
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Computer Methods and Programs in Biomedicine 200 (2021) 105934 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

Multi-window back-projection residual networks for reconstructing 

COVID-19 CT super-resolution images 

Defu Qiu 

a , b , Yuhu Cheng 

a , b , Xuesong Wang 

a , b , ∗, Xiaoqiang Zhang 

a , b 

a Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou, 

221116, China 
b School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China 

a r t i c l e i n f o 

Article history: 

Received 2 November 2020 

Accepted 5 January 2021 

Keywords: 

Coronavirus disease 

Super-resolution 

Multi-window 

Dilated convolution 

Back-projection 

Residual networks 

a b s t r a c t 

Background and objective: With the increasing problem of coronavirus disease 2019 (COVID-19) in the 

world, improving the image resolution of COVID-19 computed tomography (CT) becomes a very important 

task. At present, single-image super-resolution (SISR) models based on convolutional neural networks 

(CNN) generally have problems such as the loss of high-frequency information and the large size of the 

model due to the deep network structure. 

Methods: In this work, we propose an optimization model based on multi-window back-projection resid- 

ual network (MWSR), which outperforms most of the state-of-the-art methods. Firstly, we use multi- 

window to refine the same feature map at the same time to obtain richer high/low frequency informa- 

tion, and fuse and filter out the features needed by the deep network. Then, we develop a back-projection 

network based on the dilated convolution, using up-projection and down-projection modules to extract 

image features. Finally, we merge several repeated and continuous residual modules with global features, 

merge the information flow through the network, and input them to the reconstruction module. 

Results: The proposed method shows the superiority over the state-of-the-art methods on the benchmark 

dataset, and generates clear COVID-19 CT super-resolution images. 

Conclusion: Both subjective visual effects and objective evaluation indicators are improved, and the 

model specifications are optimized. Therefore, the MWSR method can improve the clarity of CT images 

of COVID-19 and effectively assist the diagnosis and quantitative assessment of COVID-19. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

After the coronavirus invaded the lungs, it would diffuse along 

lveolar pores, which would lead to alveolar swelling, exudation of 

lveolar septum fluids, and thickening of alveolar septum, etc. All 

hese will increase the CT number of the lungs, namely the lungs 

ill become white. There is no exudation of granulocytes in viral 

nfections, the alveoli are clean, and the air is still inside, so there 

s often a ground glass shadow without a substantial white mass 

hange. Therefore, super-resolution (SR) reconstruction technology 

s urgently needed to improve the resolution of COVID-CT as an 

mportant basis for the diagnosis of COVID-19 [1] . 

Single-image super-resolution (SISR) reconstruction is an im- 

ortant image processing technology in the field of computer vi- 

ion, which is widely used in medicine, video, security, and remote 
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ensing. In the actual scene, due to the limitations of the existing 

edical hardware conditions, low-quality low-resolution (LR) med- 

cal images are often obtained. For example, the medical images of 

he current hospital CT detector as the detection and diagnosis of 

iseases often lack the key detection details or parts of the scene. 

herefore, it is necessary to overcome the resolution limitations of 

he existing hardware system and use SISR reconstruction technol- 

gy for enhancement the spatial resolution of the image. The core 

dea of this technology is to reconstruct the super-resolution image 

ith high pixel density by analyzing the key semantic information 

r signal information of LR image, inferring the lack of real details. 

At present, the research of SISR reconstruction is mainly divided 

nto three stages. The earliest and most intuitive method is inter- 

olation method based on sampling theory [ 2 , 3 ]. The advantage of 

his method is that it runs fast and is suitable for parallel comput- 

ng, but it can’t introduce additional useful high-frequency infor- 

ation, so it is difficult to get sharp high-definition image. 

After that, some scholars proposed that the information of the 

orresponding high-resolution (HR) part can be inferred from the 

https://doi.org/10.1016/j.cmpb.2021.105934
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.105934&domain=pdf
mailto:defu.qiu@cumt.edu.cn
mailto:wangxuesongcumt@163.com
https://doi.org/10.1016/j.cmpb.2021.105934
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Fig. 1. Single image super-resolution network architecture of deep network. 
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R image. Relying on the technique of neighborhood embedding 

 4 , 5 ], sparse coding [6–8] , the algorithm of learning the mapping

unction between LR image and HR image is studied and proposed. 

owever, when the image does not contain enough repetitive pat- 

erns, this method tends to produce non-detailed sharp edges. 

