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Respondent-driven sampling (RDS) is commonly used to study hard-to-
reach populations since traditional methods are unable to efficiently sur-
vey members due to the typically highly stigmatized nature of the popu-
lation. The number of people in these populations is of primary global
health and demographic interest and is usually hard to estimate.
However, due to the nature of RDS, current methods of population size
estimation are insufficient. We introduce a new method of estimating
population size that uses concepts from capture-recapture methods while
modeling RDS as a successive sampling process. We assess its statistical
validity using information from the CDC’s National HIV Behavioral
Surveillance system in 2009 and 2012.

KEYWORDS: Hard-to-reach population sampling; Network sampling;
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1. INTRODUCTION

In some populations, such as people at high risk for HIV—for example, female
sex workers (FSW), men who have sex with men (MSM), or people who inject
drugs (PWID)—or recent migrants, obtaining a probability sample can be
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practically impossible. This can be for a variety of reasons, including social
stigma, unwillingness to self-identify, or simply because the people in the
group may have engaged in an illegal activity.

In many cases, finding the size of these hard-to-reach populations is of great
interest. When deciding how much aid to send for HIV prevention, getting an
accurate count of people at high risk for HIV is crucial for efficient allocation of
resources (UNAIDS and World Health Organization 2010). Since these popula-
tions are hard to reach, traditional methods of sampling, such as random digit
dialing telephone numbers or household surveys, are infeasible. In addition, due
to the stigma attached to many hidden populations, individuals may refuse to re-
lease information to protect their or others’ privacy (Heckathorn 1997).

An alternative way of surveying these hidden populations involves exploit-
ing their highly connected nature. For example, PWID are much more likely to
know someone else who injects drugs. In addition, it is much more likely that
a person in the population would know that someone else is also in that popu-
lation (e.g., it is more likely for PWID to know who among people they know
is also a PWID). Therefore, researchers have developed various link-tracing
sampling methods in which the network links from sampled members of the
population are traced out to unsampled members in the population in order to
grow the sample (Spreen 1992; Gile and Handcock 2010; Handcock and Gile
2011).

One link-tracing method that has recently become very popular with
researchers for studying hidden populations is respondent-driven sampling
(RDS). Introduced by Heckathorn (1997) as an alternative to traditional snow-
ball sampling and time-location sampling techniques, RDS employs a link-
tracing design in the following manner:

(1) Start with a small initial sample, usually a convenience sample.
(2) Give each respondent a few coupons to recruit others, with incentives for

both the recruiter and the new recruit.
(3) Include each recruit in the study and give them a limited number of cou-

pons, typically approximately three (Malekinejad, Johnston, Kendall,
Kerr, Rifkin, et al. 2008), to hand out to other members of the population.

(4) People who receive a coupon may choose to come in to join the study.
(5) Each new participant is included in the study and given coupons to recruit

others.
(6) The process continues until a stopping condition is reached, such as a tar-

get sample size. If the chain stops before the stopping condition is reached
(e.g., due to unfruitful referrals), new seeds may be chosen to start new
chains.

Respondent-driven sampling has several benefits over more conventional
methods. First and most prominent is that it enables researchers to survey a
population for which a sampling frame does not exist. Since respondents know
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others in the population (a reasonable assumption for populations like MSM
and FSW), it is much easier to ask them to find more people for the study
rather than for researchers to try to find them. In addition, as opposed to other
network sampling designs, RDS involves a dual incentive system, with incen-
tives for both the recruiter for recruiting others and participants for joining the
study. In addition, the long chains generated by RDS result in samples that are
not as prone to bias by the initial convenience sample, whereas other recruit-
ment sampling methods may be (Heckathorn 1997; Gile 2011). In particular,
RDS is able to reach the less visible members of the population that may be
missed by other link-tracing designs (Kendall, Kerr, Gondim, Werneck,
Macena, et al. 2008). Further, RDS does not require participants to give up any
information about others. Instead, they are simply asked to recruit them into
the study, giving agency to the possible recruits. This avoids the issue of ask-
ing respondents to reveal information about their friends or acquaintances
(Heckathorn 1997).

Due to its many benefits, respondent-driven sampling has increasingly been
the method of choice when surveying these hard-to-reach populations (Platt,
Wall, Rhodes, Judd, Hickman, et al. 2006; UNAIDS and World Health
Organization 2010; Bengtsson, Lu, Nguyen, Camitz, Hoang, et al. 2012). A re-
view in 2008 found that there had been over 120 studies that have used RDS to
sample the populations most at risk for HIV (Malekinejad et al. 2008). Much
of the previous work has been done using respondent-driven sampling to find
proportions or other statistics (Volz and Heckathorn 2008; Gile 2011). Many
studies comparing RDS with other methods found that RDS is an effective and
efficient method for sampling hard-to-reach populations (Magnani, Sabin,
Saidel, and Heckathorn 2005; Abdul-Quader, Heckathorn, Sabin, and Saidel
2006; Platt et al. 2006; Semaan 2010).

However, the current literature on estimating the population size using only
RDS data is quite limited and has mostly focused on using a multiplier method
(Wattana, van Griensven, Rhucharoenpornpanich, Manopaiboon, Thienkrua
2007; Paz-Bailey, Jacobson, Guardado, Hernandez, Nieto, et al. 2011). Some
research has been done regarding using other forms of network sampling, such
as incorporating general link-tracing design to capture-recapture (Vincent and
Thompson 2016), but very few model-based methods have been developed
specifically for RDS data (Handcock, Gile, and Mar 2014; Crawford, Wu, and
Heimer 2018). In addition, the current model-based methods for RDS do not
take full advantage of the multiple capture population size estimation literature
from animal abundance. Because RDS is so popular among researchers of hid-
den populations, methods must be developed to estimate population size using
RDS data.

In this article, we develop a new method to estimate population size using
two RDS surveys. In section 2, we discuss traditional capture-recapture meth-
ods for population size estimation and methods developed specifically for RDS
data. In section 3, we introduce our new population size estimation method
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that uses concepts from both traditional capture-recapture and RDS-based
methods. In section 4, we use simulation studies to assess our new model and
compare it with existing methods. Finally, we provide concluding remarks in
section 5.

