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a b s t r a c t

In this paper, Transfer Learning is used in LSTM networks to forecast new COVID cases and deaths.
Models trained in data from early COVID infected countries like Italy and the United States are used
to forecast the spread in other countries. Single and multistep forecasting is performed from these
models. The results from these models are tested with data from Germany, France, Brazil, India, and
Nepal to check the validity of the method. The obtained forecasts are promising and can be helpful
for policymakers coping with the threats of COVID-19.

© 2020 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

COVID-19 was first detected in Wuhan City in December 2019.
ince then it has caused more than seven hundred thousand
eaths and twenty million infections [1]. With such massive
cale fatalities, it has become one of the greatest crises of this
eneration. Apart from the loss of human lives, the pandemic
as caused serious damage to the world economy. Because of
ockdowns and similar distancing strategies it has also adversely
ffected psychological and social sections [2].
In the absence of any proven medicine or vaccine at present,

n intervention strategy may be more useful to control the
pread [3]. An effective modeling method to forecast the spread
f the virus among the population can be extremely useful to
repare and formulate health and economic policies for any gov-
rnment or administrators. From planning emergency hospitals,
anaging ventilators, and medical resources to regulating lock-
owns and scheduling economic activities, effective forecasts are
trategically very important for policymakers [4]. When new
ases rise at a rate of thousands per day then even the most
eveloped nation’s healthcare system has been overwhelmed to
andle a large number of patients. A timely forecast can prepare
he responsible authority accordingly to manage efficiently even
uring overwhelming scenarios.
With the rise of cases and the availability of more data, various

tudies [5–7] have presented mathematical models for the spread.
owever, most of the models have a limited scope of forecasts
or a particular country or region only. Previous researches [8,9]
ave also used LSTM models to forecast but they use old data

E-mail address: 073bme648@pcampus.edu.np.
ttps://doi.org/10.1016/j.isatra.2020.12.057
019-0578/© 2020 ISA. Published by Elsevier Ltd. All rights reserved.
of the same country which is pretty limited. As it may not have
seen and learned from the various patterns like sharp spikes and
flattening effects, the learning process may be incomplete and
imprecise. These dynamic patterns are more prevalent in early
infected countries like Italy which have now passed the sharp
spiking and gradual flattening for new cases. The use of Transfer
Learning may help the network to model all these highly non-
linear temporal patterns which the test country may have never
seen in its history. For countries like France, Italy the earlier
occurrence and spread provides a large dataset for training which
is not available for countries that saw the spread later like India
and Nepal, which imposed strict lockdown early but is easing
the regulations now. This discrepancy in pandemic over various
regions has provided mature data for earlier infected countries.

Cluster analysis [10] study has shown similarities existing
in the dynamics of the spread of the disease between various
countries like Italy, France, and Germany which has similar inter-
vention modalities. Though there may be some level of similarity
in intervention techniques and timing, even then the countries
can have massive differences in scale of spread and mortality
rate. These differences are very prominent across countries in the
European Union. A generalized forecasting model incorporating
a wider region is thus a difficult challenge owing to all the
differences existing across nations.

The paper implements Transfer Learning to LSTM models
which learn separately from the data of Italy and the United
States. It then applies these trained models i.e. the architecture
along with weights, to forecast new COVID cases and deaths. The
results are tested for France, Germany, Brazil, India, and Nepal.
For both the models, separate networks have been trained to
forecast for one and five days.

https://doi.org/10.1016/j.isatra.2020.12.057
http://www.elsevier.com/locate/isatrans
http://www.elsevier.com/locate/isatrans
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2020.12.057&domain=pdf
mailto:073bme648@pcampus.edu.np
https://doi.org/10.1016/j.isatra.2020.12.057
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. Material and methods

.1. Dataset

The data has been obtained from an open dataset of Our
orld in Data [11] which maintains and updates global data
aily acquired from the European Center for Disease Prevention
nd Control (ECDC). The data was available from the 31st of
ecember to the 10th of June. However, the data from February
8th onwards has been used for training purpose during which
ases were more active. Data for the number of new cases per
00 thousand of the population per day is one of the forecasting
ariables.