The main contributions of this paper are described as follows: 

1) Expand the network structure horizontally to avoid the vertical 

depth of the network. The extended network uses the multi- 

window up-projection and down-projection residual module 

(MWUD) to extract the key information of the same feature 

map at the same time from the shallow network, to obtain 

more complete high/low frequency information in the original 

image as soon as possible. 

2) The residual network extracts features. The dilated convolution 

is used to expand the receptive field, and the image high/low 

frequency information is extracted layer by layer through 3 

repetitive and continuous residual modules. 

. Deep neural network for super-resolution reconstruction 

In recent years, methods based on deep learning have become 

he most active research direction in the field of SR. Since the SR- 

NN [9] model proposed by Dong C et al. successfully used the 

onvolutional neural network technology to reconstruct and gener- 

te higher-definition images, such methods have come to the fore. 

t uses many external HR images to construct a learning library, 

nd generates a neural network model after training. In the pro- 

ess of LR image reconstruction, the prior knowledge obtained by 

he model is introduced to obtain the high-frequency detail infor- 

ation of the image, to achieve the excellent image reconstruction 

ffect. 

After that, FSRCNN [10] , ESPCN [11] and other models have 

ade some improvements on each part of the network structure 

ased on SRCNN, and increased the number of network layers, fo- 

using on learning the end-to-end mapping relationship from LR 

mages to HR images, as shown in Fig. 1 . However, with the deep-

ning of the network layer, the training cost increases gradually. At 
2 
he same time, due to the increase of channel number, filter size, 

tep size and other super parameters, it is very difficult to design 

 reasonable network structure. Then, He et al. [12] proposed the 

esNet to solve the above problems. Although it is suitable for im- 

ge classification, its residual idea and strategy of repeated stack- 

ng modules can be applied to all computer vision tasks. In addi- 

ion, the ResNet also proved that shortcut connection and recursive 

onvolution can effectively reduce the burden of neural network 

arrying a lot of key information. 

Subsequently, residual network based super-resolution models, 

uch as DRCN [13] , DRNN [14] , LapSRN [15] , SRResNet [16] , and

DSR [17] have been proposed, as shown in Fig. 1 . These models 

re implemented by linear superposition of single size convolution 

odules to achieve the vertical deepening of the network, to pur- 

ue higher expression and abstract ability. However, for the super- 

esolution technology, it is very important to extract rich and com- 

lete feature information from the original image. If the network 

s deepened vertically, the high frequency information will be lost 

n the process of layer-by-layer convolution and filtering calcula- 

ion, which will affect the authenticity of the final mapping gener- 

ted super-resolution image. In addition, the number of model pa- 

ameters will also increase exponentially. If the training dataset is 

imited, it is easy to produce over fitting; the model specifications 

ill increase, and it is not easy to reconstruct and transplant; the 

mount of calculation will also increase, resulting in the training 

ifficulty multiplied and difficult to apply. 

. Multi-window back-projection residual networks 

To solve the problems of incomplete extraction of feature in- 

ormation in the original input image and large model scale due 

o the deep longitudinal structure of the network, we propose a 

ulti-window back-projection residual networks for reconstruct- 

ng COVID-19 CT super-resolution images. The model mainly in- 

ludes multi-window up-projection and down-projection residual 

odule (MWUD) and 3 Residual block modules (RB), MWUD is 

p-projection and down-projection residual module, RB is residual 

lock module. as shown in Fig. 2 . 
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Fig. 2. The architect of multi-window back-projection networks. 

Fig. 3. Comparisons of deep network super-resolution. (a) Predefined upsampling (e.g., VDSR [18] , DRRN [18] , SRCNN [9] ). (b) Single upsampling (e.g., ESPCN [11] , FSRCNN 

[10] ). (c) Progressive upsampling uses a Laplacian pyramid network. (d) multi-window up-projection and down-projection rsidual module is proposed by our MWSR which 

uses the interconnected up- and down sampling stages to obtain many HR features of different depths. 
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.1. Multi-window up-projection and down-projection residual 

odule 

In the deep network, it is divided into three types. Fig. 3 

s (a) Predefined upsampling, (b) Single upsampling, (c) Progres- 

ive upsampling. In this article, we proposed the multi-window 

p-projection and down-projection residual module, as shown in 

ig. 3 (d). 