2. POPULATION SIZE ESTIMATION

Even though using RDS data for population size estimation has not been stud-
ied thoroughly, there is a rich literature on size estimation in general. The basis
of these methods comes from animal abundance. Researchers interested in
finding the number of animals in a certain area developed methods to count
them. These methods were applied to surveys of human populations, and
extensions were developed to relax some of the assumptions.

2.1 Capture-Recapture

A classic method of estimating the abundance of animals is using capture-
recapture. A basic capture-recapture design as it applies to animal abundance
can be described as follows:

(1) Capture a certain number of animals.
(2) Tag them and then release them back into the wild.
(3) Perform a second capture (recapture).
(4) Count how many of the recaptured animals are tagged.
(5) Use the overlap to estimate the abundance.

We can express the simple capture-recapture data in the form of a collapsed
two-by-two table, as in figure 1. Then we see the data as capture histories. That
is, we know the capture history of “1, 1,” “1, 0,” and “0, 1,” although we do
not observe the capture history “0, 0”. This is a condensed version of the com-
plete data, and multiple list methods typically approach the problem in this
way, estimating the frequency of capture history of all “0”s.

Figure 1. Contingency table for a simple capture-recapture design.
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If we assume independence of the two lists and equal capture probabilities
for each unit in the population, we get what Paz-Bailey et al. (2011) and
Berchenko and Frost (2011) refer to as the naive estimator,

bN naive ¼
ða1;0 þ a1;1Þða0;1 þ a1;1Þ

a1;1
;

where a1;0 is the number of people who were captured in only the first sample, and
a0;1 is the number of people who were captured in only the second sample. This is
also called the Lincoln-Petersen estimator. An alternative formulation of this
capture-recapture design uses the hypergeometric distribution. That is, we model
the second capture as a hypergeometric process, with a “success” defined as a unit
that was already observed in the first list (e.g., a tagged animal) and a “failure” de-
fined as one that was not observed (e.g., an untagged animal). A Bayesian imple-
mentation of this is provided by Cosenza, Eudey, Kerr, and Trumbo (2014).

2.2 Multiple List Methods

The basic capture-recapture method of estimating population size can be general-
ized to include more lists. For example, one might consider using three lists. This
would result in a three-dimensional version of the contingency table in figure 1,
and the aim would once again be to estimate every unit that was not captured in
any list. In addition, various methods have been developed to try to account for
heterogeneity in capture probabilities and for heterogeneity in lists (that is, a differ-
ent propensity to capture animals) or time effects (for example, if an animal that is
tagged is more likely to be captured because of the tagging) (Fienberg, Johnson,
and Junker 1999; Rivest and Baillargeon 2007; Manrique-Vallier 2016).

2.3 Network-Based Population Size Estimation Methods

One method to find the size of a population without directly sampling that pop-
ulation is the network scale-up method (Bernard, Hallett, Iovita, Johnsen,
Lyerla, et al. 2010; Salganik, Fazito, Bertoni, Abdo, Mello, et al. 2011). The
network scale-up method uses information about personal network sizes of
respondents in the general population and known population proportions to
make size estimates. For example, suppose we want to know how many men
who have sex with other men (MSM) in a particular group of one million peo-
ple. If a respondent knows two hundred people (i.e., their personal network
size is 200) and knows two people who are MSM, then we can conclude that 1
percent of the population are MSM. Known populations are used to estimate
the size of each respondentof personal network; for example, if a person
reports knowing 2 people named Joe and there are ten thousand Joes out of
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one million people in the population, then that respondent’s personal network
size would be two hundred.

The network scale-up method provides an advantage in that it does not need to
sample the population of interest directly, but it does require an assumption that the
unobserved and observed members have the same distribution of characteristics. In
addition, the population of interest is hidden, which means that the general popula-
tion most likely does not know whether their acquaintances really are in that hidden
population. Therefore, respondents might report knowing many fewer members of
the hidden population even if they actually know many more members.

Successive sampling–population size estimation (SS-PSE) was developed spe-
cifically to use RDS data, estimating population size using a single RDS sample
and modeling the RDS process rather than treating it as a probability sample
(Handcock et al. 2014). While performing the RDS, information on each respond-
ent’s degree (i.e., how many people they know in the population) is collected,
along with the order of observation. The RDS process is treated as sampling with
probability proportional to size without replacement (PPSWOR) (Gile 2011).

Intuitively, if we are sampling with PPSWOR, we would expect the people
with higher degrees to be sampled first and the people with lower degrees to be
sampled later on. Successive sampling–population size estimation leverages this
information to estimate the population size, modeling RDS with a successive sam-
pling approximation, which accounts for the without-replacement nature of RDS
and has been found to be effective in estimation of population means (Gile 2011).

Crawford et al. (2018) introduce another population size estimation method
specifically developed for a single RDS survey. They assume that the popula-
tion social network follows an Erd}os-R�enyi distribution and use the timing of
recruitment and network degree of recruits to gain information about the
unsampled members of the population. As opposed to SS-PSE, the RDS pro-
cess is more exactly modeled (rather than treating it as sampling with
PPSWOR), but it also requires a stronger assumption that the population net-
work is an Erd}os-R�enyi graph, such that ties are independent and that there is
an equal probability of each tie.

One large limitation of both SS-PSE and the method described by Crawford
et al. (2018) is that they both only use one RDS sample. More conventional size
estimation methods use multiple samples; so while the RDS process is actually
modeled, there is potential for improvement since adding a subsequent RDS sur-
vey adds valuable recapture information. In the next section, we will build on the
network-based approaches by estimating population size using two RDS surveys.

3. CAPTURE-RECAPTURE WITH SUCCESSIVE
SAMPLING FOR POPULATION SIZE ESTIMATION

One of the biggest benefits of using RDS data is the ability to collect multiple
samples on a hidden population relatively easily. In a review of RDS studies
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related to HIV surveillance, Malekinejad et al. (2008) found that RDS studies
took, on average, nine weeks to complete. Because of this, we want to adapt
capture-recapture methods to work with RDS data so that we can use as much
information as possible. Currently, capture-recapture and other multiple list
methods have not been tailored for RDS data. Paz-Bailey et al. (2011) used
RDS in the recapture stage, but there have been no published studies using
RDS for each stage of multiple captures in population size estimation. In addi-
tion, Paz-Bailey et al. (2011) only used an adjusted ratio estimator. We aim to
take a model-based approach, which will not only give us better estimates but
also better measures of variance.