ew cases per 100 Thousand =
new cases per day
Total Population

∗ 100,000 (1)

ew death cases per million of the populations calculated as in
q. (2) has also been forecasted from the available data.

ew deaths per million =
new death cases per day

Total Population
∗1,000,000 (2)

ata from 7 countries: Italy, France, Germany, United States,
razil, India, and Nepal has been used for this study. These test
ountries cover up 4 continents representing high diversity in
ntervention techniques, government policies, healthcare system,
opulation density, and levels of spread and death because of
OVID-19.

.2. Moving-average

The data of new cases and new deaths consist of lots of
harp spikes, the noisy data is smoothened using moving average.
oving average can provide more stable data points suitable for

he modeling.
Moving average is defined mathematically as:

i =
Xi + Xi−1 + · · · + Xi−(n−1)

n
(3)

where,

Mi = moving average value at ith index
Xi = value at ith index
n = range of moving average

The study uses a moving average of 3 days for both new cases
and new deaths. The reason for using low valued moving average
is to smooth out very sharp spikes without changing the actual
pattern of the data.

2.3. LSTM network

Recurrent Neural Network (RNN) is one of the most popular
and effective deep learning techniques for time series forecasts,
because of its ability to memorize sequential information [12].
However, the problems of exploding and vanishing gradient are
more common in simple RNN [13]. LSTM solves this problem by
introducing a new memory state in RNN [14]. The ability of LSTM
networks to capture patterns in data like trends, seasonality,
autocorrelations and noise makes it a good candidate for the time
series forecast. In a deep neural network, initial layers capture
more basic features or patterns and the deeper layer can extract
high-level features. As a model trained in one country is used
to forecast for the next country, the network should learn basic
temporal patterns and avoid memorizing high-level features of a
particular dataset. For this single layer LSTM network has been

used to avoid any deep and complex architecture. For single and

42
5-days predictions 1 and 5 units are assigned for this single-
layered network. The network does not return any sequences so
the output from the LSTM network is the final output. The use of
any dense layer has been avoided.

The success of LSTM networks lies in their variety of update,
forget, and output gates. Cell state carries the memory of past
data and the combination of gates helps the network to deter-
mine what information from the past is to be retained and from
the present is to be updated. Each cell in the sequence is fed with
an activation state (at−1) and cell state(C t−1) and the respective
nput (xt )

Update gate value (u) is based on the previous activation state
at−1) and present input (xt ). Its range is 0 to 1. Weight (Wu)
nd bias (bu) is learned during training. It provides necessary
eightage to the new candidate cell state to determine a new
ell state in Eq. (7).

= σ
(
Wu

[
at−1, xt

]
+ bu

)
(4)

Forget gate value (f ) is also based on previous activation state
(at−1) and present input (xt ), Weight (Wf ) and bias (bf ) is updated
during training. It is used in the determination of a new cell state
in Eq. (8).

f = σ
(
Wf

[
at−1, xt

]
+ bf

)
(5)

Output gate value (o) depends on the previous activation state
(at−1) and present input (xt ), Weight (W0) and bias (bo) is updated
during the training process. It determines the new activation state
by assigning necessary weightage to a new cell state.

o = σ
(
Wo

[
at−1, xt

]
+ bo

)
(6)

New candidate cell state(C̃ t ) is determined with values of previ-
ous activation (at−1) and present input(xt ) which will be used to
update the new cell state, its influence in the new cell state is
determined by the update gate value (u). The network learns the
necessary weights (Wc) and bias (bc) during training.

C̃ t
= tanh

(
Wc

[
at−1, xt

]
+ bc

)
(7)

Cell state (C t ) is passed to the next cell with weightage pro-
vided by update gate (u) and forget gate (f ) from Eqs. (4) and (5).