The main purpose of multi-window up-projection and down- 

rojection residual module (MWUD) is to explore the interdepen- 

ence between LR and HR as an efficient iterative process. In ad- 

ition, the MWUD module can provide more information for each 

ottom-up or top-down mapping and increase the flow of infor- 

ation. When the sampling multiple is large, the corresponding 

ize of convolution kernel or deconvolution kernel is large, which 
3 
akes the convergence speed of network slow and easy to fall into 

uboptimal results [20] . In each MWUD, the use of skip connec- 

ions to fuse intermediate-scale features and the use of 1 ×1 con- 

olution kernel to reduce the dimensionality of the fused high- 

imensional features improve the feature utilization rate reduces 

he complexity of the network, which can obviously optimize the 

etwork structure. 

As shown in Fig. 3 (d), multi-window back-projection network 

onsists of three up-projection and down-projection residual mod- 

les, each MWUD module consists of an up-projection (upblock), 

 down-projection (downblock), and two residual block modules. 

onsequently, in the deep network, in order to increase the re- 

eptive field and reduce the amount of calculation, it is necessary 

o carry out subsampled (pooling or S2 / conv). Although the re- 

eptive field can be increased, the spatial resolution is reduced. 
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Table 1 

The network architect setting of MWSR. 

Network module Kernel size Stride Padding Dialted rate Input size Output size 

Initial layer 3 ∗3 1 1 1 H 

∗W 

∗1 H 

∗W 

∗64 

Residual block Conv 1 3 ∗3 1 1 1 H 

∗W 

∗64 H 

∗W 

∗64 

Conv 2 1 ∗1 1 0 1 H 

∗W 

∗64 H 

∗W 

∗4 

Conv 3 1 ∗1 1 0 1 H 

∗W 

∗4 H 

∗W 

∗64 

Upblock 1 DeConv 4 ∗4 2 1 1 H 

∗W 

∗64 H 

∗W 

∗128 

Conv 4 ∗4 2 1 1 H 

∗W 

∗128 H 

∗W 

∗64 

DeConv 4 ∗4 2 1 1 H 

∗W 

∗64 H 

∗W 

∗128 

2 DeConv 4 ∗4 2 4 3 H 

∗W 

∗64 H 

∗W 

∗128 

Conv 4 ∗4 2 4 3 H 

∗W 

∗128 H 

∗W 

∗64 

DeConv 4 ∗4 2 4 3 H 

∗W 

∗64 H 

∗W 

∗128 

3 DeConv 4 ∗4 2 7 5 H 

∗W 

∗64 H 

∗W 

∗128 

Conv 4 ∗4 2 7 5 H 

∗W 

∗128 H 

∗W 

∗64 

DeConv 4 ∗4 2 7 5 H 

∗W 

∗64 H 

∗W 

∗128 

Downblock 1 Conv 4 ∗4 2 1 1 H 

∗W 

∗128 H 

∗W 

∗64 

DeConv 4 ∗4 2 1 1 H 

∗W 

∗64 H 

∗W 

∗128 

Conv 4 ∗4 2 1 1 H 

∗W 

∗128 H 

∗W 

∗64 

2 Conv 4 ∗4 2 4 3 H 

∗W 

∗128 H 

∗W 

∗64 

DeConv 4 ∗4 2 4 3 H 

∗W 

∗64 H 

∗W 

∗128 

Conv 4 ∗4 2 4 3 H 

∗W 

∗128 H 

∗W 

∗64 

3 Conv 4 ∗4 2 7 5 H 

∗W 

∗128 H 

∗W 

∗64 

DeConv 4 ∗4 2 7 5 H 

∗W 

∗64 H 

∗W 

∗128 

Conv 4 ∗4 2 7 5 H 

∗W 

∗128 H 

∗W 

∗64 

RB module Conv 7 3 ∗3 1 1 1 H 

∗W 

∗64 H 

∗W 

∗64 

Conv 8 1 ∗1 1 0 1 H 

∗W 

∗64 H 

∗W 

∗4 

Conv 9 1 ∗1 1 0 0 H 

∗W 

∗4 H 

∗W 

∗64 

Middle layer 3 ∗3 1 1 1 H 

∗W 

∗64 H 

∗W 

∗64 

Upscale 3 ∗3 1 1 1 H 

∗W 

∗64 2H 

∗2W 

∗64 

Reconstruction layer 3 ∗3 1 1 1 2H 

∗2W 

∗64 2H 

∗2W 

∗1 
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n this paper, we introduce dilated convolution into the up pro- 

ection and down-projection of MWUD module without losing the 

esolution and expanding the receptive field. Furthermore, 128 fea- 

ure fusing layer and 64 Feature Fusing Layers (FFL) are introduced 

n up-projection model and down-projection model to reduce the 

WSR network parameters, the parameters are shown in Table 1 . 

n the MWUD module, different division rates lead to different re- 

eptive fields, which can capture multi-scale context information 

f COVID-19 CT images. 

