for protein-protein or protein-ligand
docking that uses an algorithm verified by benchmark 0.0 and Critical
Assessment of PRediction of Interactions (CAPRI) for antigen-antibody
and other protein complexes [37]. It performs docking based on geo-
metric shape complementarity in proteins, where molecules are divided
into flat, convex and concave surfaces and only surface with shape com-
plementarity will be docked [37]. The algorithm used by PatchDock en-
sures wide interface areas with negligible steric clashes and was
observed to create complexes in near-native state for most of the cases.

The selected T-cell epitope regions were used binding sites during
molecular docking. Out of 20 solution complexes, solution 1 model
was chosen having the best geometric shape complementarity score.
The interaction and binding patterns in the complexes were then ana-
lyzed using Protein Interaction Calculator (P.I.C), where the longer res-
idue protein was considered as receptor, while the other one as ligand
[38]. Hydrophobic bonds, H-bonds and ionic (cation-pi) bonds were fo-
cused upon. The interactions were also analyzed through PyMOL [39]
for consensus results. Presence of ionic interaction [40] is well docu-
mented to strengthen the protein complex interaction. Net solvent ac-
cessibility was evaluated for each of the residues in the epitope
regions as well for the individual epitopes after their respective interac-
tions [41].

2.9. Binding affinity and Kp calculation of the docked complexes

PRODIGY (PROtein binDIng enerGY prediction) was utilized to cal-
culate the binding affinities and dissociation constants for the docked
complexes of MHC-I and MHC-II [42]. It uses intermolecular contacts
to find out binding affinities in docked complexes. Total six docked com-
plexes were used to find out the binding affinity and Kp, values. Binding
affinity and dissociation constant were expressed in terms of AG value
(kcal/mol) and Molar (M), respectively. The temperature set for the cal-
culation was 37 degree centigrade.

3. Results and discussion
3.1. Evolutionary divergence of SARS-CoV2 envelope protein

The PSI-BLAST [13] against E-protein of SARS-CoV2 revealed 32 ho-
mologous envelope proteins from other CoV strains, having e-value
<0.005, query coverage >90% and sequence identity >50%. The
evolutionary relationships were depicted by the construction of a
phylogenetic tree, which has been demonstrated in Fig. 1 (a). The E-
protein of SARS-CoV-2 (QHD43418.1) is the most closely related one
to E protein of “Severe acute respiratory syndrome-related coronavirus”
(AP0O40581.1). This virus was known to cause a large-scale epidemic in
China in 2002-2003 with high mortality rate [43]. On the other hand, E-
protein of SARS-CoV-2 is the most distantly related to that of BtRf-
BetaCoV/SX2013 (AIA62302.1), BtRs-BetaCoV/HuB2013 (AIA62312.1)
and BtRf-BetaCoV/JL2012 (AIA62280.1) strains.

3.2. Analysis of mutations in SARS-CoV2 envelope protein

In order to analyze the extent of mutations in the E-protein of SARS-
CoV-2, the amino acid changes between E-protein of SARS-CoV-2 and
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the consensus E-protein of other closely related CoV strains were com-
pared. The consensus sequence was achieved through MSA, based on
which amino acids are likely to be present in most of the sequences.
The consensus sequence, therefore, gave the best representation of all
the homologous sequences. To detect the amino acid mutations accu-
mulated in E-protein of SARS-CoV-2, the pairwise alignment between
SARS-CoV-2 E-protein and consensus E-protein was accomplished as
depicted in Fig. 1(b). From the pair-wise alignment, three point muta-
tions (T55S, V56F and E69R) and one amino acid deletion (G70del)
were observed to occur in E-protein of SARS-CoV-2. Presence of any
such mutations in the protein's epitope region would affect the protein's
overall epitope's structure, antigenicity and in turn vaccine develop-
ment, which was described in later sections.

3.3. Analysis of conformational changes between SARS-CoV-2 E-protein and
consensus E-protein of other CoV strains

The best model of E-protein and its respective consensus were cho-
sen based on their maximum satisfaction of the stereo-chemical param-
eters (Suppl.Table 1) with no residues in the disallowed regions of the
Ramachandran plot. The 5th model and the 2nd model were observed
to be the best models for E-protein and consensus, respectively
(Suppl. Table 1). Significant differences in the structures of the two
models (Fig. 2) were observed. The exploration of its secondary
structure revealed a net loss of helices in N-terminal and its gain in
the C-terminal in SARS-CoV-2 E-protein compared to the consensus E-
protein structure. Two point mutations (T55S, V56F) caused coil=>helix
transformation and mutation E69R and G70del causes turn->helix
transformation in that particular location. For both the cases, the protein
is acquiring more rigid and structured conformations.

