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a b s t r a c t

We carry out some analysis of the daily data on the number of new cases and the
number of new deaths by (191) countries as reported to the European Centre for Disease
Prevention and Control (ECDC). Our benchmark model is a quadratic time trend model
applied to the log of new cases for each country. We use our model to predict when the
peak of the epidemic will arise in terms of new cases or new deaths in each country
and the peak level. We also predict how long the number of new daily cases in each
country will fall by an order of magnitude. Finally, we also forecast the total number of
cases and deaths for each country. We consider two models that link the joint evolution
of new cases and new deaths.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We implement econometric models of daily data on the number of new cases of and new deaths from COVID-19
n countries worldwide. Our benchmark model is a regression of log outcomes on a quadratic trend function for each
ountry. Since April 5th 2020 we have been estimating our model every day and providing outlooks for the future
evelopment of the pandemic in different countries. Our primary purpose when we initiated this study was to estimate
he turnaround dates, the expected peak to trough times, and the expected total number of cases and deaths using only
he data at hand, which was before the peak had been achieved. The results have been updated daily at the website
ttp://covid.econ.cam.ac.uk/linton-uk-covid-cases-predicted-peak; R-code is available upon request. On this website we
ave also provided various robustness tests: we considered quantile estimation in place of mean estimation to limit the
ffect of large measurement error; we provided a one-step ahead forecasting exercise that keeps track of the model
erformance. We evaluated the residuals from our model along several dimensions. In particular, we found little evidence
f day of the week effects in most countries, although the United States and the United Kingdom do appear to have a
easonal effect in deaths. We find some evidence of autocorrelation in the residuals but it varies widely across countries,
ith the mean effect (across countries) being positive autocorrelation. We find some limited evidence of time varying
ross-sectional heteroskedasticity. We find the error distribution pooled across countries is not far from symmetric for
ases and slightly less so for deaths. There appears to be substantial cross sectional contemporaneous correlation between
he errors from cases and deaths within a country (positive) and between cases in one country and another (here, the

✩ Thanks to Vasco Carvalho and Giancarlo Corsetti for comments. This is of course work in progress and subject to errors given the timescale in
hich the work has been done.
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mean is small and positive but there is wide dispersion meaning there are also negative correlations in some cases). The
SUR models we fit cannot benefit from GLS, but the error properties can affect the standard errors and test statistics. We
also develop a joint model for the evolution of new cases and new deaths and test the restrictions it implies and estimate
the restricted model.

Our model is purely statistical and we do not pretend to model the disease dynamics per se, just the data. However,
the epidemiological models themselves do not have perfect forecasting records and our approach is complementary to the
large literature produced by professional epidemiologists and biostatisticians.3 One advantage of our model over dynamic
epidemiological models is that the publicly available data from many countries is subject to a wide range of errors that
make dynamic models very suspect without some additional model for the measurement error, which typically requires
many untestable assumptions.

Literature Review. Many researchers apply or extend the SIR or its variants (SIRD, SEIR) to model the dynamics of the
Covid-19 outbreak. For example, Wu et al. (2020), Anastassopoulou et al. (2020), and Lin et al. (2020). A short description of
the baseline SIR model is as follows. The fixed population (N) can be split into three non-intersecting classes: susceptibles
(S), infectious (I) and recovered (R). The number of individuals in each of these classes changes over time and satisfies

N(t) = S(t) + I(t) + R(t).

The dynamics of each class can be described using ordinary differential equations (ODEs) as follows:
dS
dt

= −βIS,
dI
dt

= βIS − αI,
dR
dt

= αI,

where β is the transmission rate constant, βI is the force of infection, and βIS is the number of individuals who become
infected per unit of time. The susceptible individuals who become infected move to the class I and individuals who
recover (the constant recovery rate is α) leave the infectious class and move to the recovered class. Equipped with initial
conditions S(0), I(0), R(0), the model can be easily solved. Elaborations on the basic SIR model that are used in the study of
Covid19 includes SIRD (eg. Anastassopoulou et al., 2020) and SEIR (eg. Wu et al., 2020 as well as Read et al. (2020)). Since
there are daily data available on the number of deaths, an additional class ‘Deceased’ (D) can be included as well, which
corresponds to SIRD model. The other popular variant of baseline SIR is SEIR, which separately considers susceptibles (S)
and exposed (E).