The up-projection model maps each other step by step be- 

ween the LR feature map and the HR feature map, and the down- 

rojection model maps each other step by step between the HR 

eature map and the LR feature map, as shown in Fig. 4 . Ac-

ordingly, back-projection extracts image features by up-projection 

nd down-projection. It can be understood that the network is a 

rocess of continuous self-correction. Its purpose is to avoid the 

ingle-step nonlinear mapping error when only up-sampling at the 

nd of the network [20] , and to improve the super-resolution per- 

ormance. 

Furthermore, the input of up-projection model is a LR feature 

ap, which is mapped three times between the LR image and 

he HR image. The three mappings are: the first mapping maps 

he LR feature map to the HR feature map, the second mapping 

aps from the HR feature map to the LR feature map, and the 

hird mapping maps the LR feature map to the HR feature map for 

utput. Meanwhile, the down-projection model is very similar to 

he up-projection model, which is the inverse process of the up- 

rojection model. Thus, the input of the down-projection model is 

 HR feature map, and after three mappings, the final output is a 

R feature map. 

The up-projection and down-projection residual module are de- 

ned as follows: up-projection scale up: 

 

n 
0 = 

(
L n −1 ∗ p n 

)↑ 

s (1) 
4 
p-projection scale down: 

 

n 
0 = ( H 

n 
0 ∗ g n ) ↓ s , (2) 

p-projection residual: 

 

1 
n = L n o − L n −1 , (3) 

p-projection scale residual up: 

 

n 
1 = 

(
e 1 n ∗ q n 

)↑ 

s , (4) 

utput feature map: 

 

n = H 

n 
0 + H 

n 
1 , (5) 

own-projection scale down: 

 

n 
1 = ( H 

n 
2 ∗ g n ) ↓ s , (6) 

own-projection scale up: 

 

n 
3 = ( L n 1 ∗ p n ) ↑ 

s , (7) 

own-projection residual: 

 

n 
h = H 

n 
3 − ( H 

n 
2 ∗ k n ) , (8) 

own-projection scale up: 

 

n 
3 = ( L n 1 ∗ p n ) ↑ 

s , (9) 

own-projection scale residual up: 

 

n 
2 = 

(
e n h ∗ g n 

)↓ s , (10) 

utput feature map: 

 

n = L n 0 + L n 1 , (11) 

here ∗ is the convolution operation. ↑ 

s and ↓ s are the upsam- 

ling and subsampled operation with scale factor S , respectively. 

 n is the upsampling deconvolutional layer of the n − th UD. g n 
s the subsampled convolutional layer of the n − th UD. q n is 

28-dimensional feature fusion layer of the n − th UD. k n is 64- 

imensional feature fusion layer of the n − th UD [21] . 
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Fig. 4. Structure of up-projection model and down-projection model. 

Fig. 5. Structure of residual block model. 
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Fig. 6. Upsampling process on the subpixel convolution layer. 
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.2. Residual block module 

The MWSR model extracts the high and low frequency informa- 

ion of the image layer by layer through three repeated and con- 

inuous residual blocks, and fuses the initial feature map and the 

utput of the above three residual blocks to merge the information 

ow through the network into the reconstruction module [ 22 , 23 ]. 

hus, we construct three RB modules to extract deep features, as 

hown in Fig. 5 . The operation of RB can be described as: 

 = 

[
Q 

1 
3 , M 1 , M 2 , M 3 

]
, (12) 

here [ ] is the connection operation between features, Q 

1 
3 

is the 

nitial feature graph, M 3 is the output of the third residual module, 

nd T is the output of global feature fusion. 