We aim to improve on current methods by utilizing the degrees of each
respondent and the order in which they were sampled to develop a method specif-
ically for multiple RDS lists. In this section, we introduce Capture-Recapture
SS-PSE, a method to estimate population size using two RDS surveys.

We assume the existence of a population (for example, FSW in a city) with an
associated unit size. This can generally be anything about the individual that
affects their catchability, but for our purposes in RDS surveys, the unit sizes will
be the personal network size (or degree). Our observed data consists of two RDS
surveys that serve as our lists, or captures, in which the personal network size of
each observation is recorded in order of observation. That is, we track both the
unit size (degree) and the sequential order of the when units were included into
the study for both RDS surveys. We note that in practice, this is done in the order
that respondents come into the research center to be included in the study, regard-
less of which wave or which seedee chain they are a part of. In addition, the sec-
ond RDS survey includes a question about whether the respondent was recruited
and participated in the first RDS survey. Notably in these methods, we do not as-
sume that we have unique matching between the first and second list for those
captured in both. Instead, we only know that the unit was part of the first sample.
This is similar to the information collected in previous RDS studies that have tried
to use capture-recapture methodologies, as the researchers would ask whether the
respondent had previously received a unique keychain (Paz-Bailey et al. 2011).

3.1 Likelihood Formulation

We start by describing the likelihood. Let the total population size be N, with
each individual person in the population indexed 1; . . . ;N. Since we want to
estimate the population size, N is unknown. Each person has an associated unit
size representing the number of people they know in the population (e.g., the
number of FSW they know). These unit sizes are treated as an i.i.d. sample
from a superpopulation model. Let U1; . . . ;UN be the random variables repre-
senting the unit sizes. Let n0 and n00 be the sample size of the first list and sec-
ond list, respectively, and n0 refer to the size of the overlap, while n refers to
the overall unique sample size (so that n0 þ n00 � n0 ¼ n).
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We have an ordered sampling design, with G0 ¼ ðG01; . . . ;G0n0 Þ representing
the random indices of the sequentially sampled units with realization g0 ¼ ðg01;
. . . ; g0n0 Þ in the first list, and G00 ¼ ðG001; . . . ;G00n00 Þ representing the random in-
dices of the sequentially sampled units with realization g00 ¼ ðg001; . . . ; g00n00 Þ in
the second list. The unit sizes are U0obs ¼ ðUg01

; . . . ;Ug0
n0
Þ, in order of the first

list, and U00obs ¼ ðUg0 01
; . . . ;Ug0 0

n00
Þ the ordered unit sizes in order of the second

list, with realizations u0obs ¼ ðug01
; . . . ; ug0

n0
Þ and u00obs ¼ ðug0 01

; . . . ; ug0 0
n00
Þ, respec-

tively. Y 00obs ¼ ðY 00g0 01 ; . . . ; Y 00g0 0
n00
Þ with realizations y00obs ¼ ðy00g0 01 ; . . . ; y00g0 0

n00
Þ rep-

resent the recapture information. In other words, ygi
00 ¼ 1 if unit gi was

observed in the first list and zero otherwise. U ¼ ðU1; . . . ;UNÞ and u ¼ ðu1;
. . . ; uNÞ are the unit sizes of the population. We will assume that the unit sizes
are independent and identically distributed by some probability mass function
f ð�jgÞ. The choice of parametric model for the unit size distribution is dis-
cussed further in section 3.4. Finally, for simplicity, we will use
Uobs ¼ fU0obs;U

00
obs; Y

00
obsg, with realizations uobs ¼ fu0obs; u

00
obs; y

00
obsg to repre-

sent all observed data, including both lists and information about their overlap.

LðN; gjUobs ¼ uobsÞ

/ pðUobs ¼ uobsjN; gÞ

¼ pðUobs0 ¼ uobs0 jN; gÞ pðUobs00 ¼ uobs00 ; Yobs00 ¼ yobs00 jUobs0 ¼ uobs0 ;N; gÞ

¼ pðUobs0 ¼ uobs0 jN; gÞ pðUobs00 ¼ uobs00 jYobs00 ¼ y00obs;Uobs0 ¼ uobs0 ;N; gÞ�

pðYobs00 ¼ yobs00 jUobs0 ¼ uobs0 ;N; gÞ
¼ P

u

½ðP
g0

pðU0obs ¼ u0obsjU ¼ u;G0 ¼ g0; gÞpðG0 ¼ g0jU ¼ u; gÞÞ�

ðP
g00

pðU00obs ¼ u00obsjUobs0 ¼ u0obs; Y
00

obs ¼ y00obs;U ¼ U;G00 ¼ g00; gÞ�

pðG00 ¼ g00jY 00obs ¼ y00obs;Uobs0 ¼ u0obs;U ¼ uÞ�

pðY 00obs ¼ y00obsjUobs0 ¼ u0obs;U ¼ u; gÞÞ � pðU ¼ ujgÞ�

¼ N!

ðN � nÞ!
X
v2U
½pðG0 ¼ ð1 � � � n0ÞjU ¼ vÞ�

pðG00 ¼ g�jUobs0 ¼ u0obs; Y 00obs ¼ y00obs;U ¼ v; gÞ�

pðY 00obs ¼ y00obsjUobs0 ;U ¼ v; gÞ
YN
j¼1

f ðujjgÞ�:
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Here U is the set of equivalence classes of unit sizes possible for the N units,
given that the observed data was uobs. Intuitively, the elements of U include
all possible unit sizes for each of the N units, except n of them are con-
strained to be the observed unit sizes. Since the likelihood is equivalent for
all values of g0 and g00 as long as they have the same unit sizes, we assign the
labels sequentially starting from one and incrementing up when we sample a
previously unobserved unit, then multiply by the number of permutations
outside the sum. So in the first list, we have g0 ¼ f1; . . . ; n0g, and in the sec-
ond list, we have g00 ¼ g�, where the values of g� take on the original label
from the first list if it was already observed in the first list and the next avail-
able sequential value if it was not observed in the first list. In other words,
the newly observed units in g� are in order from n0 þ 1 to n (recall that n
refers to the combined sample size, or the number of unique units sampled
in the two lists), while the previously observed units retain their original la-
beling. Since we choose n0 indices from N possible in the first list and n0

�n0 indices from N � n0 possible in the second list, the multiplicative factor
is

N!

ðN � n0Þ! �
ðN � n0Þ!