Chudik et al. (2020) contrast government-mandated social distancing policies with voluntary self-isolation in an SEIR
model. They decompose the population, N , into two categories: the exposed NE and the rest, NI , which are isolated. The
strength of a mitigation policy can be measured by 1 − λ where λ =

NE
N , and it integrates social distancing policy in the

traditional SIR model. They evaluate the costs and benefits of alternative societal decisions on the degree and the nature
of government-mandated containment policies by considering alternative values of λ in conjunction with an employment
loss elasticity α. They found that the employment loss can be reduced if the social distancing policy is targeted towards
eople that are most likely to spread the infection. Besides, other articles also discuss this model, see Wu et al. (2020),
ead et al. (2020), and Peng et al. (2020) for details.
One feature of Covid-19 is that different sub-populations face different risks. Taking that into account, Acemoglu et al.

2020) develop a heterogeneous agent multi-risk SIR model (MR-SIR) where infection, hospitalization and fatality rates
ary between groups. Describing the laws of motion of the susceptible, infectious and recovered populations by group,
hey found that better social outcomes can be achieved with targeted policy that applies an aggressive lockdown on the
ldest group instead of a uniform lockdown policy.
However, these kinds of models have a high requirement on the data availability and quality, to which the estimates

re very sensitive. One of the limitations of Covid-19 data is that the number of susceptible and recovered people are
eldom reported. Apart from this reason, Li et al. (2020) point out the limitations of SIR style models, arguing that the
eal situation could be much more complicated and changing all the time.

Another strand of time series analysis originated from Generalized Logistic Model (GLM), first proposed by Richards
1959), developed for modelling growth curves. Allowing for more flexible S-shaped aggregation, the infection curve Y (t)
evolves as

Y (t) = A +
K − A

(1 + Qe−Bt )1/v
,

where A and K are lower and upper asymptotes; B is the growth rate; v affects the maximum asymptote growth; and Q is
related to the value Y (0). An extension of GML called sub-epidemic modelling was studied by Chowell et al. (2019), where
they model each group sub-epidemic by a GLM and then comprise a set of n overlapping sub-epidemics to describe the
whole epidemic waves. Roosa et al. (2020) extend the aforementioned GML to fit the cumulative number of confirmed
Covid-19 cases and forecast short-run new cases in Hubei and other provinces in China, and they found the S-shape
curve fits the initial data well, based on the information until 9th Feb. Additionally, they also compare their model with the
Richard curve and sub-epidemic modelling. All models provide good visual fits to the epidemic curves, and their estimates

3 They do say that Noah’s Ark was built and sailed by amateurs, whereas the Titanic was built and sailed by professionals.
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btained from GLM consistently illustrate that the epidemic growth is nearly exponential in Hubei and sub-exponential
n other provinces at early stages.

Liu et al. (2020) consider a panel regression model for the infection growth rates. Like us, they suppose a deterministic
rend, in their case a piecewise linear trend for the growth rates with breakpoint at the peak of the curve. They
lso explicitly include first order autocorrelation in the error term, which after quasi differencing introduces a lagged
ependent variable into the mean equation. They assume a common value across countries for the autocorrelation, but
llow the other parameters to vary across countries. They specify prior distributions for all parameters. For example,
he prior for the common autocorrelation is a normal with mean 0.5 truncated to [0, 0.99]. They assume normality for
he innovation process of the regression and independence of these error terms across country and independence of the
andom coefficients across countries. They provide Bayesianist inference and predictive density forecasts. This paper has
ome impressive results. However, it is not clear what the evidence base is for some of their choices, since they do not
lucidate on them. In fact, we have found negative autocorrelations in the residuals from our mean model to be quite
ommon (perhaps due to stale reporting in some countries, Lo and MacKinlay, 1990).4 Also, we find strong evidence
f cross-sectional correlation between the error terms, which seems eminently plausible as countries like Belgium and
etherlands, say, share a lot common shocks, a point that has led to the developments in Hafner (2020).
Apart from GLM, several other time trend modelling are worth reviewing, some of which verifies the parabola time

