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A mathematical model for the spread of the COVID-19 disease based on a fractional Atangana-Baleanu operator
is studied. Some fixed point theorems and generalized Gronwall inequality through the AB fractional integral
are applied to obtain the existence and stability results. The fractional Adams-Bashforth is used to discuss the
corresponding numerical results. A numerical simulation is presented to show the behavior of the approximate
solution in terms of graphs of the spread of COVID-19 in the Chinese city of Wuhan. We simulate our table
for the data of Wuhan from February 15, 2020 to April 25, 2020 for 70 days. Finally, we present a debate

about the followed simulation in characterizing how the transmission dynamics of infection can take place in

society.

1. Introduction

Mathematical modeling allows for rapid assessment and applied
it within the dynamic frameworks used to speculation the evolution
of a hypothetical or ongoing pandemic spread. These models play a
significant role in aid to define strategies to control communicable
diseases and mitigate their potential impacts [1-3], There are a number
of extensive studies of infectious diseases in the form of mathematical
models, we refer to [4,5].

Coronaviruses are a widespread family of viruses known to cause
diseases ranging from common colds to more severe diseases, such as
Middle East Respiratory Syndrome (MERS) and Severe Acute Respira-
tory Syndrome (SARS). The emerging coronavirus (COVID-19) is a new
strain of the virus that has not been previously discovered in humans.
This emerging virus is an infectious and rapidly spreading disease, that
was alleged to the outbreak have first spread at a Chinese city called
Wuhan on 28 November [6]. It has since prevalence globally, resulting
in the continuing 2020 pandemic outbreak. The COVID-19 pandemic is
considered the largest global threat in the world, almost the economic

and health system of every country in the world has been pushed
to a very dangerous situation. Moreover, it has caused thousands of
confirmed infections, it is accompanied by thousands of deaths world-
wide. According to the latest statistics to date 16-May-2020, confirmed
infections with the Coronavirus have exceeded 4,641,376 worldwide,
while the number of deaths has reached 308,845, and the number of
people recovered has risen to 1,767,389, according to the World-Meter
website that specialized in counting COVID-19 victims.

Infectious diseases pose a big menace to humans also to the coun-
try’s economy. A strict understanding of the dynamics of disease plays
a considerable role in decrease infection in society. So, implementation
of a convenient strategy contra disease transportation is another defy.
Mathematical modeling style is one of the main tools for dealing with
these challenges. Numerous disease models were developed in the
recent literature that allows us to better scout the spread and control
of infectious diseases. Most of these models are established on ordinary
differential equations see [7-12]. However, in recent years the role of
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fractional calculus that deals with fractional order has appeared, as it
has a prominent role in the interpretation of real-world problems, as
well as in modeling real phenomena due to of its accurate description
of genetic characteristics and memory [13-21].

In the given paper, we consider the model in the integer-order
derivative introduced by [22] and then we generalize this model by
applying the Atangana-Baleanu (AB) fractional derivative. The aim
of utilizing the AB fractional derivative to the model is that it has
kernel is nonsingular and nonlocal, and the intersection behavior can
be better described in the model using this operator than other frac-
tional operators such as Caputo, Caputo-Fabrizio [23-29], and other.
Some recent research related to the AB fractional derivatives and their
applications to different models emerging in science and engineering
can be found in [30-38]. Some other related works to the modeling
infectious diseases of AB fractional derivative can be seen in [39-45].

The global problem of the spread of the disease attracted the at-
tention of researchers from various fields, which led to the emergence
of a number of proposals to analyze and anticipate the development
of the epidemic [46,47]. The purpose of the paper is to consider the
reported cases in the Chinese city of Wuhan since February 15, 2020
till April 25, 2020 for 70 days, and formulate a mathematical model
involving AB fractional derivatives. Then we discuss the existence,
uniqueness and stability results for the COVID-19 model (3)-(4) by
means of fixed point theorems and generalized Gronwall inequality.
Moreover, the fractional Adams-Bashforth method is effective to ap-
proximate the AB fractional operator. Through numerical simulation,
the graphical representation of numerical solutions is shown accurately.
For the numerical simulation, we apply a strong two-step numerical
instrument named fractional Adams—Bashforth technique. The intended
numerical technique is stronger than the classical Euler technique also
Taylor technique. Due to the aforementioned technique is quicker
convergent and stable as a comparison to other techniques that are
slowly convergent, see [48-51].

The rest of this paper is arranged as follows. In Section 2, we
recall some fundamental properties of the AB fractional operators and
the results of nonlinear functional analysis. Brief details about the
fractional mathematical modeling of the novel COVID-19 pandemic are
present in Section 3. The existence and uniqueness solutions of the
fractional model have been investigated via some fixed point theorems
in Section 4. In Section 5, we apply the Gronwall inequality in the frame
of the AB fractional integral to obtain the Ulam stability results. We
then, present an Adams-Bashforth numerical scheme to solve the pro-
posed model in Section 6. Moreover, the behavior of the approximate
solution in terms of graphs are presented via numerical simulations
with many values of the fractional order. The conclusion will be given
in last Section.