ðN � n0 � ðn00 � n0ÞÞ!
¼ N!

ðN � nÞ! :

We note that even though n is not fixed by the study design as n0 and n00 are, it
is determined by the observed data (specifically, the overlap information), and
we are able to apply the multiplicative factor outside the summation due to
how we have constructed U.

3.2 Modeling RDS as PPSWOR

Respondent-driven sampling is a complex process for which it is extremely
difficult to find a statistical representation because it relies on the network
structure of the population and is not fully controlled by surveyors. There
have been many attempts at approximating the RDS process (Heckathorn
1997; Volz and Heckathorn 2008; Gile 2011). Gile (2011) provides theoreti-
cal and empirical justification for treating the RDS process as a successive
sampling process, using a probability proportional to size without replace-
ment (PPSWOR) sampling scheme to approximate RDS, showing that it
reduces finite population biases for RDS estimates of population
characteristics.

As such, we model the RDS process as a successive sampling procedure,
following Gile (2011). Specifically, our model for the first list is the same as in
SS-PSE (Handcock et al. 2014):
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LðN; gjUobs ¼ uobsÞ

/ N!

ðN � nÞ!
X
v2U
½ ð

Yn0
k¼1

ug0k

r0k
ÞpðG00 ¼ g�jUobs0 ¼ u0obs; Y

00
obs ¼ y00obs;U ¼ v; gÞ�

pðY 00obs ¼ y00obsjUobs0 ;U ¼ v; gÞ
YN
j¼1

f ðujjgÞ�;

where

r0k ¼
Xn0

i¼1

ug0i
�
Xk�1

j¼1

ug0j
: (1)

We can think of r0k as representing the remaining total degree (i.e., the sum of
the degrees of everyone in the population who has not yet been sampled). For
the second list, we split it up into two parts: whether the units in the second list
were in the first list and the order in which they were captured, given the infor-
mation about whether they were in the first list. We start with the latter.

Given that we know whether or not the unit was in the first list, we can treat
the sampling process as PPSWOR out of the two groups: captured in first list
and not captured in first list. Let gþk ; k 2 f1; . . . ; n0g refer the indices of units
caught in the first list and g�k ; k 2 f1; . . . ;N � n0g refer to the indices of units
not caught in the first list. Then, we obtain

pðG00 ¼ g�jU0obs ¼ u0obs; Y
00
obs ¼ y00obs;U ¼ v; gÞ ¼

Yn00�n0

k¼1

ugþk

rþk

Yn0

k¼1

ug�k

r�k
;

where

rþk ¼
Xn00
i¼1

ug0 0i
�
Xk�1

j¼1

ugþj
and r�k ¼

Xn00
i¼1

ug0 0i
�
Xk�1

j¼1

ug�j
: (2)

So, our full likelihood becomes

LðN; gjUobs ¼ uobsÞ

/ N!

ðN � nÞ!
X
v2U
½
Yn0
k¼1

ug0k

r0k

Yn00�n0

k¼1

ugþk

rþk

Yn0

k¼1

ug�k

r�k

� pðY 00obs¼ y00obsjU0obs;U ¼ v; gÞ
YN
j¼1

f ðujjgÞ�:
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Recall that Y 00obs represents a vector of indicator variables for whether the units
in the second list were captured in the first list. Again, we model the process as
PPSWOR so that

pðY 00obs ¼ y00obsjU0obs ¼ u0obs;U ¼ v; gÞ ¼
Yn00
k¼1

1
r00k

Yn00�n0

k¼1

rþk
Yn0

k¼1

r�k ;

where

r00k ¼
Xn00
i¼1

ug0 0i
�
Xk�1

j¼1

ug0 0j
:

After simplification, we obtain

LðN; gjUobs ¼ uobsÞ /
N!

ðN � nÞ!
X
v2U
½
Yn0
k¼1

ug0k

r0k

Yn00�n0

k¼1

ugþk

Yn0

k¼1

ug�k

Yn00
k¼1

1
r00k

YN
j¼1

f ðujjgÞ�:

3.3 Bayesian Inference for Unit Size Distribution and Population Size

The joint posterior is given by

pðg;NjUobs ¼ uobsÞ / pðg;NÞ � L½g;NjUobs ¼ uobs�;

where pðg;NÞ is the joint prior for the unit size distribution parameter and the
population size. West (1996) and Handcock et al. (2014) note that the likeli-
hood is difficult to compute due to the complexity of U. They develop an ancil-
lary variable to finesse this. We use a variant of this method to sample from the
augmented posterior,

pðN; g;Uunobs ¼ uunobs; WjUobs ¼ uobsÞ;

using a four-component Gibbs sampler. This method is developed and detailed
in appendices A.1 and B.1. The full specification of the Markov Chain Monte
Carlo (MCMC) algorithm is given in appendix C.1.

3.4 Unit Size Distribution Model

For our purposes, we need a super-population model for unit size. Here we
focus on the cases in which the unit sizes are the personal network sizes
(or degrees). There has been a considerable amount of work done on modeling
the degree distribution of a network. Handcock et al. (2014) notes that certain
long-tailed distributions such as the Poisson-log-normal and the Waring and
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Yule distributions, which allow for power-law over-dispersion (Handcock and
Jones 2006), are not able to represent the under-dispersion in degree counts,
suggesting the Conway-Maxwell-Poisson distribution (Shmueli, Minka,
Kadane, Borle, and Boatwright 2005) as an alternative.

For the applications in this article, we chose to use the Conway-Maxwell-
Poisson distribution because it offers greater flexibility over similar distribu-
tions such as the Poisson while using only one additional parameter.

3.5 Prior Specification

We can parametrize the Conway-Maxwell-Poisson distribution in terms of its
mean and standard deviation. We then put priors on the log mean and variance
parameters using the normal distribution for the prior log mean, l, given the
prior standard deviation r, and scaled inverse v2 for the variance r2, so

logðlÞjr � Nðl0; r=dfmeanÞ and r2 � Invv2ðr2
0; dfsigmaÞ:

In our applications, we use diffuse priors with dfmean ¼ 1 and dfsigma ¼ 5.
For the population size, Handcock et al. (2014) uses a two-parameter class

of priors,

pðNÞ ¼ bnðN � nÞb�1

Naþb
for N > n; a > 0; b > 0:

This prior can be thought of specifying knowledge about the sample fraction
ðn=NÞ as a beta (a, b) distribution. This class of priors was chosen after consul-
tation with field researchers; the hyperparameters can be specified by them
based on budget and logistic considerations for their choice of sample size. For
more information about this prior choice, see Handcock et al. (2014).