rend of daily new cases and deaths. Deb and Majumdar (2020) showed that a time-dependent quadratic trend successfully
aptures the log incidence pattern of the disease among Chinese provinces. Li et al. (2020) use time series modelling to fit
he infections and fatalities in China, an apparent quadratic trend and turning points are found. They also demonstrate that
he distribution of daily deaths is similar to that of daily infections with a 5 to 6 days delay. Furthermore, Flaxman et al.
2020) develop a semi-mechanistic Bayesian hierarchical model to accommodate the impact of government interventions
n both daily new infections and fatalities among 11 European countries. Especially, most of their online plots based
n data from European CDC present second-order polynomial time trend, which are consistent with the evidence from
hina. Moreover, Hafner (2020) considers both serial correlation and spillover effects of Covid-19 by spatial autoregressive
odels. Finally, Hu et al. (2020) apply artificial intelligence method for real-time forecasting of Covid-19 cases data. By
sing cumulative confirmed cases data until the end of February 2020, they predicted that the provinces/cities would
nter plateaux eventually, although with varied time points.
Trend modelling has been a major activity in econometrics. The class of nonstationary processes is extremely broad, and

ifferent types of nonstationarity can generate quite different behaviour and require quite different analytical techniques.
here are two main approaches to depict the structure of nonstationary data. One is the unit root theory for integrated
ime series, or similar techniques for fractional integrated time series that covers unit root process as a special case.
his theory and associated techniques are studied and developed by Park and Phillips (1999, 2001), Marinucci and
obinson (2001), Hualde et al. (2011), and Wang (2014, 2015), among others. The other is locally stationary processes and
eterministic trends. In economics, many data series feature increasing trends that are quite close to linear. For epidemic
ata, the situation is more complex so that typically there is an upward exponential growth, a plateaux, and a declining
rend part, all of which needs to be captured.

. Transformation regression model

We model the number of new cases and new deaths per day for each country or territory. For national health services,
hese are key quantities that determine peak resource needs. Let yit denote either the number of new cases or the number
f new deaths in country i on day t . We sometimes add one to the count as this is necessary for some countries with
parse data records or at early stages of the epidemic when zero counts were common. We also sometimes work with
he data normalized by population, i.e., (yit + 1) /ni, where ni is the population of country i and rescaled time. Division
y population only affects the constant term in our regressions, but is done to aid comparability across countries.
We suppose that for some monotonic transformation τ (such as the logarithm)

xit = τ (yit) = mi(t) + εit , (1)

where mi is the trend in the mean of the process xit , i.e., mi(t) = E(xit ), and the error term εit is mean zero. We also
define the mean of the original process yit , as Mi(t) = E(yit ). We will allow all aspects of the model to vary across
countries without restriction, but we sometimes drop the subscript i in the discussion for convenience. Although the data
are counts, i.e., integer values, we do not impose this property; this can matter a bit at the beginning and at the end of
the trajectory for small countries, but otherwise it does not seem to be necessary or helpful to impose some Poisson type
process for large countries in the middle of the episode. We focus on the mean regression and we do not restrict the error
process beyond the zero mean property, it may be autocorrelated and heteroskedastic within some limits. Nevertheless,
statistical folklore suggests that the transformation can help in reducing heteroskedasticity and other issues that arise
from the non-negative count nature of y, Box and Cox (1964). The long run behaviour is fully determined by the trend m.
We discuss both nonparametric and parametric (local and global) approaches to choosing m.

Other models involve dynamic processes for yt; one problem with this approach is the presence of measurement error
in y, which in our framework is simply averaged out, whereas in a dynamic model some additional structure regarding
the measurement error would have to be imposed to mitigate its effects on parameter estimation.