2. Preliminaries

For short, setting Z = (S, E, I, P, A, H, R, F). Let J =[0,T] (T > 0)
and define the Banach space = = C (J,R®) under the norm
@)z = max {|Z®)|, Z € =},

ted

where
IZ®O| = SO + [E@] + [LO)] + [PM] + JAG)| + [HE®)| + [R®)] + [F@)]
and S,E,ILP,A,H,R, F € C (j,R).

Definition 1 ([20]). The ABC fractional derivative of order ¢ for a
function ¢ is defined by

ABCDI (1) = Y(q) / <—(t - 0)") ¢'(0)do, 1>0,

where ¢ € (0,1], ¢ € HY0,T), Y(g) is the normalization function
satisfies the fact Y'(0) = Y (1) = 1, and E, is the Mittag-Leffler function
given by

[se]

k
- Z 4
Eq (@) = & Igk+1) L
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Definition 2 ([20]). The AB fractional integral of order g for ¢(t) is
described by

AB 1] -1 — )~ 1 9[19
L o) = Y(q)rp() Y(q)l"(q)_/(t )™ @(0) >0

where 0 < ¢ <1 and ¢(t) € L'(0,T).
Definition 3 ([20]). The Laplace transform of ABCDg . () is defined by

[s7£ [@(1)] — 547 (0)]
s9(1-q)+gq ’

£ [*2D8, 0] = v(a)

Lemma 1 ([15]). For 0 < q < 1, the solution of the following system
ABEDY () = <),

@0) = @ )
is defined by

1-
o) = go + L + - 1 (r—eﬁ-‘g(e)de.

Y(q) Y(q) I'(q)

Definition 4 ([18]). Let U be a Banach space. For all ¢;,¢, € U
Q¢ - Qg | <951 - |-

1. If the Lipschitz constant 9 > 0, then the operator Q : U — U is
a Lipschitzian
2. If 9 < 1 then the operator Q : U — U is a contraction.

Theorem 1 ([18]). Let U be a Banach space, and B be non empty and
closed subset of U. If the operator Q : B — B is a contraction, then, Q
has a unique fixed point.

Theorem 2 ([18]). Let B be a nonempty, convex, closed subset of a Banach
space U. Assume Q; and Q, map B into itself and that Q,x + Q,y € B for
al x,y € B, Q, is compact and continuous; and Q, is a contraction. Then,
there exists s € B such that Qs + Q,s = s.

Theorem 3 ([52]). Suppose that q > 0, a() (1 Ya )b(t)) is a non-

negative, :
ab® (| _ 1=q i - i i
) (1 @ b(z)) is non-negative and bounded on [c,d) and o(t) is
nonnegative and locally integrable on [c, d) with

nondecreasing and locally integrable function on |[c,d),

o(t) < at) + b(r) (ABIg+6) .
Then

anY@ o <

gb(n)t!
O Y o—a-gbn )

Y(g)—(1-q)b@®)

3. Formulation of the model

Based on an epidemiological model introduced in [22], and taking
into account the presence of superior prevalence in the coronavirus
family [53], we generalize the considered model in [22] under novel
fractional operator depend on the Mittag-Leffler function which take
the following form:

ABCDE S(1) = —ﬂﬁS - zﬂ%S - ﬂ/%S
ABCDI R(r) = ﬂ%S + zﬁ%g +p - «E,
ABCDY, 1) = kpy E = (7, + 7)1 = 6,1
) ABCDg+ P(1) = kp,E — (v, + v)P = 6,P,

ABcDg+ A@W) =x(1 - p; — pE,
ABCDE, H(1) = v,(L+P) -y, H - 6, H,
ABCDY R() = y;(1+P) +7,H
ABC Dg+ F() = 6,1(r) + 6,P() + 6, H(»),

3
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with the initial conditions

{ S0) =Sy, E(0) = Ey, 1(0) =1, P0) =P,

A(0) = Ay, H(0) = Hy, RO) =Ry, F(0) =T, )

N is partition into 8 epidemiological categories, we will mention the
parameters and variables for this model in Tables 1 and 2.

The following formula gives the number of death because of the
disease at each immediate of time

dF(1)
-

where S, Eq, I, Py, Ay, Hy, Ry, F, > 0, the constant total population

D() = §1(1) + 6,P(1) + 6, H(r) =

In the model (3), ABCD& is the generalized Caputo fractional
derivative introduced by Atangana and Baleanu in [20], and Sj,E,,
Iy . Py, Ay, Hy, Ry and F, are initial values corresponding to the eight
categories in Table 1.