4. ASSESSMENT OF CR-SS-PSE

In this section we compare our method, capture-recapture successive sam-
pling–population size estimation (CR-SS-PSE) with other population size esti-
mation methods. One approach to assessment would be using asymptotic
approximations of its statistical properties. However, in the case of population
size estimation, there are a number of different asymptotic frameworks involv-
ing the relative sizes of n and N, and the real-world relevance of each proposed
asymptotic approximation would need to be carefully considered. Instead, we
assess the performance of CR-SS-PSE via simulation studies using ranges of n
and N that are commonly met in practice. We can also precisely specify the sta-
tistical properties of the networked populations and RDS schemes. This allow

Population Size Estimation 105



us to see how CR-SS-PSE performs under known conditions and the dimen-
sions under which it breaks down.

4.1 Simulation of Networks with Known Statistical Properties

In general, we do not expect people to form networks completely randomly.
Therefore, we tried to simulate networks with network characteristics as close
to the populations of interest as possible. We want to incorporate some of the
factors that affect network structure, as they can greatly affect how the RDS
process samples from the population. Therefore, we will look at several key
aspects of network formation.

Exponential-family random graph models (ERGMs) were used to generate
each of the simulated population networks discussed in this chapter (Snijders,
Pattison, Robins, and Handcock 2006; Gile and Handcock 2010; Spiller, Gile,
Handcock, Mar, and Wejnert 2017). That is, y, an N by N binary matrix repre-
sentation of a network (with yij ¼ 1 if there is a tie between node i and node j,
and yij ¼ 0 otherwise) is represented as a realization of the random variable Y
with distribution

PgðY ¼ yjxÞ ¼ exp fg � gðy; xÞ � jðg; xÞgy 2 Y; (3)

where x are covariates, g(y, x) is a p-dimensional vector of network statistics, g
2 R

p is a parameter vector, Y is the set of all possible undirected networks
with N nodes, and exp fjðg; xÞg ¼

P
u2Y exp fg � gðu; xÞg is the normalizing

constant (Handcock et al. 2014).
The ERGM provides a way for us to put a probability on every possible net-

work with a certain number of nodes, N, based on characteristics of the network
we want to simulate. In the simulations discussed in this chapter, we use param-
eters for homophily, differential activity, and overall mean degree that acts as a
baseline level of propensity to form ties. We use the ERGM to draw networks
from the space of all possible networks with a probability described by (3).

For the first part of our simulation studies, we use two simulated net-
works—called Faux Sycamore and Faux Madrona—and a real network from
the Add Health data set. The Faux Sycamore and Faux Madrona network data
sets were taken from the RDS package in R (Handcock, Fellows, and Gile
2016). These simulated data was used by Gile and Handcock (2010) in simula-
tion studies to test RDS estimators and was created to include characteristics
similar to the data from the CDC surveillance program (Abdul-Quader et al.
2006). In these networks, individuals had a dichotomous characteristic of being
infected or uninfected. The networks were generated using homophily and dif-
ferential activity. Homophily was such that two infected individuals were five
times as likely to be linked with a tie than a mixed pair of individuals.
Differential activity on their disease status was such that the mean degree of
infected individuals was twice that of uninfected individuals.
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The Add Health data set was constructed from a series of questionnaires
given to students in school. The students were asked to nominate friends either
in the same school or in a “sister” school, and a friendship network was gener-
ated based on these responses (Harris, Halpern, Whitsel, Hussey, Tabor, et al.
2009). We used a network with N¼ 2,587 for our simulations. Though the net-
works generated were directed, we treated them as undirected by turning each
tie into an undirected one.

Then we simulated networks based on RDS data collected on people who
inject drugs (PWID) from ten cities collected by the CDC (Centers for Disease
Control and Prevention 2012). To create the simulated networks, five network
characteristics were measured: the prevalence of a binary trait, HIV infection,
homophily for that trait, mean degree, and differential activity. Using the esti-
mated mean values of these characteristics from the RDS studies, natural
parameters were calculated for the ERGMs, which were then used to simulate
many networks for each of the cities: 1,000 networks for the N¼ 10,000 case
and 250 each for the N¼ 5,000 and N¼ 1,000 cases. We will refer to these
cases as the CDC PWID studies.

4.2 Simulation of RDS

In addition to simulating the population network, we simulate the RDS pro-
cess. When we apply traditional capture-recapture models, we implicitly make
assumptions about the RDS process. That is, we may be treating the RDS as a
simple random sample as in the basic Lincoln-Petersen estimator. However,
we have reason to believe that the RDS process is actually very different from
this (Gile 2011). Therefore in these simulations, we try to get as close to real
RDS surveys as possible.

In the simulations performed in this chapter, we will define a trial as consist-
ing of collecting two respondent-driven samples and recording the order of ob-
servation and personal network size (unit size), in addition to recapture
information. The latter is only collected in the second sample as the answer to
“Were you in the first sample?” In other words, we do not track unique match-
ing between the two lists.

For the Add Health, Faux Madrona, and Faux Sycamore networks, we
started with a random sample of ten initial seeds, which is consistent with a re-
view of over 120 RDS studies that found an average of ten seeds used
(Malekinejad et al. 2008) and the number used in a pilot study run by the CDC
(Abdul-Quader et al. 2006). We used two coupons for each respondent. In the
simulation, starting with the seeds, we sampled two recruits randomly from the
nodes connected to each respondent. Then we used the newest wave of recruits
to repeat the process. If a respondent had only one available link to an
unsampled person, that person only recruited one person. We stopped the RDS
recruitment when we reached our target sample size. The recruiting was as-
sumed to have been done at random from each respondent’s personal network.

Population Size Estimation 107



For the simulated networks based on CDC PWID studies, we used real
network characteristics for each of the cities and then performed one RDS
trial for each of the networks. The networks were generated for N¼ 10,000
and N¼ 1,000. The RDS simulation that was performed on each of the net-
works was based on the real RDS that was taken in the real city. That is, the
simulated RDS had the same number of starting seeds, number of coupons
given out, number of seeds with or without the trait (HIV infection), and
distribution of number of recruits per respondent as the actual RDS run in
that city.