4 They work with three day moving averages of the raw data, which is likely to induce positive autocorrelation.
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2.1. Parametric forms

We first discuss the transformation τ . We have considered the Box–Cox family of transforms τv(y) = (yv−1)/v, where
is an unknown parameter. In several of the web updates we provide a discussion of inference in this model and provide
rediction based on estimating the parameter v. However, we found (see the website) that identification of the parameter
from short time series to be challenging, so in the sequel we suppose that v = 0 (i.e., τ is the logarithm of y or y + 1)

s given.5
We next discuss the trend function m. We consider polynomials in t and log(t). Suppose that

m(t) = a + bt + ct2, (2)

here a, b, c are parameters to be determined. A quadratic is the simplest function that reflects the possibility of a turning
oint. A well defined maximum of m occurs if and only if c < 0 and occurs at the time τmax = −b/2c , which results in
he maximal value of cases per day of m(τmax) = a− b2/4c; finally, the value of t after which no cases would be reported
the end of the epidemic) is the larger root of m(t) = 0. A quadratic function can also be rewritten in vertex form so
hat m(t) = α + γ (t − µ)2, where µ = τmax and α = m(τmax), and the parameter γ = c. The vertex form is good
or interpretation since it is parameterized in terms of the quantities of interest (but it does require some nonlinear
stimation, whereas the parameters of the standard form all have linear parameter effects, which makes it easier to
mplement). We consider a generalization of the vertex form of the quadratic model

m(t) = α + γ |t − µ|
λ, (3)

here α, γ , µ, λ are parameters to be determined. For any λ, a well defined maximum of m occurs if and only if γ < 0
nd occurs at the time τmax = µ, which results in the maximal value of (log) cases per day of m(τmax) = α. The parameter
controls the shape of the curve around the peak. When λ > 2, this is called the leptobottomed case, that is, the peak

s elongated relative to the λ = 2 case. When λ = 1, the platybottomed case, the peak is sharper than the λ = 2 case.
he parameter γ measures the speed of approach to the peak and decline from the peak. We look at values λ = 2 and
= 4 primarily. In the case λ = 2, Eqs. (2) and (3) are in one to one relation. The case λ = 4 is a special case of a quartic
olynomial. For any λ this model is symmetric about the peak, which enables prediction from before the peak is achieved,
lthough it is restrictive.
We have also worked with the mixed polynomial logarithmic functional form, that is,

m(t) = a − bt + c log(t), t > 0, (4)

hich is consistent with the typical unimodal trajectory under some restrictions. It suffices that b > 0 and c > 0, in which
ase the peak is located at time c/b. The curve can be reparameterized as m(t) = α − βt + βµ ln(t), where t = µ is the
eak time. This functional form can generate asymmetric behaviour around the peak. The UK government promoted this
ype of curve, perhaps as a way of encouraging ‘‘prudent’’ behaviour during the lockdown easing process, UK gov (2020).

Our model is for the transformed value of cases, the implied model for the cases themselves is obtained by taking the
nverse transformation. Specifically, for the general model (1) we obtain

M(t) = E
[
τ−1(m(t) + εt )

]
. (5)

f the distribution of εt is time invariant and τ is increasing, then the maximum of M and m are achieved at the same time.
n the logarithmic special case, M(t) = exp(m(t))κ0, where κ0 = E [exp(εt )]. If εt were N(0, σ 2), then κ0 = exp(σ 2/2) and
or small σ 2 we have κ0 ≃ 1 + σ 2/2, and macroeconomists refer to this as the Jensen’s inequality term, and often drop
t, (Campbell, 1993). We do not specify any distributional shape for εt , since we do not need to, and we account for the
resence of the stochastic error term in our predictions by estimating κ0.
In the case where τ is logarithmic, when λ = 2 the model m is quadratic in time and the implied model for M(t) is

roportional to a Gaussian density. When λ = 4, the implied model for M(t) is proportional to a ‘‘fat bottomed’’ density
ith a flatter peak and faster curvature before and after the peak. The mixed functional form (4) for m implies a shape

or M(t) proportional to a gamma density, i.e., M(t) ∝ tc+1 exp(−bt).