4. Existence and uniqueness analysis

In this section, we discuss the existence and uniqueness theorems
of the proposed model (3)—-(4) by employing the fixed point technique.
Now we reformulate the model (3) in an appropriate pattern, as follows
ABCDLS() = 6,1, D),
ABCDgJE(I) =G, (1,2),
ABCDgJI(t) =G(t,2),

) ABCDZJ,IP’(I) =G4, 2),

ABcDng A@) = Gs(1,2),

ABCDI H(1) = Go(t, 2),

ABCDER(1) = G5(1,2),

ABCDGE() = Gy(1, 2),

where

Gi(.Z) = —p~S—1f=S— f' =S,

Gt 2) = fS+1p =S+ f' — kE,
G(1,Z) = kp E— (v, + 7)1 = 6,1,

1640, 2) = kpoE = (v + 7)P = 6,P,
Gs(t,Z) = k(1 = p; — p)E,

G6(t,Z) = y,(I+P) — y,H - 6, H,
G;(t.2) = v, +P) +,H,

Gs(1.Z) = 6,1(t) + 8,P(t) + &, H().

(5)

Consider the model (3) is equivalent to the following fractional system

ABC 14 —
{ D{, @) = Z(1, (1)), ®)
®(0) =D, >0,
where
S So G (t,7)
E E, G (1.2)
I I, G(t,7)
_|P _|Po N [
o0 =, | P = IME Z(t, @) = 6. 7)| )
H H, Go(t,Z)
R Ry G,(1,2)
F F, Go(1,7)

According to Lemma 1, the system (6) can be turned to the following
fractional formula
l-4q g 1
D) =Dy + —— 2, D)+ —— ——
T Y@ Y(9) I'(q)
The following assumptions for analysis of the existence and uniqueness
will be satisfied:

/0(1—5)"’12(5,43(5))!15- ®
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Table 1
The physical interpretation of the variables.
Variables Description
S Susceptible class
E Exposed class
I Symptomatic and infectious class
P Super-spreaders class
A Infectious but asymptomatic class
H Hospitalized
R Recovery class
F Fatality class
Table 2

The physical interpretation of the parameters.

Parameters Physical description

B Transmission coefficient from an infected person

! Relative disease transmission in the hospitalized

p Transmission coefficient due to the high propagation
K Rate exposed infectious

P Rate that exposed individuals become infected

e Average at which exposed individuals become super-spreaders
Ya Rate of hospitalized admission

7 Recovery rate unaccompanied by go hospitalized

7 Hospitalization rate

8 Death rate due to infected class

3, Death rate due to super-spreaders

8p Death rate due to hospitalized class

(H1) Z:jxZ — Ris continuous and there exist two constants uz,#;

such that

|Z¢, D) < uz |®|+nz, fortejand @ € =.

(H2) There exists L; > 0 such that

|Z(t.@)) - Z(t.@y)| < L; |®, —®,|, fort€jand @ € =.

Theorem 4. Suppose (H1) and (H2) are satisfied. The equivalent equation
(8) to the considered model (3)—(4) has a solution, provided that
l-¢q l—gq T4

_LZ<1’ andAl = %+m MZ<1

9
Y(a) ©

Proof. We convert the fractional system (6) into a fixed point problem

through the following equation
®=Q0, ® < =,

where the operator Q : £ — £ defined by

_ 1—gq qg 1
Q@) (1) =D + Yo Z(t, @) + YO T@
t
X / (t = &2 D(©))de. (10)
0
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LetK, = {® € = :
of Z with

[|@|lz < o} which is closed, convex, bounded subset

l-g, _T¢ ] an

A, =P _
2= °|+[Y(q) " Yore| ™

Define the operators Q; and Q, on K, such that Q; + Q, = Q and

Q1) = @, + Z(t D(1)),

Y(a)

t
Q@ ()———/(I—ﬁ)q_IZ(§,¢(§))d§, (12)

Y(q) I'(q)

Now, we give the proof in several steps:
Stepl: Q, @, + Q,®, € K, for @, @, € K.
By (H1), (9) and (11), then for @,,®, € K, and ¢ € j, we have

Qi@ + Qd, | =

I/\

{|<D0| + m 2@ @20)

— & D)| d
+Y(q)r(q)/( o0 2 D) é}

{I%I + W [ﬂzma.x @) + 1

+Y(q) r(q) /( o [”Zmaxl(p(t)lwz] dé}

< {l @]+ 3 Y( ) 4 uz 101z + 1z
— 1 =
Y T / =" uz Iz +ng]d§}

= |@y| + [1;
Y(q)

N T_]
Y@ra|™
1 —_
* [Y(q) * Y(q)rm)] He
=A+Ac<o.