3.4. B-cell and T-cell epitope identification and analysis

A total of five B-cell epitopes (Suppl.Table 2) were identified in the
protein that has the potential to bind to the surface immunoglobulin
of the B-cells and trigger production of antibodies. MHC-I binding and
MHC-II binding T-cell epitopes were identified to be three and seven, re-
spectively (Suppl.Table 3-4). These epitopes bind to MHC-I and MHC-II
respectively and are presented to T-cells. The most probable binding
HLAs (one with lowest percentile rank) for each epitope were also re-
vealed (Suppl.Table 3-4). The prediction of antigenicity of the individ-
ual epitopes demonstrated that the epitopes have high antigenicity
value except one B-cell and one MHC-II binding T-cell epitope with
low antigenicity value (VaxiJen score<0.4) (Suppl.Tables 2 and 4).
These epitopes, therefore, were excluded. The assessment of allergenic-
ity revealed that one MHC-I binding T-cell epitope and two B-cell epi-
topes are probable allergens, thus have the potential to provoke type-I
hypersensitivity reactions. One B-cell and one MHC-II binding T-cell epi-
tope was seen to have the potential of showing toxicity (Suppl.
Table 2-3). These epitopes, therefore, must not be considered during
vaccine development. Thus only the epitopes identified as probable
non-allergens were considered for further analysis. Host non-
homology assessment revealed that no selected epitopes have signifi-
cant homology with human proteins with an e-value cutoff of 0.01.
Thus the epitope peptides are pathogen specific and thus would gener-
ate minimum autoimmune response. The prediction of hydrophilicity
and hydrophobicity demonstrated a net hydrophobic nature in most
of the predicted epitopes (Suppl.Table 2-4). However, for an epitope
to be properly exposed to the aqueous environment, lesser hydropho-
bicity is preferred. B-cell epitope, satisfying all above criteria like
“ILTALRLCAY” and MHC-I binding T-cell epitopes like “LTALRLCAY”
and “VSLVKPSFY” would be a better candidate in terms of lowest hydro-
phobicity (Table 1). MHC-II binding T-cell epitope ‘LAFVVFLLVTLAILT’
have the highest hydrophilicity value (Table 1) and thus, is more prob-
able to be exposed for better interaction with immune cells (Suppl.
Table 4). This epitope also had highest immunogenicity score and thus
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Fig. 1. (a) Phylogenetic tree depicting the evolutionary relationship of SARS-CoV-2 with other CoV strains. (b) The pairwise alignment between SARS-CoV-2 E-protein and consensus E-
protein of other related CoV strains. [The amino acid differences in pairwise alignment were highlighted yellow.]
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Table 1
List of selected B-cell and T-cell epitopes.
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B-cell epitopes T-cell epitopes

Epitope Position Epitope Position Most probable binding HLA

MHC-I binding
VFLLVTLAIL 25-34 LTALRLCAY (T1) 34-42 HLA-A*01:01 (PDB ID: 6AT9_A)
ILTALRLCAY 33-42 VSLVKPSFY (T2) 49-57 HLA-A*30:02 (PDB ID: 6J2A_A)
LLFLAFVVFL 18-37 MHC-II binding (Best epitope)

LAFVVFLLVTLAILT (T3) (Core peptide: VFLLVTLAI) 21-35 HLA-DRB1:15:01 (PDB ID: 5V4M_C/F,I,L)

The epitope positions were found to be same for the SARS-CoV2 E-protein and consensus E-protein.

was considered as best MHC-II binding epitope and thus selected for
further studies. All the selected SARS-CoV-2 E-protein epitopes used in
further studies were listed in Table 1.

