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A B S T R A C T   

This paper presents a computer simulation of a virtual robot that behaves as a peptide chain of the Hemagglutinin- 
Esterase protein (HEs) from human coronavirus. The robot can learn efficient protein folding policies by itself and 
then use them to solve HEs folding episodes. The proposed robotic unfolded structure inhabits a dynamic 
environment and is driven by a self-taught neural agent. The neural agent can read sensors and control the angles 
and interactions between individual amino acids. During the training phase, the agent uses reinforcement 
learning to explore new folding forms that conduce toward more significant rewards. The memory of the agent is 
implemented with neural networks. These neural networks are noise-balanced trained to satisfy the look for 
future conditions required by the Bellman equation. In the operating phase, the components merge into a wise up 
protein folding robot with look-ahead capacities, which consistently solves a section of the HEs protein.   

1. Introduction 

In present days, viral infection is a matter of great concern because a 
massive spread of a virus can significantly impact the well-functioning of 
society. This catastrophic effect has been painfully witnessed by the 
brutal blow of COVID-19 caused by the virus SARS-CoV-2 (Severe acute 
respiratory syndrome coronavirus-2) (Gorbalenya et al., 2020). 
SARS-CoV-2 is one of the seven known coronaviruses to infect humans, 
including: HCoV-HKU1, HCoV-229E, HCoV-NL63, HCoV-OC43, 
MERS-CoV, SARS-CoV, and SARS-CoV-2 (Lai and Cavanagh, 1997; Hu 
et al., 2015; Su et al., 2016; Cui et al., 2019; Chan et al., 2020). 

The infection pathway of the coronaviruses occurs when the Spike 
(S) protein, a viral membrane protein, is attached to specific receptors 
found in the surface of the host cell. This interaction triggers a confor-
mational change in the Spike protein and stimulates membrane fusion 
between the viral and cell membranes (Lim et al., 2016). Hemag-
glutinin-Esterase, a glycoprotein present in some of the coronaviruses, 
helps in this attachment and in the destruction of certain sialic acid 
receptors of the host cell (Huang et al., 2015; Lang et al., 2020; Zeng 
et al., 2008). 

Effective infection depends on virus-host cell interactions, 

specifically on the structure of viral and host proteins; consequently, 
knowledge of protein folding mechanisms is crucial to develop a strategy 
for virus control (Doms et al., 1993). 

Artificial Intelligence (AI) plays an important role in modern protein 
folding research. Qin et al. (2020) presented a neural network model 
capable of learning how a specific amino acid sequence folds into a 
protein structure. Similar studies also tackle the protein folding problem 
using deep learning, machine learning, and other variations of neural 
networks (Xu, 2019). Lately, significant advances have been reported 
about deep reinforcement learning algorithms and self-taught agents 
(Chang et al., 2018b; Anjomshoae et al., 2019). For example, deep 
reinforcement learning and self-taught agents are now capable of out-
performing humans in playing video games by watching pixels on the 
screen. This technique can also be adapted to learn about the protein 
folding problem. 

This paper describes a robotic structure that simulates a stable pep-
tide chain embedded inside the Hemagglutinin-Esterase. This robotic 
structure is controlled or driven by a self-taught agent with the capacity 
to explore for future rewards and learn by itself the efficient protein 
folding policies required to create the strong local bond between 
cysteine (C) amino acids and hydrogen bonds to form an anti-parallel 
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β-pleated sheet. Our model uses a combination of robotics, artificial 
neural networks, gradient descent, and reinforcement learning. We 
prove that using a subjacent robotic structure, an efficient protein 
folding process (policy), can be learned by a self-taught agent. 

1.1. Protein folding 

The peptidic region from the protein HCoV – HKU1, Hemagglutinin- 
Esterase (HEs) was chosen to test the capacities of the virtual robot/agent 
to learn efficient folding policies. HEs structure consist of two identical 
polypeptide chains; each polypeptide contains three important domains: 
the membrane proximal domain (MPD), the esterase domain (E), and the 
receptor domain (R) (de Groot, 2006). (Fig. 1A). 

Based on the recent solved structure of HEs (Hurdiss et al., 2020; 
Sehnal et al., 2018), RCSB Protein Data Bank (www.rcsb.org), the re-
ceptor domain is constituted by eleven secondary structures: one α-helix 
and 10 β-strands. The formation of a secondary structure is the first step 
in the folding process that protein takes to assume its native structure. 
Two of these β-strands form an anti-parallel β-pleated sheet structure 
stabilized by a disulfide linkage and hydrogen bonds between the amino 
acids in both sequences: 182LYLVPLCL189 and 218DCIYI222 (Fig. 1B). 