This proves that Q, @, + Q,®, € K.
Step2: Q, is contraction.
Let @,@* € K,. Then by (H2) we have

Q@ -Q |- =

max Y 7 ) - Z(t,@* (1)

< lY(q) LZmax | @) — @ (1)

1-
< —L D —dF .
< ThLs o - o).

As o 11, < 1, the operator Q, is a contraction.

StepS Q, is relatively compact.

First, we prove that Q, given by (12) is continuous. Let (&,) be a
sequence such that @, — @. Then for 7 € j

|@2 w— Qo | y(q) r(q)/( &)1 |Z(§ (6) — Z(E, (5))| ¢
_ gyl ~
< %m/ =& ma}(|Z(§,tDn(§)) 2, 0| dé
T
< Yot 12620 - 2620+

Since Z is continuous and &, — @, the operator Q, is continuous.

Next, we need to prove that QQ, is uniformly bounded and equicon-
tinuous on K.

Indeed, let @ € K, and ¢ € j. Then we have

q 1
Dl - < _
102015 < maxsos 75

q ! _ a1
< Y(q)f(q)/ (= [” Zma""@'“’z] @

/< — o [ug 101z + 2] de

t
/0 (- &1 2 D) dé

B Y(G)F (@)
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q
< T— [
Y(@I'(q)

Thus, (Q,®) is bounded on K. For the equicontinuity of Q,. Let @ € K
and 7,1, € j such that ¢; <1,. Then

|Q,20,) - Qzé(t] )
q-1 @ d
<Y(q) T@ / (ty = &)1 |2, D(&))] dé

Hzo + '72] .

fl
%ﬁ /0 [ =&~ - &7'] 26, D)
[z 191l +nz]
S ore [(tz - zl)q] +
I
%q)%q) /0 [ =& =ty - 91'] 26 D)
[HZU + "Iz]
*Yorag @~
n
" ﬁﬁ /0 [y = 7" = (1 = "] 2, @@

As t; — t,, the continuity of Z tends R.H.S of above inequality to zero.
Consequently, Q, is equicontinuous on K. The Arzela-Ascoli theorem
shows that Q, is completely continuous. It follows from Theorem 2
that Eq. (8) has at least one solution, i.e., the model (3)-(4) has at least
one solution. []

Theorem 5. Suppose that (H2) holds, Eq. (8) has a unique solution which
leads that the model (3)—(4) has unique solution too, if

1-¢ T4
Ay i = —4+— )L 1. 13
3 (Y(q) +Y(q)r<q)> z= 13

Proof. Taking the operator Q : £ —
in £ and ¢ € j. Then

£ defined by (10). Let @ and &*

* 1- q
Q@@ - Qo ()| s < max |2 @) -

U Wy AP
Y@ F(q)/o(t 2
X |Z(E.®() — Z(E. D ()| de

l_q T *
—_—t—— | L, ||® - D" .
< <Y<q> * Y(q)r(zn) ll E

Due to (13), Q is contraction. Thus (8) has unique solution. It follows
that the model (3)-(4) has unique solution. []

Z(@t, @ (1)

5. Stability analysis

A concept of Ulam stability was begun by Ulam [54,55]. Then
foregoing stability has been investigated for ordinary fractional deriva-
tives in many of the published papers, see [56-58]. So, the stability
standard is one of the significant qualitative properties of the solution
of differential equations that gives a description of the behavior of such
solutions. Besides, the stability is a necessary condition in relation to an
approximate solution, therefore we seek to Ulam-Hyers (UH) stability
for the model (3) by means of Theorem 3.

Theorem 6. Suppose that (H1) holds. If
T4 Ly
1-g+ —= <1
< r (q)> Y(q)
Then, the zero solution of the model (3) is stable and bounded.

Proof. Thanks of Lemma 1, the following fractional system

ABCDS, (1) = Z(1, 0(1)),
@(0) = >0,
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has a unique solution which is given by

1- q
D) =Dy + —— Y() 2, ())+%Tq)

Set sup;e; 12, 0] := A;. Then by (H1), we have

( - &1 Z(E, d())dé.

lol= < ||@ + L0200 - 26.0)) + 12001

Y(q)

— &)yl D)) — 0 0l1d
s r(q)/a B 126 B@) - ZE 0l + 12 Ol de

< || + —Y(q) L 10+ 4] +
Tq
—F L
*Yorg 2!