C t
= u × C̃ t

+ f × C t−1 (8)

New activation (at ) is determined by output gate (o) and present
cell state (C t ). The values of the activation state (at ) and cell
state (C t ) gets passed to the next cell for repeated operations as
explained from Eqs. (4) to (9).

at = o × tanh
(
C t) (9)

σ is the sigmoid function defined as:

σ (z) =
1

1 + exp (−z)
(10)

Its output is in the range of 0 to 1. For all the gates i.e. update,
forget and output gate the value ranges from 0 to 1, 0 provides
no weightage, and 1 represents complete weightage. The output
of the hyperbolic tangent (tanh) function ranges from −1 to 1.

The network weights are learned separately from the data of
Italy and the United States. During training, these trained weights
along with the respective network are then used to forecast for
various test countries. Thus, the concept of Transfer Learning
enables us to acquire the necessary knowledge from the matured
dataset and apply it to forecast for a different country.
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Fig. 1. Proposed LSTM network for single day prediction.
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.4. Network architecture

N units of the LSTM network are used where N is the number
f days of forecast. As many to one architecture is used, the
utput of each unit is output to the architecture. So, for 1 and
days forecasting 1 and 5 units of LSTM has been assigned in

he first layer respectively. The number of cells inside each unit
aries according to the window size of the model. Window size
efers to the number of past data that is input into the model,
his is equal to the number of cells in each LSTM unit. For single-
ay prediction window size of 8 is chosen i.e. 8 days of past
ata used as input and the value of 9th-day value is taken as the
orecasting value. During training, the network learns respective
eights by trying to minimize the error between the actual value
n the 9th day and the forecasted value by the network. For 5
ays multistep prediction window size of 20 is used i.e. 20 days
f past data is input for the network and the consecutive future
days data is used as output for the network. The time sequence

s maintained both for input and output. A larger window size is
sed for multistep prediction as more data sequence is necessary
o forecast the long-range pattern.

Fig. 1 depicts the architecture for single day prediction, as the
indow size is eight, the unit has eight cells. Each cell receives
equential input however the output is received from the final
ell which is a typical many-to-one architecture. In multistep
rediction 5 such sequences as in Fig. 1 are used with 20 cells
n each unit. For a particular unit, the weights of trainable pa-
ameters across all the cells remain the same. In this architecture,
he single-step model has 12 trainable parameters whereas the 5
ays prediction model has 140 trainable parameters.
For training purpose, a batch size of 10 is used. As training data

s low in number lower batch size supplies more training batches
rom available data.

.5. Network parameters

The LSTM network uses Stochastic Gradient Descent (SGD)
ptimizer for all of its models with momentum of 0.9. Initially
ariable learning rate ranging from 1∗10−4 to 1∗10−8 is set as a
allback function to train along 100 epochs. Then the learning rate
orresponding to minimum loss is chosen for actual training of
00 epochs. The same procedure has been used for all the models
sed in this paper. The details have been tabulated in Table 1.

.6. Performance parameters

Mean Absolute Error (MAE) and Root Mean Square Error
RMSE) are two metrics used to compare the results from the
roposed models.
Mean Absolute Error provides an average absolute error be-

ween the forecasted value and real value.

AE =
1
n

n∑
|yt − yforecast(t)| (11)
t=1

43
Because of squared error, Root Mean Square Error (RMSE)
gives better insights of higher valued error across forecasts.

RMSE =

√ n∑
t=1

(yt − yforecast(t))2

n
(12)

The normal distribution represents the values of a given dis-
ribution as a density of variables. The distribution visualizes the
ymmetry occurrence in the data around the mean. For multistep
rediction, both MAE and RMSE obtained are fitted to normal
istribution to see the variation in error across all forecasts. The
ormal distribution is given by:

=
x − µ

σ
(13)

here µ refers to mean and σ refers to standard deviation.

. Results and discussion

The paper implements Transfer Learning for the LSTM network
o learn from one region and forecast for a completely different
egion. For training purpose, Keras API with TensorFlow back-
nd [15] is used. Various python libraries have been used for
ther evaluations. The networks were trained in GPU available
n the Google Colab environment [16].