3.5. Antigenic variability of the identified epitopes

The B-cell and T-cell epitopes were analyzed for their antigenic var-
iability. It highlighted the epitopes to have the residues that got specif-
ically mutated in SARS-CoV-2 E-protein when compared to the
consensus sequence. The antigenic distances of all the epitopes are
zero except in two (one MHC-1 Binding “VSLVKPSFY” and another
MHC-II binding core peptide: ‘FYVYSRVKN’) with antigenic distance of
0.22 and 0.11, respectively. The production of vaccine targeted epitopes
with no antigenic distance (antigenically conserved) is longer lasting

(b) lnleracllon between T1 and HLA A*01:01

Key: [] HLA-A*01:01 [l HLA-A*30:02

and successful, even when the pathogen mutates into a more powerful
strain. However, epitopes having non-zero antigenic distance helps to
explore some novel mutations in SARS-CoV-2. These epitopes contain
two important point mutations at amino acid level (TS and V-F) in
novel SARS-CoV-2 (Fig. 1 (b)). Comparing the conformation of this epi-
tope region in E-protein of SARS-CoV-2 with consensus E-protein, as de-
scribed in Section 3.3, there is a notable transition from coil->helix in
this epitope region. This might change the epitope's overall interaction
with their corresponding HLAs.

3.6. Interactions and binding patterns

Docking of the selected T-cell epitopes with the respective and most
probable binding HLAs (Table 1) was done to analyze their binding

a) Interaction between MHC2 binding
epitope T3 and HLA-DRB1:15:01

A Key:

/ \ SARS-CoV-2 E protein
] HLA-DRB1:15:01 A-chain
HLA-DRB1:15:01 B-chain
[ HLA-DRB1:15:01 C-chain
] HLA-DRB1:15:01 D-chain

(¢) Interaction between T2 and HLA-A*30:02

Interacting residues in receptor (HLAs) :

O nteracting residues in Ligand (T-cell epitopes) .

Fig. 3. Major hydrogen-bonding (black-dots) and ionic (blue-dots) interactions between different T-cell epitopes and their corresponding HLAs [F, C, I, L chains of PDB ID: 5V4M (HLA-

DRB1:15:01) was renamed to A, B, C and D chains respectively by Discovery Studio].
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patterns and residues involved. Interaction with MHC-I was observed to
get accomplished through two different epitope regions namely T1 and
T2 of SARS-CoV-2 E protein and consensus E-protein. Asp38 and Tyr42
from T1 epitope from SARS-CoV-2 E-protein played a major role in H-
bond. Apart from H-bond interactions, Tyr42 was also involved in
cation-pi interaction. Majority of non-covalent interactions were done
by Tyr57 from T2 with GIn96 from A chain of MHC-I. No ionic interac-
tions were observed from MHC-II protein while 32nd, 34th and 35th
residues from T3 epitope of E-protein interacted in majority to form
the H-bonds with MHC-II (Suppl. Table 5-7).

Mainly, A-chain of MHC-I and MHC-II was observed to play a chief
role. Altogether, the interactions through MHC-I was found to be more
dominating for forming stronger binding patterns with numerous side
chain- side chain and ionic interactions. The ionic interactions created
a charged environment for the partner protein. All the major interac-
tions have been depicted in Fig. 3. On the contrary, from the consensus
sequence of E-protein, only Cys40 and Ala41 from T1 epitope were ob-
served to form three and two H-bond interactions with GIn115 and
Asp122, respectively of MHC-I (Suppl. Table 8). 52nd, 53rd and 57th
residues played a dominant role from T2 from the consensus E-protein
with MHC-I. Tyr57 got involved in cation-pi interactions along with hy-
drophobic interactions (Suppl. Table 9). On the other hand, only few
residues in H-bonded non-covalent interactions were observed in con-
sensus T3 epitope with MHC-II (Suppl. Table 10).

Comparison between ASA of SARS-Cov2 E-protein versus Residues from
Epitope 1 (T1) of MHC-I
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Table 2
Calculation of binding affinities and dissociation constants.

Complex name/ parameters Binding affinity ~ Dissociation constant
(AG in kcal/mol)  in molar units (Kd)
MHC-I_SARS-CoV2 E protein complex — —19.35 3.25E-14
MHC-I_Consensus E protein complex —18.15 3.60E-12
MHC-II_SARS-CoV2 E protein complex —22.8 8.00E-17
MHC-II_Consensus E protein complex ~ —17.9 2.40E-13

