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A B S T R A C T

Most COVID-19 infected individuals present with mild flu-like symptoms; however, 5–10% of cases suffer from
life-threatening pneumonia and respiratory failure. The pathogenesis of SARS-CoV-2 and its pathology of as-
sociated acute lung injury (ALI), acute respiratory distress syndrome (ARDS), sepsis, coagulopathy and multi-
organ failure is not known. SARS-CoV-2 is an envelope virus with S (spike), M (membrane), N (nucleocapsid)
and E (envelop) proteins. In a closely related coronavirus (SARS-CoV), the transmembrane E protein exerts an
important role in membrane-ionic transport through viroporins, deletion of which reduced levels of IL-1β and a
remarkably reduced lung edema compared to wild type. IL-1β is generated by macrophages upon activation of
intracellular NLRP3 (NOD-like, leucine rich repeat domains, and pyrin domain-containing protein 3), part of the
functional NLRP3 inflammasome complex that detects pathogenic microorganisms and stressors, while neu-
trophils are enhanced by increasing levels of IL-1β. Expiring neutrophils undergo “NETosis”, producing thread-
like extracellular structures termed neutrophil extracellular traps (NETs), which protect against mild infections
and microbes. However, uncontrolled NET production can cause acute lung injury (ALI) and acute respiratory
distress syndrome (ARDS), coagulopathy, multiple organ failure, and autoimmune disease. Herein, we present
arguments underlying our hypothesis that IL-1β and NETs, mediated via NLRP3 inflammasomes, form a feed-
forward loop leading to the excessive alveolar and endothelial damage observed in severe cases of COVID-19.
Considering such assertions, we propose potential drug candidates that could be used to alleviate such
pathologies. Considering that recent efforts to ascertain effective treatments of COVID-19 in severe patients has
been less than successful, investigating novel avenues of treating this virus are essential.

Introduction

Coronaviruses (CoVs) are characterised by surface spike proteins
and an unsegmented positive RNA genome [1]. While most CoVs infect
domestic animals including pigs and chickens, 6 have been confirmed
as zoogenic, also infecting humans [1]. These include severe acute re-
spiratory syndrome coronavirus (SARS-CoV), middle east respiratory
syndrome coronavirus (MERS-CoV), and severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) [1]. SARS-CoV-2 is the causative
factor behind the ongoing coronavirus disease 2019 (COVID-19) pan-
demic.

SARS-CoV-2 is an envelope virus with S (spike), M (membrane), N
(nucleocapsid) and E (envelop) proteins [2,3]. SARS-CoV (~76%
homology with SARS-CoV-2) possesses a 76-amino acid long trans-
membrane E protein [4], deletion of which decreases the viral titre 20-
fold [5], and decreased inflammation via the NF-кB pathway within

infected mice [6]. The ion channel activity of SARS-CoV was also
mapped to the transmembrane domain of the E-protein [7]. A re-
combinant virus lacking E-protein decreased apoptosis and inflamma-
tion [8]. Virulence in mouse mutants lacking the SARS-CoV E-protein
ion channel activity (EIC−) was severely reduced, although viral re-
plication remained unaffected [9]. Strikingly, EIC− mutants produced
low levels of proinflammatory cytokines including IL-6, IL-1β and TNF-
α as compared to wild type mice, including remarkably reduced lung
edema [9].

IL-1β is generated by resident macrophages upon activation of
membrane-bound or cytosolic pattern recognition receptors (PRRs)
which detect pathogen-associated molecular patterns (PAMPs) or da-
mage-associated molecular patterns (DAMPs). The most relevant PRR in
macrophages is the intracellular NLRP3 (NOD-like, leucine rich repeat
domains, and pyrin domain-containing protein 3) [10–13]. NLRP3 ex-
ists as a latent monomer in quiescent cells. Upon stimulation, NLRP3
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recruits ASC (an adapter protein) and pro-caspase-1, forming a func-
tional NLRP3 inflammasome complex by oligomerization [10–13]. A
feed-forward mechanism for IL-1β generation exists, i.e., IL-1β can
activate the NLRP3 inflammasome (an intracellular multi-protein
complex that detects pathogenic microorganisms and stressors) and
vice versa [10–13], representing a potential mechanism of generating
the exaggerated cytokine response in sepsis.