4.3 Population Size Estimation Methods

We compare our method, CR-SS-PSE, with five other methods. We include
two methods that used multiple list concepts: simple capture-recapture using
the hypergeometric distribution (Cosenza et al. 2014) and the nonparametric
latent class model (NPLCM) (Manrique-Vallier 2016). We used a Bayesian
implementation of the hypergeometric model so that we could use the same
priors as in all of our other methods.

We also used three variants of the SS-PSE model: SS-PSE with just the first
list (which we call SS-PSE); SS-PSE using the first list and then SS-PSE with
the second list using the posterior from the first as the prior (which we call in-
dependent SS-PSE); and SS-PSE with one combined list consisting of all
unique units in the order they were sampled, removing any double-counting
from the second list (which we call combined SS-PSE).

4.4 Faux Sycamore Friendship Network

The Faux Sycamore network had a true population size of N¼ 715, and the
sample size for each list was n0 ¼ n00 ¼ 150. Table 1 gives some numerical
summaries of the performance of the point estimates. Capture-recapture suc-
cessive sampling–population size estimation and hypergeometric CR have the
lowest MSE values, while CR-SS-PSE has the lowest bias.

Figure 2 shows the posterior means using the six methods and their cover-
age rates. As the bias and MSE values showed, CR-SS-PSE seems to do the
best job, with the posterior means centered at the true value. Successive sam-
pling–population size estimation and independent SS-PSE both underestimate
the population size, while the combined SS-PSE model overestimates the pop-
ulation size and has the largest variation in posterior means. The hypergeo-
metric capture-recapture model and NPLCM both also tend to
underestimate the true population size. Capture-recapture successive sam-
pling–population size estimation and combined SS-PSE have the best cov-
erage rates.
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4.5 Faux Madrona Friendship Network (N¼ 1,000)

The Faux Madrona network had a true population size of N¼ 1,000, and the
sample size for both lists was n0 ¼ n00 ¼ 200. Figure 2 shows the posterior
means using the six methods. We see similarities to what we saw from the
Faux Sycamore data set. Capture-recapture successive sampling–population

Table 1. Mean Squared Error (MSE), Bias, Variance of the Posterior Means,
and the Bias Proportion of MSE (Bias2=MSEÞ for Each of the Six Methods with
the Faux Sycamore Network

Method MSE Bias Variance Bias proportion of MSE

CR-SS-PSE 1:7� 104 36 1:6� 104 0.077
SS-PSE 9:6� 104 �264 2:7� 104 0.722
Independent SS-PSE 9:3� 104 �259 2:6� 104 0.719
Combined SS-PSE 2:2� 105 307 1:2� 105 0.434
Hypergeometric CR 1:7� 104 �70 1:2� 104 0.287
NPLCM 3:0� 104 –145 8:6� 103 0.708

Figure 2. Boxplots of posterior means with six methods for the Add Health, Faux
Sycamore, and Faux Madrona networks. Posterior means are shown as a propor-
tion of the true population size. Coverage rate of the 1,000 90% confidence inter-
val estimates is shown below each boxplot.
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size estimation performs the best, with a median posterior mean very close to
the true population size, while most of the other methods tend to underesti-
mate, and the combined SS-PSE method overestimates. Capture-recapture suc-
cessive sampling–population size estimation and combined SS-PSE again
have the best coverage rates.

Table 2 shows the performance of the point estimates. Capture-recapture
successive sampling–population size estimation has the lowest MSE, followed
by hypergeometric CR and NPLCM. Capture-recapture successive sampling–
population size estimation also has the lowest bias. Combined SS-PSE has the
highest variance of posterior means, which is supported by the wide boxplot in
figure 2.

4.6 Add Health Friendship Network (N¼ 2,587)

One aspect of the Add Health friendship network that may affect the perfor-
mance compared with the two previous networks is the possible existence of a
bottleneck. Since this network consists of two schools, we might be concerned
about a possible bottleneck due to a high level of homophily by school.

We again use 1,000 simulated RDS trials, apply each of the six methods,
and compare their posterior means and 95 percent highest posterior density,
as shown in figure 2. We again see that CR-SS-PSE performs the best, with
every single other method—besides the combined SS-SPE—underestimat-
ing the true population size. The difference is even more drastic in this case,
with every single point estimate in the SS-PSE and independent SS-PSE
methods coming under the true population size. Table 3 shows this differ-
ence even more clearly. Capture-recapture successive sampling–population
size estimation again has the lowest MSE, and the bias for the SS-PSE meth-
ods are all quite high. Combined SS-PSE again does well in coverage rate
due to very wide interval estimates, but CR-SS-PSE performs better than ev-
ery other method.

Table 2. Mean Squared Error (MSE), Bias, Variance of the Posterior Means,
and the Bias Proportion of MSE (Bias2=MSEÞ for Each of the Six Methods with
the Faux Madrona Network

Method MSE Bias Variance Bias proportion of MSE

CR-SS-PSE 2:6� 106 52 2:5� 104 0.095
SS-PSE 1:3� 108 �360 7:2� 104 0.642
Independent SS-PSE 1:2� 108 �347 7:8� 104 0.608
Combined SS-PSE 3:6� 108 599 3:8� 105 0.487
Hypergeometric CR 7:2� 106 �85 2:0� 104 0.266
NPLCM 3:3� 107 �182 1:8� 104 0.646
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4.7 Comparison Based on the National HIV Behavioral Surveillance
Studies

In order to try to emulate real networks, we used simulated networks that were
based on RDS studies for people who inject drugs (PWID) by the CDC
National HIV Behavioral Surveillance system (NHBS) in 2009 and 2012
(Centers for Disease Control and Prevention 2012, 2015). For each of these
networks, one RDS trial was simulated using the same number of starting
seeds, number of coupons given out, number of seeds with or without the trait,
and the distribution of the number of recruits as was used in the original RDS
study. Every population size estimation method in this section is the same as in
previous sections in terms of methods and priors used.

4.8 Population with N¼ 10,000

Figure 3 shows the posterior means from the cities with a population size of
N¼ 10,000, with the point showing the median posterior mean and the line
representing the middle 95 percent of the posterior means (i.e., the 97.5 and
2.5 percentile). The CR-SS-PSE method seems to be doing very well, though
the hypergeometric capture-recapture model seems to be doing very similarly.
In general, the posterior means for these two methods are near the true popula-
tion size. By contrast, the SS-PSE methods and NPLCM all tend to greatly un-
derestimate the population size.