T4 A, < T ) LZ
= o, g+ =) 2 s (1—g+ L) =2 o)1=
| "”+< “nq)) vo T\ T ) v 1l
which implies

a\ A
looll+ (1 -0+ ) 25
r Y
lols < e =t
- (1-ar ) v

So, |@||z < ¢, ¢ > 0. Hence, the zero solution of the model (3) is stable
and bounded. []

T4
—A
YT~ "

D =

Definition 5. The model (3)-(4) is UH stable if there exists 2 > 0 such
that for each ¢ > 0, and each a solution @ € £ satisfies

|45DE, (1) - 2, B(1)| <, a4
then there exists a solution @ € = of the model (3) such that

‘5(:) . 4>(r)| < he.

where
§ S0 61,7
]E INE() Qz(h%)
E ,]EO Gs(t, %)
5 APl & (7)) B = G4(1,2)
o =(2) =|~|, &y=(7,) =|-"]|, Za.®o@)=|"*"%"],
0=(7) il ® (%) a| 2P0=|g0z)
IEH H;Ho Ge(1, %)
HS ﬂ}o Q7(f»%)
F Fo Gs(t,Z)
and
€ hy
€ hy
€3 hs
€ = max 64, A = max h4.
€5 hs
€6 hg
€7 hy
€8 hg
Remark 1. Suppose a small perturbation m(t) € C(j, R) with m(0) =0
satisfying

1. |m@)| < € for ¢ € j. N
2. ABcDg+d>(t) = Z@®@) + m(@), for t € j, where m() =
(ml(t),mz(t),...,mg(t))T.

Lemma 2. If & € = satisfies (14), then ® € = is a solution of the

inequality

"I’(t) @ - ;(—)Z(l

T4 €
loge L) &
= ( E F(q)> @

q 1 ! g1 ~
. S - ,D(E)d
D(1)) Yo T@ /0 (=8 ZE& D(&)dé

Results in Physics 19 (2020) 103610

Proof. By Remark 1 and Lemma 1, the solution of the perturbed system

{ABCD" (D(t) = Z(z tD(t)) + m(t), 15)

®(0) =

is given by
&) = By + Lz, B1) + L L / (- o 2. Bende
L Y(q) I'(q) ’

1- 4—1
_ 1 d
Yo" 7g F(q)/ (=T m@de.

Then Remark 1 gives

1- ! ~
‘47(1‘) By — —2 Z(1, (1) - (1= &7 Z(E, B(&)de

a1 /
Y(@) MO0

= |— a1 d
‘Y(q) "t Y@ F(q)/ (=T meae

__1 q—1 d
< Y(q)| ol + F(q)/( £ Im(®)] de
clza T
Yot vore
T4 €
log+ 1) <
> ( at r(q)> T -

Theorem 7. Under assumptions of Theorem 5. The model (3)-(4) is UH
stable in =.

Proof. Let @ € = be the solution of (14) and @ € = is the solution of
(6) with the initial condition

®(0) = H(0). (16)

By (16), @, = &70, it follows from Lemma 1 that

1-
(1) = Dy + WZU (1) +

By Eq. (17), assumption (H1) and Lemma 2, we obtain

r— &)l d(&)d 17
Y()F(q)/( OHITZE, @()ds. (17)

~ ~ - 1=
[80)- 00| < |80~ B - L 2. 00

_— — &I Z(&, d(&))d
Y(q)F(q)/( OITZE, P())dE

IA

~ 1-
'45(1) P, - WZ(I (1)

-2 — &l ZE de)d
Y(q)]"(q)/(t T Z(E, D(&)dé

R ( S [20.00) - z6.00)

— gy G — 2. oenla
Y(q) F(q)/( 9 ‘Z(é‘ &) -2zZE, (6))| ¢

T4 € 1-
1- _— ) — L |D(@) — D
(1-0+ 7)) 7ig * g 0 - 00
-5 t|o @)\ d
+Y(q) F(q)/< &' |6 - )| dé
= <1_q+T_q>L+
@) T@

Applying Theorem 3 with a(t) = (1 -q+ r(q))

IA

AB 14
Ly (213, |3

- o)) 0.

€

and b(t) = L;, we

T(@
get
T \ Y(q)
(1) - ()| < (1 q+m)73)€ gLzt
| E Y@-(-9L; Y@-(0-9L;

T Y(q)
(o RBe, any
Y(@-(O-9L; Y(@-0-9)L;
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79 \ Y(9)
For h = (1 o F<q>>rw> ( qL;T?
Y(@)-(1-a)Lz Yo—(-aLz

), we obtain

‘5(:) . dw(t)| < he.

This shows that the model (3)-(4) is UH stable. [
6. Derivation of a numerical algorithm for model (3)-(4)

In this part, we provide the numerical results of model (3)-(4)
through the proposed scheme of fractional Adam Bashforth. To this
end, we need to approximate the AB fractional integral by applying
the Adams-Bashforth method.