Both the models have been trained and tested in smoothened
ata whose samples are provided in Figs. 2 and 3. A low value
oving average has helped to smooth out sharp spikes without
ausing any significant distortions to the curves.
Two models based on Italy and the United States have been

sed. Data from December 31st to June 10th was available during
odeling. However, the initial part has been truncated when the

eported cases and death were limited to single-digit or even 0 in
ost of the days. For both the models training data ranging from
ebruary 28th to June 10th has been taken which encapsulates an
ctive period of the spreading and deaths in these countries. The
imeframe for new death cases has been kept consistent with new
ases for training as well as testing. It is observed in all datasets,
he time series increase or decrease of new cases is consistent
ith an increase or decrease of new death cases so, the same time

rame has been used for death cases as well.
In the United States even as late as February 26th, 0 new cases

ere recorded but after that, there has been a sharp rise in cases,
nd during the recorded time frame cases have risen from as low
s 1 new case on February 28th to over 30,000 new cases being
eported every day during March and April. As for new death
ases, the first death in the US was recorded on March 1st and
hen rose to even 2000 plus new deaths per day within the second
eek of April. Even by the first week of June, the new death cases
ere still high approaching 1000 in some cases.
For Italy, new cases reporting surged from the last week of

ebruary, until then even as late as February 21st, no new case
as reported. During the last week of February, the new death
ases were still limited to single-digit however during March and
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Table 1
Network parameters for training.
Step Trainable

parameters
Batch
size

Optimizer Momentum Epochs Learning
Rate

Loss Function Performance
metrics

Singlestep 12 10 SGD 0.9 500 2E−05 Huber Loss MAE
Multistep 140 10 SGD 0.9 500 1E−05 Huber loss MAE
Fig. 2. Samples for data smoothing for new cases.
pril it reached its peak of over 800 new deaths per day. By the
irst week of June, the new death cases had decreased to double-
igit figures. This time frame thus captures the active period of
irus spread and deaths. So, both models start on February 28.
uring this period, both the countries have reached their peak as
f new cases reporting and new death cases.
44
For testing the models, same timeframe has been used for
France, Germany, and Brazil as it represents an active growth
time frame for all these countries. However, for India and Nepal
COVID spread has got more active lately. This can be explained
by strict lockdowns imposed earlier in both countries. For India
and Nepal, data from May 2nd to August 11th is used. For all the
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Fig. 3. Samples for data smoothing for new death cases.
est countries 102 days have been taken as test days to maintain
onsistency while comparing results.

.1. Forecast results

Detailed error calculation for all new cases forecasts has been
abulated in Table 2 and new death cases forecasts have been
abulated in Table 3. The model’s self-forecast i.e. Italy model’s
orecast for Italy and the US model’s forecast for the US has not
een tabulated for comparison as these are training data for the
odels.

.1.1. Single-step forecast
For new cases, the Italy model performs slightly better for

rance as compared to the US models. The differences in the
esult are prominent in the first peak occurring around the end
45
of March, where the US model predicts higher values than the
Italy model. France imposed lockdown from March 17th [17]
when both new cases and death cases were having a very steep
rise. Within a week both the curves for new cases and new
deaths reached its’ peak and started descending gradually. As new
cases started leveling out, France eased its lockdown from the
first week of May with strict controls in hotspots of the spread.
Both US and Italy models predict well for all different cases like
steep rise, peak, and the gradual descent of new cases of curves
(see Fig. 4). The Italy model has MAE of 0.46 and RMSE of 0.69
compared to MAE and RMSE of 0.49 and 0.7 respectively for the
US model.

The Italy model performs better for new death cases of France
with an MAE of 0.84 compared to the US model’s MAE of 1.15.
Even though both the models perform comparatively well in the
initial gradual rise and later gradual descend of death cases, the
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ew cases forecast error.