.3. Sub-pixel convolutional upsampling layer 

In the actual camera imaging process, due to hardware limita- 

ions, each pixel in the generated image represents a whole block 

f color nearby. In fact, at the microscopic level, there are many 

ixels, namely sub-pixels, between actual physical pixels. In the 

eld of SR image reconstruction, the sub-pixels that cannot be 

etected by the sensor can be approximated by algorithms [11] , 

hich is equivalent to inferring high-frequency information such 

s missing texture details in the image. 
5 
The sub-pixel convolution is used to complete the mapping of 

R images to HR images in the high-multiple reconstruction part 

f the MWSR model, as shown in Fig. 6 . Assuming that the tar- 

et multiple is γ and the input LR feature map size is H 

∗W , we

onvolve it with the r 2 sub-pixel convolution kernel with channel 

umber H 

∗W to obtain H 

∗W 

∗r 2 pixel values, and then rearrange 

hem to form a target image with size r H 

∗rW . 

.4. Network architect 

The proposed the MWSR method is illustrated in Fig. 2 . It can 

e divided into three parts: multi-window back projection, depth 

eature extraction and sub-pixel convolution layer. Further, set I LR 

nd I LR denote the input image and the reconstructed image of 

WSR, and the input image I LR is extracted by an initial layer to 

btain the initial feature map L initial , C initial is the initial layer, and 

he operation of the initial layer can be defined as: 

 in itial = C initial ∗ I LR , (13) 

In the multi-window up-projection and down-projection resid- 

al modules, MWSR performs the back-projection for the initial 

eature map L initial , and the operation of back-projection is de- 

cribed as: 

 bp = f bp ( L initial ) , (14) 
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Fig. 7. Visual quality of the proposed MWSR and other state-of-art methods for 4 × scale factor on COVID-19 CT images. 
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here f bp ( • ) denotes the operation of back-projection, I bp denotes 

he extracted shallow feature maps by back-projection. 

Then, MWSR uses three RB modules to extract deep feature 

aps from the extracted shallow feature maps, and the operation 

f deep feature extraction is 

 deep = f deep ( L bp ) , (15) 

here f deep ( • ) denotes the deep feature extraction operation, L deep 

enotes the extracted feature maps by deep feature extraction. 

Finally, MWSR uses the sub-pixel convolutional layer to upsam- 

le, and the operation of upscaling can be formulated as: 

 up = f up ( L initial + C mid d le ∗ L deep ) , (16) 

here f up ( • ) denotes the upscaling operation, C middile denotes the 

iddle layer which is a convolutional layer, L up denotes the upscal- 

ng feature maps. 

. Experiments and analysis 

.1. Dataset and protocol 

The public datasets BSD500 and T91 [24] were used in the ex- 

eriment, and the two training sets have a total of 591 images. 

ue to the depth model usually benefits from large amounts of 

ata, 591 images are not sufficient to push the model to its best 

erformance [29] . Thus, to make full use of the dataset, we use 

he MATLAB to expand the data of the BSD500 and T91 training 

et images by two methods, namely scaling and rotation. Each im- 

ge was scaled by the ratios of 0.7, 0.8, and 0.9. Additionally, each 
6 
mage was respectively rotated by 90 °, 180 °, and 270 °, and 9456 

mages were finally obtained. In addition, a lot of tests and com- 

arisons have been made on the public benchmark datasets Set5 

25] , Set14 [26] , and Urban100 [27] . 

.2. Training details and implementation 

In this paper, a 4 8 ×4 8 RGB image cut from I LR is used as input,

nd the quality of the generated SR image is evaluated by I HR of 

he target magnification. In the proposed MWSR, the parameters 

re initialized to a gaussian distribution with a mean of 0 and a 

tandard deviation of 0.001, and the initialization of the bias is set 

o 0. The network trained a total of 200 epochs. To speed up the 

raining process, an adjustable learning rate strategy was used to 

rain the network. The initial learning rate was set to 0.1, and the 

earning rate decreased to 0.1 times the original learning rate ev- 

ry 10 epochs [ 30 ]. When the learning rate decreased to 0.0 0 01, it

s then kept at 0.0 0 01 and the batch size is set to 128. In addition,

se Adam optimizer [25] to set β1 = 0.9, β2 = 0.999, ε = 10 −8 

espectively. In this paper, L1 norm is selected as the loss func- 

ion training model [28] . Compared with L2, it has sparsity, which 

an realize automatic feature selection, and has fewer parameters, 

hich can better explain the model. L1 loss function to optimize 

WSR as follow: 

 (θ ) = 

1 

N 

N ∑ 

i =1 

|| f GBPN (I i LR ) − I i HR | | 1 , (17) 

here θ denotes the parameters of MWSR. 
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Table 2 

Quantitative evaluation results of state-of-the-art SR methods: average PSNR and SSIM for scale factors ( ×2, ×3, ×4). Red numbers indicate 

the best and green numbers indicate the second-best performance. 
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In addition, combined with CUDA 10.0 and PyTorch 1.20, we use 

ython code to implement MWSR algorithm, and train and evalu- 

te the algorithm through many experiments on NVIDIA GeForce 

TX 1080ti GPU and Ubuntu16.04 operating systems. 