By the initial conditions and the definition of A%€Z{ , we turn
fractional model (3) into the following fractional system
S(1) = S(0) = 4B, K, (1,S(0)),
E(r) - E(0) = A2 I, K (1, E(),
I(n) = 1(0) = A8 T, K31, 1(1)),
P(r) — P(0) = 48 Ig+ K4, P()), 18)
AW = A©) = *PT, K51, AD)),
H() - H(0) = *P T, Ko (1, H)),
R(1) = R(0) = *BT, K5 (1, R(1)),
F() - F(0) = AL, Kg (1, F (1)),

which gives

S(t) - S(0) =
E() - E(Q) =

Y( LK (150 + 3 Y(q) m) Jo @ =& (€. S@)de.
y( Y Ko EM) + 35 y(q) m) Jo =9 Ky (& E@)de,
I(r) - I(0) = Y( Y K1) + 7= r@ Jo @ = &9 I3 (&, LE)dE,

P(1) ~ P(0) = Y( )lc4<t P() + Y‘('q) F@ Jo = &7 Ry (& PE)E,

AD = A0 = m m) r@ Jot = &1 K5, A@Nde,
Y( Yo Kot HO) + 7 Y@ r@ Jo =& Ko H(@)de,
Y( Yk L RO) + 3 m) m,) Jo = &7 K (& R(@)E,
T Kyt F0) + 7 £ Ky(&. F(©)de,

19

La e, M) + ==

H(r) — H(0) =

R(t) — R(0) =
F(t) — F(0) =

Y(q) T(@) (q) /0 -

To obtain an iterative scheme, we set t = t,,;, for A = 0,1,..., in the

above system which leads to the following model

S(t41) = S0) = 75K (14,5(0) + 3 715

X Zmco /tm’"“mﬂ OIK (€, S(é‘))dé
Et41) = BO) = 72 K014 El1a) + 3 7

X Tnso /,;m“am O, ]E(é))dcf,

Wt341) = 10) = 574 K3t 10a) + 75 715

X oo /,;”’“mﬂ Y AR
Plig41) = PO) = 55Kl P1) + 5 715

X Tomeo S a7 PEN: 0
Altga) = AO) = FTLRS(14 Al ) + 7 s

X Tnco ! o - B K5 E, A(zf))dz:,
Hltge) ~HO) = Y( Yo Kot HED + 55 réq)

X Too Sy (as1 =07 HEMZ,
R(t441) = RO) = 372 K7(14. R(1p) + 3 7

X Tnco ! (a1 = — TG R(:))da
Fltar) = FO) = 72 Ky(14.F 1) + 7= 75

X T fim (g — 7 ICy(E F@)E.
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Using the two points interpolation polynomial for approximate the
functions

ICj(.f,Z), Z e {S,E,LLP,AH,R,F}, j=1,2,...,8,

that lie inside the integral in (20) on the interval [¢,,,7,,,,], we get

R ) e
K& B(@) = S2lZlnl g, )4 Bt ),
N e e N L el ()
Ky(&, P(&) = Hlnlad ¢~y
Ks(E AQ) M(z pot) + Eslnlhnz Dy
Ko(&,HE) = ’C“’TH(’”« -
K7 R@) = FmZlod ¢~ ) 4 Fot Tl ),
Ky (&, F(¢) = Blmtlad ¢ g

Ky (ty—1.S—
D+ 1t 1h(m 1))(t—tm),

Kyl Plty-1)
) + Sl gy
Hi
—l)+ nﬁ(tm—l;l (tm—l))<t _ tm)’

Kg(ty_1,Ft,_1)
D 8( 1h( ) t—1,).

which implies

S(tp41) = S(0) + Y( )ICI(IA,S(IA))+ Y@ r(q)

X Z 0 (Mlm_ g _ Kim S(tm_l)) Im,q) ’
E(1441) = EO0) + Y( )ICZ(IA,]E(IA)) + %#{D

x¥a (M[m - K:Z(tm—lh]E(Tm l»Im,q)’
Wt41) = 10) + 75 K310, 10 0) + 5 7=

% Zm . <IC3(t h]I(rm)) Loty — K.’3(t,,,,1 (e 1))1 ) )
Pltar) = PO) + 11f(q)lc4(tA’ Pea+ 34 Y(q) F(q)

X Zi:o (Ml e KZ4(1,,,,1hP(rm 1))] )’

(21)

Alt441) = A0) + )l/(q)]C5(t4’ A+ v Y(q) F(tl)

X ZA_O (K5(’va(’m)) Im—l a _ KZS(Zm—l;’A(Im ])) l )’
Htg41) = HO) + 372
X Zm:O <1C6(ZWH(,M)) 1

v Kol H) + 75 Y(q) r(q)
Kot 1 H(t 1)) I, )
—h ,

m=1gq

Rty 1) = RO) + 2K, (14, R(1 ) + ==

Y@ Yo r(q)
4 (K (rmJR(rm)) Kp(t) Rlty1))
X Zm=0( 7 I _ _ X7 ]h 1 Im,q)
1 L
F(tge1) —IF(O)+ Y(‘I)ICS(tA,lF(tA)H T