To analyze the folding of this structure, the sequence from residue 
190 to residue 217 was replaced by a β-turn structure with the following 
amino acids: GSPN. Then, the final peptide to test the self-taught ca-
pacity of the proposed agent becomes: 1LYLVPLCLGSPNDCIYI17 

2. Related work 

The use of artificial intelligence in protein folding has recently 
become of much interest. The latest studies have focused on determining 
which is the most stable configuration of proteins (Noé et al., 2020; 
AlQuraishi, 2019). 

AlphaFold (Senior et al., 2020) is a program belonging to Google, 
created to predict how proteins will fold themselves. The process is 
based on the principle that it is possible to infer which amino acid res-
idues are in contact by analyzing co-variation in homologous sequences, 
which aids in the prediction of protein structures. AlphaFold shows that 
it is possible to train a neural network to make predictions of the dis-
tances between pairs of residues in an efficient way, with highly accu-
rate results. This process gives more information about the structure of 
the protein. The system is optimized by gradient descend algorithm, and 
it represents a considerable advance in protein-structure prediction. In 
other recent works a Multi-scale Neighborhood - based Neural Network 

(MNNN) is proposed (Qin et al., 2020). The method focuses on 
alpha-helical proteins (as found in skin, hair, and many other mechan-
ically relevant protein materials), and it is designed to learn how a 
specific amino acid sequence folds into a protein structure. The algo-
rithm predicts the protein structure without using a template or 
co-evolutional information having a maximum error of 2.1 Å. Finally, 
the method finds that the prediction accuracy is higher than other 
models, and the prediction consumes less than six orders of magnitude 
time than ab initio folding methods. MNNN is a relevant method because 
it can predict the structure of an unknown protein that agrees with ex-
periments. Therefore the model presents a great advantage in the 
rational design of new proteins. 

Other AI techniques have been tried before. In (Staples et al., 2019) 
AI methods and features are proposed, which explore new methods 
based on Reinforcement Learning and Support Vector Machine. Many of 
these methods require enormous computational power, however in (Xu, 
2019) it is shown that using a powerful deep learning technique, even 
calculated with a personal computer one can predict new folds much 
more accurately than ever before. This method also works well on 
membrane protein folding. 

3. Self-taught neural agent 

In previous work (Chang et al., 2018a), we proposed an autonomous 
neural controller (ANC) capable of handling the mechanical behavior of 
a virtual, multi-joint robot, with many moving parts and sensors 
distributed through the body. This robot has an internal neural ar-
rangements that burns “dark energy” (Raichle, 2006), energy that seems 
to go nowhere, and generates behavior initiation by itself. This capacity 
is utilized first to create a learning agent that acquires good strategies or 
policies and second to assemble a robot whose mechanical dexterity is 
driven (controlled) by such self-taught agent, behaving as a Markov 
process. This agent is capable of running several thousands of learning 
episodes, after which the robot is capable of learning to efficiently lift by 
body contortions a heavy ball lying on the floor. 

For this paper, the model is adapted as follows: the peptide chain is 
constructed with a set of 17 moving parts, each of them representing one 
amino acid supported by a rigid structure, and having a set of close- 
range sensors, responsible for sensing and process near molecular forces. 

The associated self-taught neural agent is assembled with 17 
sigmoidal neurons, inhibiting each other with balanced negative 
weights and sharing a common self-activating excitatory input ramp K, 
that forces all participant neurons in racing toward a 1.0 output. During 
a ramp, after a certain time, one participant (winner) will cross a 
threshold (end line), and values will be assigned to the agent outputs, 
according to the arrival order of the other neurons. Continuously added 
internal noise makes the race balanced and unpredictable (random). The 
structure of the self-taught neural agent is shown in Fig. 2. 

The race output is converted to a vector of bounded positive and 
negative number through the formula: 

delta angle[i] = alpha*out agent[i] − 0.7 (1)  

where alpha controls the degree of folding deformation of per cycle and 
the value 0.7 is an offset required to generated positive and negative 
amounts. 

Being an intrinsic neural structure, this trainable energy-burning 
network is used as the propelling element of the peptide chain folding, 
creating a dynamic ever moving creature. Before it becomes an efficient 
folder, the agent needs to develop adviser networks that will undergo an 
algorithmic training process where knowledge about folding is acquired 
and store through reinforcement learning principles. This clue infor-
mation is finally saved in the weights (synapses) of a well-trained 
network. Once this goal is achieved, the network becomes an adviser 
to the agent, which can now take wise Markov decisions (see Fig. 3). 