A diverse array of intracellular mediators have also been implicated
in activating the NLRP3 inflammasome [10], and current consensus
posits that these mediators induce a common cellular signal [10,13].
The major intracellular events proposed include activation of ion
channels, reactive oxygen species, and lysosomal damage. Acute lung
injury associated with SARS-CoV infection can be attenuated by mu-
tating the viral E-protein which codes for viroporins [9], transmem-
brane proteins with ion-exchange properties that can activate NLRP3
inflammasomes [14].

Neutrophils also play a key role as the first line of defense in most
infections including viral infections [15]. Indeed, COVID-19 patients
present with higher neutrophil counts in blood [16]. Neutrophils un-
dergo a unique type of cell death termed “NETosis” [17], whereby
expiring neutrophils produce thread-like extracellular structures called
neutrophil extracellular traps (NETs). The main constituents of NETs
include DNA, modified histones, and cytotoxic proteins including
neutrophil elastase (NE), myeloperoxidase (MPO) and cathepsin [17].
NETs mainly perform a protective function, forming mesh-like struc-
tures to trap microbes. However, uncontrolled NET production has been
heavily implicated as a causative factor of ALI, ARDS, coagulopathy,
multiple organ failure and autoimmune disease [15]. Interestingly, IL-
1β produced by the NLRP3 inflammasome is a key inducer of NETs
[18]).

Hypothesis: IL-1β and NETs form a feedforward loop, leading to
the excessive alveolar and endothelial damage observed in severe
cases of COVID-19

Although in most cases the recent COVID-19 pandemic involves
mild flu-like symptoms such as a sore throat and fever, 5–10% of cases
involve life-threatening pneumonia and respiratory failure, resulting in
significant global COVID-19-induced morbidity and mortality [16]. The
pathogenesis of SARS-CoV-2 and its ability to cause acute lung injury
(ALI), acute respiratory distress syndrome (ARDS), sepsis, coagulopathy
and multiorgan failure is not known. Considering the apparent close
link and modulation between the NLRP3 inflammasome, IL-1β, and
NETs, perhaps a causative factor underlying ALI in COVID-19 patients
is attributable to NLRP3 inflammasome activation via viroporin-medi-
ated ionic channel activity of SARS-CoV-2 during cellular invasion.
Subsequently, activated NLRP3 would induce excessive NET production
by neutrophils, resulting in ALI/ARDS.

Studies of patients with SARS-CoV infections implicated involve-
ment of cytokines IL-1β, TNF-α, and IL-6 as causative factors [2]. IL-1β
induces generation of other cytokines, including IL-6 and TNF-α,
thereby contributing to the “cytokine storm” of inflammatory diseases
[19]. IL-1β is generated by the NLRP3 inflammasome, primarily by
resident macrophages upon activation of their pattern recognition re-
ceptors (PRRs) [10]. A feed-forward mechanism for IL-1β generation
exists, i.e., IL-1β can activate the NLRP3 inflammasome and vice versa
[10,11,20], potentially leading to an exaggerated cytokine response.
The release of pro-inflammatory cytokines in SARS-CoV infection is
attributed to E-protein-mediated increases in calcium permeability of
ERGIC/Golgi membranes [7,21]. This cytosolic calcium influx activates
the NLRP3 inflammasome and IL-6 production [7,21]. Importantly,
cationic disturbances due to viroporins are the major cause of the lung
edema caused by SARS-COV [18,20]. This lung edema and diffuse lung
injury also occurs in COVID-19 patients and exhibits the characteristic
ground-glass appearance on CT scans of the lungs.