A Kt Fty)) Kg(tm—1.Ftp-1))
X Zm=0(TIm— _Tlm,q)’

where

Imt1 g-1
L1y =/ (t=ty1) (14 —1)" d1,

m

and

Tt g-1
I, =/ (t=1tp) (taer =)' ar.
1,

m

By simple calculations of the integrals I,,_, , and I,, , we get
1
L1y = 7 [t = tmet) (P21 —t1) " = (tm = tmer) (taps —’m)q]
RPTZES) [(’A+1 - fm+1)q+1 — (tap1 — fm)qH] ,
and
1
Im,q = _E [(tm+1 _tm) (tA+1 _tm+l)q]

1 +1 +1
T7@+D [(IAH )" = (tae1 = 1)" ] .
Taking ¢,, = mh, we can conclude that
1 ho! A+1 74 2
g =——— |4+1- -m+2+
Y Rl [ m)? (4 —m q)

—(A-m(A— m+2+29)]. (22)
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and
g+1
1, ¢ = h
Y ogqg+ 1)
By replacing (22) and (23) into (21), we obtain

A

S(tar1) = Slto) + mlcl(tA,S(zA)H Y( j 2 Z
Ky (1, S(t))
<th [(A+1-m¥A—m+2+q)

—(A-m)1(4d—m+2+2g)
K11, SUp-1))
T(g+2)

—(A—m)q(A—m+1+q)]>,

R [(4+1 - m)*!

A

)ICZ(IA,IE( DN+ —— Y( } 2 Z

< K, E(t,,))
T'(g+2)
—(A—m)¥(A—m+2+2q)]
YR (W)

I'(g+2)

—(A—m)"(A—m+1+q)]>,

E(tg ) = E@tp) +

A+ 1-m¥(A-m+2+q)

h[(A+1—m)t!

A
It ) = H(’o)"‘ K%(tA’H(tA))"' 1 Z

Y@ Y@ &~
K5, 1(t,,))
<W}Zq [(A+ 1-mi(A-—m+2+q)

—(A-myi(A—m+2+2q)
_ K31, 1(1,,_1))
I'(qg+2)

—(A—m)"(A—m+1+q)]>,

R[4+ 1 —m)*!

A
Plty,,) = IP(ZO)+ Y )IC4(tA,IP(tA)) ?q) ZB

<1C4(tm,]P’(tm)) 1
I(g+2)
—(A=m*(4—m+2+2qg)]

_ K4(lm—l7p(tm—l)) q _ g+1
~ ety R[4+ 1—m)

—(A—m)q(A—m+l+q)]>,

[(A+1—mT(A—m+2+q)

A

IC5(tA,A( D+ 3 Z

<1C5(tm, A&(tm))
T'(g+2)
—(A-mi(A—m+2+2g)
B Ks(t,_1, Alt,_1))
T'(g+2)

—(A—m)q(A—m+l+q)]>,

A(tyy)) = A(zo)+

A+ 1 -m¥(A-m+2+q)

R [(4+1 - m)y*!

4
H(tg41) = H(’0)+ YG )]Cf,(fAsH(tA))+ Y( ) 4 Z

< Kt H(2,))
T'(g+2)
—(A-myi(A—m+2+2q)

h[(A+1-m(Ad—m+2+q)

[(A+1-m™ —A=—m)"(A-m+1+q)|.

(23)

(24)

(25)

(26)

27)

(28)
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Ky, H(tp1))
I'ig+2)

—(A-m¥A-—m+1+ q)]) . (29)

R[4+ 1 —m) !

A
R(tgy)) = R(zo)+ Y )IC7(tA,]R(tA)) i’q) ,ZB

< K7 (1, R(1,,)
I'(g+2)
—(A-mi(A—m+2+2q)
_ K;(t,_1,R(,-1))

I'(q+2)

—(A-miA-m+1 +q)]>, (30)

h[(A+1—m¥(A—-m+2+q)

R[4+ 1= m)*!

A
Fltgp) = Fltg) + ——Lhoy (10 Fr) + —— 3

Y(9) Y &
Ky, Ft)) aia
<—F(q+2) A+ 1-m(Ad—m+2+q)

—(A=m)¥(A—m+2+2qg)]
Ky 1, F-1)
I'(g+2)

—(A-miA-m+1 +q)]>, (€3]

R [(A+1 = m)i*!