Table 4 shows the coverage rates of the interval estimates. We see that CR-
SS-PSE and hypergeometric capture-recapture are both very similar and rela-
tively high, getting close to the 90-percent coverage level, with CR-SS-PSE
generally performing slightly better. The performance of the other methods by
this metric falls off considerably. Independent and single SS-PSE both have
extremely low coverage rates, while NPLCM and combined SS-PSE both
have coverage rates that hover around 0.60.

Table 3. Mean Squared Error (MSE), Bias, Variance of the Posterior Means,
and the Bias Proportion of MSE (Bias2=MSEÞ for Each of the Six Methods with
the Add Health Network

Method MSE Bias Variance Bias proportion of MSE

CR-SS-PSE 1:7� 105 80 1:7� 105 0.037
SS-PSE 2:4� 106 �1,497 2:0� 105 0.919
Independent SS-PSE 2:5� 106 �1,523 1:6� 105 0.935
Combined SS-PSE 6:5� 106 1,373 4:7� 106 0.288
Hypergeometric CR 2:9� 105 �433 9:9� 104 0.656
NPLCM 5:1� 105 �617 1:3� 105 0.749
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4.9 Population with N¼ 1,000

Figure 4 shows the posterior means from the cities with a population size of
N¼ 1,000, with the point showing the median posterior mean and the line
representing the middle 95 percent of the posterior means (i.e., the 97.5 and
2.5 percentile). The CR-SS-PSE method again seems to be doing very well,
while the hypergeometric capture-recapture model tends to underestimate
slightly. The NPLCM does better with N¼ 1,000 than with N¼ 10,000,
with point estimates that seem to be close or slightly underestimated. The
SS-PSE methods all overestimate this time, with a very wide range of point
estimates.

Table 5 shows the coverage rates for each of the cities with N¼ 1,000. We
see that CR-SS-PSE is again relatively high, getting close to the 90-percent
coverage level. Hypergeometric capture-recapture does much poorer by this
metric, with coverage rates going as high as 0.70 and as low as 0.18. However,
all the other methods seem to do quite well in coverage; though in the case of
the SS-PSE methods, it is due to quite large interval estimates, which is unde-
sirable for practical purposes.

Figure 3. Posterior means from ten simulated cities for N 5 10,000. The median
and middle 95 percent of the posterior mean are shown with the point and line for
each method. The CR-SS-PSE is shown with a solid line, while the other five
methods are shown with dashed lines.
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4.10 Overview of CDC PWID Simulations

For each of the different population sizes, CR-SS-PSE had good point and in-
terval estimates, and though there were cases in which other methods may
have performed just as well, they were not consistent across all population
sizes. We also note that the coverage rates for the CR-SS-PSE were relatively

Table 4. Nominal 90% Confidence Interval Coverage Rates from Ten Simulated
Cities for N 5 10,000

City 1 2 3 4 5 6 7 8 9 10

CR-SS-PSE 0.86 0.87 0.91 0.88 0.87 0.85 0.87 0.85 0.87 0.88
Hypergeometric 0.85 0.87 0.87 0.84 0.81 0.82 0.87 0.77 0.82 0.80
Indep. SS-PSE 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00
NPLCM 0.53 0.56 0.56 0.52 0.52 0.52 0.57 0.49 0.52 0.50
Single SS-PSE 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00
Comb. SS-PSE 0.58 0.53 0.62 0.69 0.74 0.64 0.45 0.75 0.65 0.69

Figure 4. Posterior means from ten simulated cities for N 5 1,000. The median
and middle 95 percent of the posterior means are shown with the point and line
for each method. The CR-SS-PSE is shown with a solid line, while the other five
methods are shown with dashed lines.
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consistent, with lower spikes and drops compared with the other methods, and
they were generally around 90 percent coverage.

5. CONCLUSION

We have proposed a new method of estimating the size of a hidden population
using multiple RDS surveys. This model, called capture-recapture successive
sampling for population size estimation—or CR-SS-PSE—uses information
from RDS samples more efficiently than existing methods and is shown to
have good properties when applied to networks with known statistical proper-
ties and has outperformed many existing methods. Due to the popularity of
RDS because of the relative ease with which RDS surveys can be imple-
mented, CR-SS-PSE can be useful in providing better estimates by using more
of the available information rather than only the network information or a sim-
ple capture-recapture approximation.

Appendix A.1: Bayesian Inference for the unit size distribution

We start by developing inference for the unit size distribution conditional on
known N. The posterior is given by

pðgjUobs ¼ uobsÞ / pðgÞ � L½gjUobs ¼ uobs�;

where pðgÞ is the prior for the unit size distribution parameter. West (1996)
and Handcock et al. (2014) note that the likelihood is difficult to deal with and
use

pðU ¼ ujG0 ¼ g0;G00 ¼ g00; gÞ ¼ N!

ðN � nÞ!
Yn0
k¼1

ug0k

r0k

Yn00
h¼1

ug0 0h

r00h

YN
j¼1

f ðujjgÞ: (4)

So from (4),

Table 5. Coverage Rates from Ten Simulated Cities for N 5 1,000

City 1 2 3 4 5 6 7 8 9 10

CR-SS-PSE 0.87 0.90 0.93 0.94 0.93 0.90 0.89 0.89 0.88 0.92
Hypergeometric 0.47 0.68 0.60 0.44 0.22 0.44 0.70 0.18 0.42 0.24
Indep. SS-PSE 0.98 0.91 0.64 0.88 0.61 0.98 0.98 0.89 0.80 0.69
NPLCM 0.95 0.98 0.96 0.98 0.91 0.94 0.98 0.94 0.95 0.94
Single SS-PSE 0.98 0.92 0.71 0.85 0.67 1.00 0.99 0.85 0.85 0.67
Comb. SS-PSE 0.81 0.72 0.69 0.80 0.86 0.85 0.84 0.82 0.84 0.83
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pðUunobs ¼ uunobsjg;Uobs ¼ uobsÞ /
Yn0
k¼1

1
r0k

Yn00
h¼1

1
r00h

YN
j¼nþ1

f ðujjgÞ:

West (1996) and Handcock et al. (2014) note that the r0k and r00k terms are diffi-
cult to deal with and use a method involving augmenting the data. We adapt
the method to include multiple lists. For k 2 f1; . . . ; n0g; h 2 f1; . . . ; n00g, let
w0k and w00h have the exponential distribution with rate parameter r0k and r00h, re-
spectively. Then, ð1

0
r0ke�r0kw

0
k dw0k ¼ 1)

ð1
0

e�r0kw
0
k dw0k ¼

1
r0k

and ð1
0

r00he�r00h w00h dw00h ¼ 1)
ð1

0
e�r00h w00h dw00h ¼

1
r00h
:

In other words,

pðw0k ¼ w0jg;Uunobs ¼ uunobs;Uobs ¼ uobsÞ ¼ r0k expð�r0kw
0Þ

and

pðw00h ¼ w00jg;Uunobs ¼ uunobs; g;Uobs ¼ uobsÞ ¼ r00h expð�r00hw
00Þ:

We can then augment the data with W0 ¼ ðw01; . . . ;w0n0 Þ and
W00 ¼ ðw001; . . . ;w00n00 Þ, where the components of W0 and W00 are all condition-
ally independent of one another. Let W ¼ ðW0;W00Þ. Then,

pðUunobs ¼ uunobs;Wjg;Uobs ¼ uobsÞ
¼ pðW0 ¼ w0jg;Uobs ¼ uobsÞpðW00 ¼ w00jg;Uobs ¼ uobsÞ�

pðUunobs ¼ uunobsjg;Uobs ¼ uobsÞ

/
Yn0
j¼1

e�r0jw
0
j

Yn00
j¼1

e�r00j w00j
YN

j¼nþ1

f ðujjgÞ:

(5)

Using (1), (2), and (5),
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pðUunobs ¼ uunobsjW0;W00; g;Uobs ¼ uobsÞ

/
Yn0
j¼1

e�r00 jw
0
j

Yn00
k¼1

e�r00 jw
00

j

YN
j¼nþ1

f ðujjgÞ

/
Yn0
i¼1

e

�w0 i

XN

j¼n0þ1

ug0 jYn0
i¼1

e

�w0 i

Xn0

j¼i

ug0 jYn00
i¼1

e

�w00 i

XN

j¼n00þ1

ug00 j

Yn00
i¼1

e

�w00 i

Xn00
j¼i

ug00 j YN
j¼nþ1

f ðujjgÞ

/
YN

j¼nþ1

exp ð�uj

Xn0

i¼1

w0iÞ expð�uj

Xn00
i¼1

w00iÞf ðugj jgÞ

¼
YN

j¼nþ1

exp ð�ujð
Xn0

i¼1

w0i þ
Xn00
i¼1

w00iÞÞf ðugj jgÞ:

(6)

We see that the unobserved units are conditionally independent from the
unnormalized PMF expð�ujð

Pn0

i¼1 w0i þ
Pn00

i¼1 w00iÞÞf ðugj jgÞ. In addition, they
are independent of all observed information. Thus we can get draws from the
augmented posterior,

pðg;Uunobs ¼ uunobs;WjUobs ¼ uobsÞ;

using a three-component Gibbs sampler.

Appendix B.1: Bayesian Inference for the population size

In the previous section, we assumed a known N. However, when estimating
the population size, we do not know N and want to estimate it. To do this, we
adjust the method in the previous section to treat N as a parameter.

We derive the conditional for N.
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pðNjg;W0;W00;Uobs ¼ uobsÞ / pðNÞpðUobs ¼ uobsjN; g;W0;W00Þ

¼ N!

ðN � nÞ! pðNÞ
X
v2U
½
YN

j¼nþ1

exp ð�ujð
Xn0

i¼1

w0i þ
Xn00
i¼1

w00iÞÞf ðugj jgÞ�

¼ N!

ðN � nÞ! pðNÞ
YN

j¼nþ1

½
X1
vj¼1

exp ð�vjð
Xn0

i¼1

w0i þ
Xn00
i¼1

w00iÞÞf ðjjgÞ�

¼ N!

ðN � nÞ! pðNÞ½cð
Xn0

i¼1

w0i þ
Xn00
i¼1

w00i; gÞ�N�n;where cða; gÞ ¼
X1
j¼1

e�ajfðjjgÞ:

(7)

We can use (7) to obtain samples from the joint augmented posterior,

pðN; g;Uunobs ¼ uunobsWjUobs ¼ uobsÞ;

which we can then use to obtain the marginal posterior distribution of N and
g. The full details of the MCMC algorithm are given in appendix C.1.

Appendix C.1: Algorithmic Details

Here we describe in the detail the algorithm for drawing from the joint
posterior.

(1) Initialize N at a point estimate and Uunobs at a set of unit sizes.
(2) Sample g from

pðgjUunobs;Uobs ¼ uobs:W
0;W00;NÞ ¼ pðNÞ �

YN
j¼1

f ðujjgÞ:

This is done using a Metropolis-Hastings algorithm. In our applications, we
used the Conway-Maxwell-Poisson distribution as our unit size distribution, so
we had two parameters: g ¼ ððlogðlÞ; r2Þ. We used a Gaussian proposal for
the log mean and an inverse-v2 for the variance.
(3) Sample W0;W00 from

pðw0k ¼ w0jg;Uunobs ¼ uunobs;Uobs ¼ uobsÞ ¼ r0k expð�r0kw
0Þ

and

pðw00k ¼ w00jg;Uunobs ¼ uunobs; g;Uobs ¼ uobsÞ ¼ r00k expð�r00kw
00Þ:

These are independent standard exponential draws.
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(4) Sample N from (7). In order to make computation easier, we set Nmax a
maximum value for N. We compute (7) for each value between n and Nmax

and use this to sample a value between n and Nmax directly.
(5) Sample Uunobs from (6). This is done using a rejection sampling method,

similar to the one described in West (1996) and used in SS-PSE by
Handcock et al. (2014).

The rejection sampling process is
(i) Draw d from f ð�jgÞ and independently u � Uð0; 1Þ.

(ii) If logðuÞ > �ð
Pn0

i¼1 w0i þ
Pn00

i¼1 w00iÞ � d, reject d and return to (i).
Otherwise, save d and repeat until N ann elements of uunobs have been
sampled.

(6) Repeat until convergence.
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