1 Days prediction 5 Days Prediction

Target Country Italy Model US Model Italy Model US Model

RMSE MAE RMSE MAE RMSE RMSE SD MAE MAE SD RMSE RMSE SD MAE MAE SD

Germany 0.46 0.32 0.5 0.97 0.63 0.55 0.56 0.5 0.96 0.35 0.82 0.34
France 0.69 0.46 0.7 0.493 1.03 0.06 0.9 0.81 1.17 0.35 1.02 0.3
Italy – – 0.46 0.36 – – – – 0.91 0.37 0.8 0.35
US 0.76 0.56 – – 1.24 0.68 1.11 0.64 – – – –
Brazil 1.65 1.31 1.01 0.52 1.3 1.21 1.14 1.09 1.31 1.19 1.12 1.08
India 0.12 0.11 0.17 0.15 0.51 0.21 0.46 0.19 0.53 0.24 0.43 0.18
Nepal 0.35 0.22 0.37 0.25 0.48 0.25 0.42 0.23 0.82 0.26 0.67 0.27
Table 3
New death cases forecast error.

1 Days prediction 5 Days Prediction

Target Country Italy Model US Model Italy Model US Model

RMSE MAE RMSE MAE RMSE RMSE SD MAE MAE SD RMSE RMSE SD MAE MAE SD

Germany 0.3 0.24 0.32 0.23 0.55 0.33 0.48 0.3 1.35 0.36 1.19 0.35
France 1.46 0.84 2.28 1.15 1.94 1.92 1.71 1.64 2.17 1.63 1.91 1.41
Italy – – 1.56 1.03 – – – – 1.37 0.57 1.24 0.55
US 0.85 0.57 – – 0.84 0.72 0.75 0.67 – – – -
Brazil 0.44 0.32 0.37 0.23 0.78 0.46 0.68 0.44 1.13 0.38 0.98 0.34
India 0.21 0.2 0.162 0.138 0.84 0.72 0.75 0.67 1.56 0.01 0.98 0.01
Fig. 4. New cases prediction for France.
Fig. 5. New death cases prediction for France.
S model fails to forecast the steep peaks during April as seen in
ig. 5.
Both the models’ forecasts for Brazil have small errors initially

s there is a gradual rise in new cases. However, during mid-
ay as there is a very steep rise in cases both the models fail to
apture the steep peak which is visible in graphs of Fig. 6. Even
46
though the US model predicts better in these peaks the error is
still very high compared to prediction in other test countries.

Unlike the forecast for new cases, both models can forecast
new death cases for Brazil comparatively better (see Fig. 7).
Numerically, the US model performs better with the MAE of 0.23.
Unlike the case of France, both the models can forecast well in
the peak region of Brazil.
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Fig. 6. New cases prediction for Brazil.
Fig. 7. New death cases prediction for Brazil.
Fig. 8. New cases prediction for Germany.
Germany’s infection curves are limited compared to other
uropean nation mainly because of its’ quick actions and strict
egulations. Beginning at the start of March itself strict regu-
ations were being imposed for gathering [17] and offices. The
taly model performs better for Germany with an MAE of 0.32
ompared to 0.97 for the US model. US model generally predicts
igher values and the differences are clearer in May in Fig. 8 when
ew cases have started decreasing gradually.
New death cases start to decrease after mid-April in Ger-

any, Both the models predict higher values during this in-
tance (see Fig. 9). Germany comparatively has a lower mortality
ate compared to other similarly infected EU countries like Italy
nd France. Numerically, the US model predicts better in terms of
47
MAE (0.23) compared to 0.24 of the Italy model, though the Italy
model’s RMSE of 0.30 is less than that of the US model (0.32).

For Germany, though the Italy model predicts better for new
cases, the US model predicts better for death cases. A possible
explanation can be provided from training data. If we visualize
the training data for Italy and United States in Figs. 2 and 3, it can
be observed that for the United States’ new cases, gradual descent
is still not distinctly visible as in Italy and Germany. In contrast,
gradual descent is clear for new death cases in the United States
data. Because of this United States’ training data for new death
cases can capture a wider range of patterns than the data for new
cases which still have no signs of the descent part. Moreover, the
death cases data for the United States and Germany has a clear
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Fig. 9. New death cases prediction for Germany.
Fig. 10. New cases prediction for Nepal.
Fig. 11. New cases prediction for India.
waveform with seasonal ups and downs which is not so clear in
Italy’s data. This similarity in the US and Germany could also be a
reason for the ability of the US model to perform better than the
Italy model for death cases of Germany.