When isolated from the world in each race, the agent generates a set 

Fig. 1. A. Ribbon representation of the dimeric Hemagglutinin-Esterase and 
domains: Membrane proximal domain (red), esterase domain (green) and re-
ceptor domain (blue); dotted square indicates the β-pleated used in this study 
(modified from (Hurdiss et al., 2020)). B. Anti-parallel β-pleated sheet from the 
receptor domain of Hemagglutinin-Esterase. Cysteines amino acids covalently 
linked in yellow, hydrogen bonds between amino acids in dotted lines (Image 
created using Mol*((Sehnal et al., 2018)), PDB-ID:6Y3Y (Hurdiss et al., 2020),). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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of random folding information (increment/decrement) in terms of var-
iations or “deltas” angles. These deltas are added to the values of the 
current angles, taken the folding to a new state where the immediate 
reward is captured. To satisfy Bellman equation requirements, the agent 
explores further into the future and moves to a new “imaginary” state, 
where it searches for a MAX value hidden somewhere in the logic of the 
proteins. A resultant discount reward is formed with the sum of both 
rewards, and the resulting path is memorized by gradient descend in the 
incipient adviser neural network. 

3.1. Bellman equation 

This equation states that the optimization to obtain a maximal 
reward in a sequential chain of state-decision events is solved by a 
summation of immediate events and events that happen in the future 
(Sutton and Barto, 2018). The formula is defined by: 

Q(st, at)← Q(st, at) + α
[

rt+1 + γmax
a

Q(st+1, a) − Q(st, at)

]

(2) 

The main established prerequisite is that to obtain a good reward in 
terms of control; the agent has to explore the future and search for a 
discounted MAX value, hidden somewhere in complexities of the system 
being represented. In terms of this paper, exploring the future requires a 
special kind of noise balanced training process, discussed in (Chang and 
Zhinin-Vera, 2020). 

4. The protein folding robot 

A robot is designed to carry out the space-time physical actions of 
folding a peptide chain of 17 amino acids belonging to a receptor 
domain of the HEs protein, specifically the sequence:  

1LYLVPLCLGSPNDCIYI17.                                                                   

Amino acids are linked together through a strong peptide bond, and 
every bond has an actuator (muscle) that controls the folding angle 
(angle[i]) between every two of them; this angle is codified in an 8 bits 
signal that covers the range from − 90 to +90◦ from the center or aligned 
position. The set of folding angles is a known parameter and defines the 
internal representation of the robot. This internal representation is one 
of the input vectors that the agent receives as input in order to generate 
the set of variations or delta[i] required to produce the next folding state 
through the actual_angle plus the delta angle generated in Equation (1). 

Each amino acid has six sensors that determine the kind of amino 
acid located in its neighborhood, close enough to create short-range 
molecular effects, like strong bonds or polarity arrangement. An indi-
vidual sigmoidal neuron of a bigger network controls each actuator. The 
network controls the overall space-time folding of the strand. Each 
output neuron produces a signal that represents the increment or 
decrement that each angle will experience in the next cycle. Fig. 4 shows 
a full protein-folding robot schema. 

5. Learning algorithms 

In this section, the algorithm that learns to perform protein folding is 
described. In the initial state, the protein is presented in a slightly 
straight position. The neural agent burns energy to generates new po-
sitions and explores future rewards. When a reward is found, the agent 
memorizes through gradient descend and reinforcement learning the 
paths leading to even bigger rewards (good protein folding). 

The agent works by episodes that last at most 4000 training cycles. 
During each episode, the agent learns by positioning the peptide chain in 
one initial state and then exploring new territories by producing several 
angles and folding variations in the neighborhood. The reward should be 
maximal when the cysteine-cysteine bond is formed, and β-sheet ap-
pears, but given the very large number of possible foldings, the proba-
bility that these two events simultaneously occur by random search is 
very small. Instead, the agent will learn the folding in two logical stages: 
first accomplish the cysteine-cysteine bond (the stronger attraction be-
tween the given amino acids) and second form the β-sheet, with weaker 
bonds, but it has to be polarity aligned: Amino acids Leucine (L), 
Isoleucine (I), Proline (P) and Tyrosine (Y). 

During the cysteine bonding, the maximal reward is obtained when 
sensors detect a close encounter between cysteines. The previous folding 
state and sensors are taken as input, and the current delta folding vector 

Fig. 2. Self-taught Neural Agent. Neurons are all equally excited by a repetitive ramp K. In each run, the agent burns “dark energy”, fires and declares a unique vector 
folding variation (blue-red column to the right). These self-generated elements are added to the current vector angle, and the protein undergoes an internally 
achieved small twisting. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Adviser Neural Network Architecture. A reinforcement learning trained 
network receives the internal state (angle vector) and the sensor information as 
input. With this composite “image” the network has to learn to generate 
changes (predictions) in the protein folding that improve the probability of 
obtaining useful structures. 
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as a target by gradient descend. To satisfy the search for the future 
conditions, this gradient descent algorithm compensates using noise as 
input and the NULL vector as target (Chang and Zhinin-Vera, 2020). 