6.1. Numerical simulations and discussion

Numerical simulations are performed for the suggested model of
COVID-19 pandemic originated from Wuhan (China) by using the real
data of Wuhan city taken from [22,59] since mid-February 2020 to
April 25, 2020. Now to give the numerical simulation of the fractional
model (3)-(4) involving AB fractional operator, we will use the iterative
solution given in (24)-(31). Here the time as days. The numerical
quantities of the parameters utilized in the simulation are provided in
Table 1. The dynamical behavior of various compartments including
S,E,I,P,A,H,R,F corresponding to various fractional orders as ¢ =
0.75, 0.85, 0.90, 0.95, 1.0 of the proposed model (3) is given in Figs. 1—-
8. Further, we consider the initial values as a proportion of the total
population as follows with taking N = 11000000/250 and

Sp(0) = N =6, Eo(0) =0, I)(0) = 1, Py(0) =5,
Ag(0) = 0, Hy(0) = 0,Ry(0) = 0, Fo(0) =0

In Figs. 1-8, we provide dynamics of each class of the model (3)
with respect to different values of fractional order ¢ on using numerical
values in Table 3. From Fig. 1, one can observe that after two weeks of
the outbreak being reported the decline in susceptible class was very
fast on small fractional order as and it is slow at integer order. In
first few days the infection was increasing very rapidly with different
scenario due to fractional orders as shown in Fig. 2. On the other hand
the infectious was then decreasing. In same line the exposed class i
Fig. 2 raises with different rate of fractional order and it is faster at
greater order as compared to small value of fractional order . The other
classes have been increased with different rate of fractional order. In
Figs. 4-6, the dynamics of symptomatic and infectious class, Super-
spreaders class, symptomatic class, have same behaviors of increasing
and then after a month the dynamics reversed as the Chinese gov-
ernment after a month took strict action to control the disease from
further speeding. After the strict action the recovered class was raising
as many people got ride from infection (see Fig. 7). Also initially the
fatality was increasing. Therefore, the increase was different at different
fractional order (see Fig. 8). We have simulated the results for the
seventy days from mid-February 2020 to April 25, 2020. From the
graphical presentation, we see that the fractional derivative approach
can also be used to describe the transmission dynamics of the novel
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Table 3

Results in Physics 19 (2020) 103610

The physical interpretation of the parameters and numerical values [22].

Parameters Physical description Numerical value
B Transmission coefficient from an infected person 2.55/day
1 Relative disease transmission in the hospitalized 1.56
p Transmission coefficient due to the high propagation 7.65/day
K Rate exposed infectious 0.25/day
P Rate that exposed individuals become infected 0.580
P Average at which exposed individuals become super-spreaders 0.001
Ya Rate of hospitalized admission 0.94/day
Y Recovery rate unaccompanied by go hospitalized 0.27/day
7, Hospitalization rate 0.5/day
S Infected class death rate 0.35/day
8, Super-spreaders death rate 1/day
Sy, Hospitalized class death rate 0.3/day
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-=0.90
—0.95
g 4000 - 1.0 |
o
Y
g
E 3000 [~ =
o}
¢
g
S 2000 - .
w
1000 [~ *
0 — == — :
0 50 60 70
time t (Days)
Fig. 4. Dynamical behavior of P class of model (3) at various values of fractional order q.
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Fig. 5. Dynamical behavior of A class of model (3) at various values of fractional order q.

coronavirus disease in the community. The said approach provides
global dynamics of disease transmission. From these dynamics we
concluded that fractional order derivatives provides global dynamics
and hence help in better understanding the dynamics of COVID-19.

7. Conclusion

The given investigation focused to develop and generalize a math-
ematical model and the dynamics of the novel coronavirus (COVID-
2019) pandemic which is protruded recently with considered the re-
ported cases in the Chinese city of Wuhan since February 15, 2020 till

April 25, 2020 for 70 days, and formulate a generalized mathematical
model involving AB fractional derivatives. Then we have discussed
the existence, uniqueness, and Ulam stability results for the proposed
model (3)-(4) with the help of fixed point theorems and general-
ized Gronwall inequality. Moreover, the fractional Adams-Bashforth
method was effective to approximate the AB fractional operator. Also,
we have used the data of Wuhan city under some suitable parametric
values and presented the graphs. Through numerical simulation, the
graphical representation of numerical solutions is shown accurately.
For the numerical simulation, we have applied a strong two-step nu-
merical instrument named the fractional Adams-Bashforth-Moulton
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technique. The intended numerical technique is stronger than the clas-
sical Euler technique also Taylor technique. So, the aforementioned
technique is quicker convergent and stable as a comparison to other
techniques that are slowly convergent. We see that fractional derivative
can also be used as a powerful tools to describe the transmission
dynamics with global nature. This study may also help the researchers
in further investigation of the current novel coronavirus disease.
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