Nepal was under lockdown from March 24th and the easing
started only around June 10th and finally ending it officially
July 21st. Even then national and international flights have yet
not started, inter-district mobility is highly controlled and strict
restrictions apply to public gatherings. Vehicle movement has
been controlled heavily using odd–even number plate rule, where
only odd-numbered or even-numbered plates are allowed in a
single day. Moreover, areas reporting higher cases have been put
under immediate seal. Because of all these strict measures, the
highest new cases reporting is limited to a few hundred. The new
48
death cases are also limited to single-digit figures. However, even
for such low cases, both models perform pretty well with MAE of
0.22 and 0.25 for Italy and US model respectively. Fig. 10 depicts
the differences between these two models, Italy model predicts
lower values for most of the instances whereas the US model
predicts higher values.

Though India maintained a longer lockdown in various phases
easing different sectors one by one, the virus spread has gradually
increased reaching threatening numbers. Sharp peaks are still not
visible and it is still gradually increasing. For new cases, both
the models have a modest performance with MAE of 0.12 and
0.17 for Italy and US models respectively. As seen in other test
countries the US model predicts higher values compared to the
Italy model (see Fig. 11).
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Fig. 12. New death cases prediction for India.
Fig. 13. New cases prediction for Italy and the United States.
Fig. 14. New death cases prediction for Italy and the United States.
US model has an MAE of 0.138 for India which is the best
igure among all the test countries for new death cases. Italy
odel also has a pretty decent MAE of 0.2 however it can be seen

n Fig. 12 that initially Italy model has higher forecasted values
ith nearly equal forecasted values later for both the models as
ases reach higher values.
For new cases, Italy and US models when tested in each other

roduce interesting results. US model predicts comparatively bet-
er for Italy with MAE of 0.37, capturing its steep rise and peak
ery closely. Italy model on the other hand fails to capture sharp
eaks in US Data and has an MAE of 0.56. The difference can be
isualized more vividly in Fig. 13.
For new death cases, the US model has a higher error for Italy

s compared to the Italy model’s error for the US. The errors are
49
more pronounced in steep peaks of Italy occurring during the end
of March (see Fig. 14). However, the Italy model predicts closely
in the peak region of the US occurring during mid-April and other
consecutive smaller peaks occurring thereafter.

The Italy model predicts pretty well for countries like France,
Germany whereas it predicts lower values for countries like Brazil
and the United States and thus has comparatively large RMSE
and MAE. The strategies implemented in European countries were
pretty similar to each other [18], so the Italy model predicts better
for European countries whereas for Brazil the strategy was very
different from that of Italy and the US as well so the forecasts
have higher errors. However, for Countries like Nepal and India
where there are a lot of differences in intervention strategy,
the health care system, and other control policies Italy model
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Fig. 15. Single day new cases forecast error.

Fig. 16. New death cases forecast errors.

erforms just as well as it performed for the European countries.
his shows the forecasted values are also a strong function of
ts history or past data regardless of the exact policies being
mplemented or the other diversifying factors.

The lowest RMSE and MAE of the Italy model are 0.12 and 0.11
espectively both occurring for India, and the maximum value is
.31 and 1.65 respectively occurring in Brazil for new cases. The
owest RMSE and MAE of the US model are also for India with
.17 and 0.15 respectively. One of the possible reasons for this can
e India is having a gradual rise in cases and still not seen steep
eaks where the models’ performance is compromised. It can be
een in the earlier forecast figures, both the models’ weakness
ies in peaks but performs extremely well on gradual incline or

ecline of cases.