.3. Comparison with state-of-the-art methods 

We compare our model with the 9 state-of-the-art SR meth- 

ds, including Bicubic [3] , A + [7] , SCN [28] , SRCNN [9] , FSRCNN

10] , VDSR [18] , DRCN [13] , LapSRN [15] , and DRRN [19] . The spe-

ific implementation of these models has been officially published 

n the Internet; thus, these algorithms can be executed on the 
7 
ame test dataset for fair comparison. In addition, the quality of 

he generated super-resolution image is evaluated by two common 

bjective evaluation indexes: peak signal to noise ratio (PSNR) and 

tructural similarity (SSIM) [31] . 

We show the quantitative results in the Table 2 , it shows the 

valuation results of 10 kinds of super-resolution algorithms, which 

re magnified by 2 ×, 3 × and 4 × respectively on three public test 

atasets. As can see that the performance of the MWSR method 

utperforms other state-of-the art methods in different multiples 

nd different test datasets, further, the MWSR method success- 

ully reconstruct the detailed textures and improves the image 

erception quality, and realizes the model lightweight and oper- 
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tion efficiency optimization [32] . At the best performance of 2 ×
nlargement on Set14 dataset, the MWSR method achieve 33.53 

B which better 3.28 dB, 1.21 dB, 1.18 dB, 1.02 dB, 0.87 dB, 0.48 

B, 0.47 dB, 0.45 dB, 0.30 dB than Bicubic, A + , SCN, SRCNN, FS-

CNN, VDSR, DRCN, LapSRN, and DRRN respectively. Then, to fur- 

her verify the performance of the MWSR, COVID-19 CT images are 

sed to evaluate the visual quality of MWSR and other state-of- 

rt methods (COVID-CT: https:, github.com/UCSD-AI4H/COVID-CT ). 

he COVID-CT-Dataset has 349 CT images containing clinical find- 

ngs of COVID-19 from 216 patients, and the images are collected 

rom COVID19-related papers from medRxiv, bioRxiv, NEJM, JAMA, 

ancet, etc. CTs containing COVID-19 abnormalities are selected by 

eading the figure captions in the papers. All copyrights of the data 

elong to the authors and publishers of these papers. 

The results of 4 × enlargement on the COVID-19 CT images 

ataset is visually shown in Fig. 7 . By enlarging the reconstructed 

esults in some regions, it can be found that the COVID-19 CT im- 

ges reconstructed by Bicubic and SRCNN algorithms can hardly 

bserve the contour and other details. While the reconstruction 

esults of FSRCNN, VDSR and LaPSRN algorithms lack the detail 

nformation of COVID-19 CT; the reconstruction results of DRCN 

nd DRRN algorithm obtain rich detail information, but lack clear 

dge information; on the contrary, the COVID-19 CT images recon- 

tructed by the algorithm proposed in this paper can complete 

he high-frequency information more accurately and completely. 

hether it is the detail information or the edge, it can predict 

he more real new pixel value after magnification according to the 

verall semantic of the image. 

. Conclusion 

In order to solve the problems of incomplete extraction of fea- 

ure information and large scale of COVID-19 CT original input im- 

ge due to the deep vertical structure of the network, we propose 

 super-resolution model based on multi-window back-projection 

esidual networks (MWSR). The model combines three windows 

o extract the key information of the same feature map at the 

ame time, which can effectively use the feature map of each layer 

rom the shallow network, and improve the probability of detect- 

ng high-frequency information. More importantly, compared with 

he vertical deepening network structure, this horizontal expansion 

etwork structure can obtain the complete COVID-19 CT images 

arget features earlier. The experimental results show that MWSR 

an reconstruct COVID-19 texture features more effectively than 

ther popular models. For future implementation, we will focus 

n optimizing the up-sampling operation of the high-resolution 

econstruction part, and calculate the more realistic and effective 

apping relationship between the low-resolution feature space 

nd the high-resolution feature space. 
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