Evaluation of the hypothesis

Generally, a two-step process results in optimal functioning of the
NLRP3 inflammasome; priming and subsequent activation. A priming
signal induced by extracellular PAMPs (e.g. LPS) will activate the
TLR4/NFκB pathway to increase synthesis of NLRP3 and pro-IL-1β.
Subsequently, a second extracellular signal by DAMPs (e.g., ATP) in-
duce NLRP3 oligomerization with ASC and pro-caspase-1 [8,9,20,21].
Pro-caspase-1 of the assembled complex is converted to the active form
(via autocatalysis) and cleaves latent pro-IL-1β to the mature IL-1β,
which is subsequently released into the extracellular space [10–13].
Influx of calcium also results in stimulation of the inflammasome
NLRP3 [21], while several studies have also implicated K+ efflux
during inflammasome activation [12,13].

IL-1β produced by activated inflammasomes can recruit and acti-
vate neutrophils, producing excessive NETs. In turn, NETs can further
activate more inflammasomes [18]. In ALI/ARDS caused by infections,
a massive migration of neutrophils into the alveoli is observed due to
chemokines produced by epithelial cells and macrophages [15]. Mi-
grated neutrophils are stimulated by stimulants such as IL-1β in the
alveolar space to produce abnormal amounts of NETs, the enzymatic
content of which causes potent lung injury [22]. Neutrophils elastase
(NE) cleaves cadherins and endothelial cytoskeletal proteins resulting
in increased vascular permeability [22] and apoptosis of epithelial cells,
resulting in pro-inflammatory cytokine release.

MPO produced by NETs causes epithelial cell necrosis and apoptosis
[22]. DNA, a major component of NETs with antigenic properties,
causes an increased release of pro-inflammatory cytokines and gen-
eration of an abnormal immune response [22]. Endothelial damage
during endothelial injury results in release of Von Williebrand factor
(vWF), which activates platelets and neutrophils [23]. The activated
platelets then stimulate neutrophils to produce NETs, which trap RBCs,
platelets and proteins such as fibrin resulting in clot formation [24].
Several studies have implicated the role of NETs in sepsis, due to
overactive and cytotoxic immune responses which culminate in multi-
organ failure and death [25].

Consequences of hypothesis and discussion

To prevent/reduce ALI/ARDS in COVID-19 patients, it would thus
be prudent to explore therapeutics that can block the 1) NLRP3 in-
flammasome pathway; 2) production of IL-1β from macrophages; or 3)
excessive production of NETs (Fig. 1). Glyburide, an antidiabetic drug,
can block NLRP3 inflammasome activation by inhibiting ATP-sensitive
K+ channels [26]. However, the required dosage to inhibit NRLP3 in
vivo is high, and would result in significant hypoglycaemia [27]. A
potential alternative is 16673-34-0, an intermediate substrate of gly-
buride with no hypoglycaemic activity [27]. A further option is Col-
chicine, which non-selectively inhibits NRLP3 inflammasomes at the
P2X7 ATP receptor, and prevents assembly of the ASC complex [28,29].
Amantadine works as an antiviral agent against the influenza virus by
blocking the ion channel protein M2 (viroporins) [30,31].

Ankinara can block IL-1β, potentially disrupting the IL-1β/NET
feedback loop [18]. NET production has been blocked using re-
combinant DNase-1 (Dornase alfa), histone deacteylase inhibitors
(HDACi) and IL-6 blockers [18,32]. The neutrophil elastase (NE) in-
hibitor, Sivelestat, has been approved to treat ARDS, although no
change in survival rates has yet been observed [33]. While Dornase alfa,
sivelestat, ankinara and colchicine are safe and FDA-approved drugs,
specific clinical trials are required to evaluate the efficacy of these
drugs against COVID-19 in order to prevent severe lung damage and
ARDS in such patients.

Recent efforts to ascertain effective treatments of COVID-19 in se-
vere patients has been less than successful. Indeed, Hydroxychloroquine
treatment in COVID-19 patients may result in increased lethality
[34,35]. To this degree, it is essential that novel avenues of treating this
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virus are investigated.
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