50
The graphs of new cases for France, Italy, Germany, and Brazil
consist of clear spikes which represent the highest rise in cases,
the models predict fine for all these peaks except for Brazil. Thus,
the models are not able to forecast a very steep rise in cases in
Brazil. The graphs for Brazil depict the US model has a better
capacity to encapsulate sharp spikes better than the Italy model
for new cases. In contrast, the Italy model better encapsulates
sharp spikes in death cases better compared to US models.

The difference in MAE and RMSE for both the models in
various countries can be visualized through Figs. 15 and 16. For
testing purposes, training data i.e. Italy and US data have not
been used for error analysis in Italy and US models respectively
as these are the training data for the respective models.

3.1.2. Multi-step forecast
The same set of data has been used for the multistep forecast

as in single-step forecasts. Total data of 102 days form 78 test
sets for the five-days forecast. The mean value of RMSE and
MAE across all these sets is calculated along with its standard
deviation. The result is then fitted to a normal distribution for
analyzing the variability in error across these test sets. The model
requires 25 days of data, for single set validation, 20 for window
size, and 5 for forecasts.

As for the single day forecast of France, the results of both
models have a very small difference. Though the error parameters
are small, it is nearly twice compared to the single-step forecast.
The forecast results for new death cases are unacceptably large
with very high MAE and RMSE along with high deviation for
both the models (see Figs. 17 and 18). The distributions extend
to numbers as high as 7 which has not been recorded for other
test countries.

With MAE of 1.12 and 1.14 for US and Italy models respec-
tively for new cases, the forecasted errors for Brazil are nearly
equal for both the models. Though the US model performed
comparatively better for single-step prediction the results for
multistep prediction have one of the highest errors compared to
other test countries. However, the results for new death cases are
quite contrasting as the results are better compared to other test
countries (see Figs. 19 and 20).

Consistent with the single-step prediction for Germany, Italy
model has a modest performance for multistep new cases pre-
diction with an MAE of 0.56 while the US model has an MAE of
0.82. The standard deviation for US and Italy models for MAE is
0.50 and 0.34 respectively, the results are stable across the test
set. The performance of Italy models for new death cases is even
better with an MAE of 0.48 and a standard deviation of 0.30, the
results are quite stable across the test set (see Figs. 21 and 22).

In case of India, though the Italy model has slightly better per-
formance, both the models have a similar distribution with nearly
Fig. 17. New cases forecast error for France.
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Fig. 18. New death cases forecast error for France.
Fig. 19. New cases forecast error for Brazil.
Fig. 20. New death cases forecast error for Brazil.
qual error and its deviation (see Fig. 23). Compared to other
ountries MAE of 0.46 and 0.43 are modest numbers however
ompared to India’s single-step prediction the figures are nearly
our times higher. For new death cases, both the models have the
east deviated results with a standard deviation of 0.01 for both
AE and RMSE (see Fig. 24).
Italy model for Nepal has the best performance compared

o all the test countries with an MAE of 0.42 Nepal is still in
ts early phase with a very slow gradual rise in cases. It has
een seen in the single-step prediction that both the models
redict well in regions of gradual rise or fall and have some
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compromise in predictions near the peaks. As Nepal does not have
any sharp spikes and peaks this may be the reason for Italy’s fine
performance for Nepal (see Fig. 25).

Consistent with the single-step prediction of new cases, the
US model performs better for Italy compared to the Italy model’s
performance for the United States. And for new death cases, the
Italy model performs better for the United States (see Figs. 26 and
27).

The lowest RMSE (0.48) and MAE (0.42) for Italy model’s new
cases are for Nepal. The standard deviation for RMSE is 0.21 and
MAE is 0.19, which are also pretty low, meaning the error does
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Fig. 21. New cases forecast error for Germany.
Fig. 22. New death cases forecast error for Germany.
Fig. 23. New cases forecast error for India.
ot deviate much through all of its test sets and the forecasts
re stable. The Italy model also performs well for Germany as in
ingle-step predictions. Moreover, the Italy model’s RMSE (1.3)
nd MAE (1.14) is high for Brazil. Unlike in single-step predic-
ion, the Italy model does not predict well for France as it is
MSE(1.03) and MAE (0.9) are comparatively higher.
For new cases, Lowest RMSE (0.53) and lowest MAE (0.43) for

he US model are seen for India, which is comparatively higher
han errors observed in the Italy model. Like the Italy model, the
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US model also fails to predict better for Brazil. The RMSE and MAE
values for Brazil are 1.31 and 1.12 respectively which is nearly
equal to that of the Italy model.