For every training cycle, the agent moves to a new state (folding) and 
once here captures the local reward and searches in its neighborhood for 
a folding sate that may produce MAX future reward. Once these two 
parameters are obtained, a reward discount is applied in terms of back 
propagation cycles (Chang and Zhinin-Vera, 2020). 

During the β-sheet folding, the maximal reward is obtained when 
sensors detect a polarity match between the involved amino acids (L, I, 
P, Y). Again the previous folding state is used as input and the current 
delta folding vector as a target, using noise to compensate. 

After training the agent rapidly drives the peptide chain from any 
given starts position to the learned (β-pleated sheet) fold, following a 
Markov chain of decisions. 

The pseudo-code is shown in Algorithm 1. 

Algorithm 1. Folding Proteins with Self-taught Neural Agents

5.1. Training phase 

Several episodes with a maximum of 4000 cycles each are carried 
out. The episode starts with peptide chain in an initial straight random 
position. In each cycle, random delta angles ± are added to all angles 

and reward is measured as the proximity of cysteines. If nothing happens 
(reward = 0), explore the future with new delta angles. If cysteine- 
cysteine proximity is detected by the sensors, do backpropagation, do 
noise balancing. Look into the future, if β-sheet is formed do back-
propagation, do noise balancing. The knowledge acquired by the adviser 
network is now used as an input to the self-taught agent. Result: Efficient 
folding following a Markov chain. 

6. Results 

Folding processes include thermodynamic stability of the complex 
with concomitant formation of covalent and non-covalent bonds to form 
a stable structure. The first moves of the agent are focused on accom-
plishing the covalent bond between the cysteines and sequentially the 
hydrogen bonds, in order to stabilize the β-pleated sheet. The system 
learned to follow these rules and folded a partial section of the receptor 
domain of HEs protein in a competent way, needing only short-range 
sensors and a low-resolution representation of its internal state. Ac-
quired knowledge makes possible to follow a short path when folding 
the peptide chain 1LYLVPLCLGSPNDCIYI17 into the protein shape: one 
β-pleated sheet. The sequence is shown in Fig. 6. 

The performance of the program can be observed in Fig. 5, where it is 
shown how the error of the agent decreases as it becomes a stable pro-
tein structure guided by rewards. The error that is measured corresponds 
to the distance between the cysteines and the rest of the proteins that 
make up the β-sheet. 

Fig. 4. The protein folding robot. A multi-joint robot and its associated neural blocks have to learn to fold a peptide chain belonging to the HEs protein. The 
mechanical simulator is a chain of operative joints with independent muscles and neural controllability. The neural network receives sensor information and internal 
representation as input and produces folding information as output. The resultant robotic assembling and its driving agent must learn to fold a straighten chain into a 
3D structure that comprises a cysteine-cysteine bond and an associate β-pleated sheet. 

Fig. 5. Self-taught Agent error decreases according to the neural network it-
erations increase. 
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7. Conclusion 

Our study describes a method to design a robot driven by a self- 
taught generative agent that learns by reinforcement learning efficient 
policies to fold a section of the HEs protein. The agent sees the protein 
state through sensors and reads information about its current bending 
angles and molecular proximities. The agent then decides to move to a 
new state that leads towards a possible useful folding using the visual 
information gathered from the sensors. The robot contains an artificial 
peptide platform that behaves like a mechanical bending structure with 
a sensor that feeds sparse data to the self-taught generative neural agent. 
We have obtained comprehensive results proving that our agent working 
on this robot-like structure can learn to solve protein folding problems, it 
was also found that folding knowledge can be preserved in stable 
weights parameters. We are currently in the process of investigating 
complex folding problems, including other residue interactions such as 
hydrophobic and electrostatic. Beside the predicted distances and angle 
between pairs of amino acids, the agent will learn that specific amino 
acids would be involved in both interactions with different strength. In 
sum, the data presented in this paper together with complementary 
analysis will complete a full-protein folding training. 
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versidad Politécnica de Madrid (Spain).  

Rafael Valencia, B.E received his bachelor degree in Informa-
tion Technology from Yachay Tech University, Ecuador, in 
2020. He worked on research projects in Yachay Tech 
(Ecuador), INEEL (Mexico) and Universidad Catódel Norte 
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