3.7. Evaluation of solvent accessible surface area (ASA)

Lesser solvent accessible surface area (ASA) was observed for either
of the MHCs when interacted with SARS-CoV2 E-protein in comparison
to their interaction with consensus E-protein. This also supported the
interaction results (Suppl. Table 5-10). The net solvent accessibility
value after T1 and T2 from SARS-CoV2 E-protein interacted with MHC-
[ was observed to be 464.19 A% while that after consensus E-protein
interacted with MHC-I was found to be 854.53 A? (Fig. 4). Similarly,
169.94 A% and 376.89 A? were the solvent accessibilities when MHC-II
interacted with SARS-CoV2 E-protein and consensus E-protein, respec-
tively (Fig. 4). This implies that better interaction have taken part
from the evolutionarily evolved SARS-CoV2 E-protein in comparison
to the consensus E-protein. Fig. 4 gives the detailed evaluation for the
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Fig. 4. Comparative analysis for residue wise solvent accessibility values for SARS-CoV2 E-protein and consensus E-protein after they interact with their respective MHCs.
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residue based solvent accessibility along with the net solvent accessibil-
ity from the epitopes with MHCs.

3.8. Analysis of binding affinities for the docked complexes

The binding affinities for MHC-I and MHC-II complexes bound indi-
vidually with SARS-CoV2 protein complex were observed to have
higher AG values and lower dissociation constants, in comparison to
their respective complexes with consensus E-protein (Table 2). There-
fore, SARS-CoV2 forms a spontaneous interaction with MHCs. This,
once more affirms the stronger interaction as well.

4. Conclusion and future scope

The outer SARS-CoV-2 envelope (E) protein was studied to be most
antigenic and thus would allow better interaction with immune cells.
This protein is also the smallest outer surface protein, therefore easier
for recombinant production. Through an evolutionary analysis of
SARS-CoV-2 E-protein, four novel mutations (T55S, V56F, E69R and
G70del) were observed to occur in E-protein of SARS-CoV-2 when com-
pared to the consensus E-protein of other related viruses. These muta-
tions altered lead to a massive conformational shift from more flexible
coil/turn to more structured, stable and rigid helix, at the mutation
site. This study also focused on designing potential B-cell and T-cell epi-
topes that could be used for the development of subunit vaccines. Those
epitopes were also computationally screened for unwanted effects to
host such that they should not show allergenicity, toxicity or cross-
reactivity when administered to an individual. Three B-cell epitopes
(VFLLVTLAIL, ILTALRLCAY and LLFLAFVVFL), two MHC-I binding
(LTALRLCAY, VSLVKPSFY) and an MHC-II binding (VFLLVTLAI) were
identified as the best epitopes for development of future subunit vac-
cine. The epitopes were also analyzed for their antigenic variability to
check the epitope that had residues which got specifically mutated in
SARS-CoV-2 E-protein when compared to the consensus sequence of
all other strains. All the epitopes were observed to be highly conserved
except ‘VSLVKPSFY’ that have two SARS-CoV-2 specific point mutations:
T-S and V-F that caused a coil->helix transition in its structure. Con-
served epitopes would serve as long lasting vaccines, while this epitope
with novel mutations would provide further scope to study the virus
evolution and understand their effects on vaccine development. This
study also analyzed the non-covalent interactions with the T-cell epi-
topes and their corresponding binding HLAs through molecular
docking. It was observed that the predominant ionic and side chain-
side chain interactions were numerous and were giving a more stable
and strengthening interaction through MHC-I epitopes in comparison
to MHC-II epitope, when interacted with E-protein. GIn96 (MHC-I)
and Tyr57 (E-protein) was found to play a predominant role with sev-
eral interactions. Tyr42 from T1 epitope of E-protein formed several
H-bond interactions as well as ionic interaction with Arg48 from
MHC-I. Leu34 and Thr35 from E-protein formed several H-bond interac-
tions with MHC-II. Moreover, T-cell epitopes in SARS-CoV-2 E protein
showed more interactions with HLAs than the consensus E-protein.
Moreover, the stronger and spontaneous interaction by SARS-CoV2
with the MHCs was also supported through the evaluation of higher
AG values and lower dissociation constants, on contrary to the consen-
sus E-protein involved complexes. These stronger interactions would
trigger higher levels of T-cell activation, which in turn might cause
higher immune response. The net solvent accessibility for SARS-CoV2
E-protein after interaction with its respective MHCs showed a stronger
and better interaction in comparison to the consensus E-protein. This
might serve SARS-CoV-2 E protein as a better vaccine target. This
residue-level analysis helped to explore the detailed structural evolu-
tion of SARS-CoV-2 E-protein and therefore paves the way towards
using E-protein for vaccine development against SARS-CoV-2. Vaccine
development and clinical trials would serve to be effective only after
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analyzing the residual and structural details of a particular protein and
there stands this study to be novel and worthily paramount.
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