Except for India and Germany both the models predict on a
similar scale for new cases. The inability of the models to predict
well for Brazil’s new cases may be explained by the problems in
its different restriction policies. The strategy followed in Brazil
is very different from to rest of the world [19] and has a very
steep rise in new cases and death cases as well which may be
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Fig. 24. New death cases forecast error for India.
Fig. 25. New cases forecast error for Nepal.
Fig. 26. New cases forecast error for Italy and US.
the reason for higher prediction error. Moreover, Brazil shows a
higher variation in error which can be visualized in Figs. 19 and
20.

As expected, the 5 days models do not perform as good as sin-
gle day models, as it is more challenging to capture and forecast
long ranger patterns than a shorter one. Even then the results are
satisfying for countries like India and Germany for new cases.

5 days new cases prediction error can be visualized from
Fig. 28. Italy’s model performance for Nepal is far better than any
other prediction model both. Samples of a multistep forecast for
new cases have been presented in Fig. 29.
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Though any conclusion cannot be drawn from samples of
Fig. 29, what can be observed is the US model has predicted
higher values compared to both the actual value and values
forecasted by the Italy model.

Fig. 30 depicts the multistep forecast for the latest available
values for Nepal. The cases in Nepal are gradually rising and still,
the spread is in its’ initial phase. For Nepal also US model predicts
higher values compared to Italy’s model. As for available data for
new death cases of Nepal, it is still limited to single-digit figures
and there are many days with no new death cases recorded. So,
forecasts for new death cases have not been presented as the
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Fig. 27. New death cases forecast error for US and Italy.

Fig. 28. New cases multistep forecast error.

Fig. 29. Samples of multistep forecast for new cases.
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Fig. 30. New cases multistep forecast for Nepal.
Fig. 31. New death cases multistep forecast error.
umbers are too close to zero and will be ambiguous to compare
ith the results of other test countries.
Error for multistep death cases forecast can be visualized

n Fig. 31. In contrast to all previous forecasts, Brazil also has
chieved decent results. For new death cases, the best result is
btained for the Italy model applied to Germany with MAE of
.48 and RMSE of 0.55. Both US and Italy models have poor
erformance for France with the highest MAE of 1.71 and 1.91
espectively for Italy and the US model. For all the test countries
taly model’s performance is numerically better than that of the
S model. Samples of multistep forecast are presented in Fig. 32.
As expected, multistep models have higher errors than single-

tep models for both new cases and deaths forecast as capturing
onger sequences is challenging. Even then good results have been
btained for countries like Germany, Nepal, and India for new
ases and Brazil and Germany for death cases. The results can
urther be improved by considering other variables like age ratio,
opulation density, and localizing the forecasts to a particular
egion of hotspots like New York, Delhi, Paris, etc. With such
imited training data and wide diversity across the test countries,

he proposed models have provided a decent forecast.
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4. Conclusions

In this paper, Transfer Learning is applied in the LSTM network
to learn trends of new cases and new deaths because of COVID-19
from data of Italy and the United States and forecast for other
countries. Germany, France, Brazil, India, and Nepal have been
tested for single-step and multistep predictions from the pre-
pared models. These forecasts have verified that even for different
modes of intervention, policies, and health care systems, the
proposed models can predict well. The results indicate new cases
and deaths can be forecasted pretty well with the proposed mod-
els. Complex patterns of steep rise, spikes, and flattening effects
of new cases and deaths can be learned from mature datasets
i.e. data from countries infected earlier. This approach is more
useful for countries that are in its early phase of virus spread, to
forecast based on other country’s models. Such forecasts can be
a great help to governments and policymakers.
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Fig. 32. Samples of multistep forecast for new death cases.
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