.1.1. Parameters of interest
The curves m(.),M(.) themselves are of interest and follow directly once the parameters are known or estimated.

arameters of interest are the time τmax = µ where the maximum of m and M occurs and the maximal value of (log)
ases per day, m(τmax), which in the model (3) is α, since this is embedded in the vertex form. Transforming back to cases
e obtain for that model

ymax = exp(α)E [exp(εt )] , (6)

5 We use natural logarithms and base 10 logarithms interchangeably, where the latter is useful for interpretation of graphs, while the former
has a more convenient notation.
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hich is the maximum of M(t). For the log and linear curve (4), the peak is located at τmax = −b/d = µ and
m(τmax) = α + βµ(log(µ) − 1) and ymax = exp(α − βµ)µβµE [exp(εt )]. The peak time could be in the future relative
o the estimation window or could already have past.

We may be interested in the expected first passage time to some trough level from the peak. For example, suppose
hat trough is defined as the expected peak number of new cases divided by some number L. Then

tTP = min
t>τmax

{
ymax

M(t)
≥ L

}
.

or the quadratic model, this is equivalent to finding the first point t > τmax for which (t − µ) ≥
√

− log L/γ .
We are also interested in the total number of cases that would occur in a given country, which is

∑
∞

t=−∞
exp(m(t)).

e work with rescaled time below, that is, t ↦→ t/K for some large K . In this framework we can replace the sum by an
ntegral and obtain a closed form in terms of the parameters. In the case λ = 2, this is approximately

Ntotal = K ×

∫
∞

−∞

exp(m(t))dt = K
√

−π

γ
exp (α) (7)

nd in the case λ = 4

Ntotal = K
2Γ

( 5
4

)
4
√

−γ
exp(α) =

1.812K
4
√

−γ
exp(α). (8)

Finally, for the (4) family we have

Ntotal = K
Γ (c + 1)
(−b)c+1 exp(a). (9)

The reproduction number, also known as R or R0, is the average number of people that one person with an infectious
disease will likely infect in the future. It measures how fast the epidemic will increase over time. In the context of our
model, we may define R0 as m′(t)+ 1; this has the property that R0 starts out above one and declines to one at the peak
and then declines further towards zero as the episode ends. (it measures the rate of growth of the epidemic)

3. Asymptotic framework

We suppose that time is relative to December 31st 2019, which is the putative starting point of the epidemic. However,
the first time point tmin for a given country may be some time after this. The last time point tmax we hope is finite, so
hat yt = 0 and log(yt + 1) = 0 for all t < tmin and t > tmax. It follows that there are a finite, albeit potentially quite
arge, number of time periods with information about m. We may use the traditional long horizon setting subject to this
imitation. Instead, we use an infill asymptotic scheme. We suppose that time is rescaled according to the number of
bservations being used. That is, we if we label today as time t1, and if use we use the K most recent observations, we
uppose they fall in the interval [t0, t1] for some t0, so that observation times are t0 + (t1 − t0)/K , . . . , t1 (with an abuse
f notation we say t = 1, . . . , K ). As K → ∞ our observations fill up the interval [t0, t1]. The data generating process is
onsequently a triangular array indexed by K . The model however is assumed to operate over all time, i.e., from −∞ to

(or from 0 to +∞ for the model containing a logarithmic trend). We note that some parameters are relative to the
oordinate system [t0, t1] induced by K , and we may want to convert them back to calendar time relative to December
1st 2019 or today), which we do by linear transformation. If we interpret the model as parametric and true for all data
the model is global), the model can extrapolate both forward and backward.

Consider the nonparametric point of view. In this case the function m(.) is not specified except that it is a smooth
unction of (rescaled time), and our quadratic regressions can be interpreted as approximations (the model is local). In
his case we take the one-sided estimation window of size K to be a small fraction of the total available observations
. In this case, the interpretation is that we are estimating the level of the regression function at the point u ∈ [t0, t1]
sing data from previous periods and a local quadratic fit. For the local quadratic regression (Fan and Gijbels, 1996;
ozalo and Linton, 2000), a = m(u), b = hm′(u), and c = h2m′′(u)/2 so that γ = h2m′′(u)/2, µ = −m′(u)/hm′′(u), and
= m(u) − (m′(u)2/2m′′(u)), where h is a bandwidth parameter (1/K ). This suggests that the γ parameter may be hard

o estimate since it depends on the second derivative of the regression function and also is scaled by a small quantity. In
his case, the model itself has limited extrapolative properties based on the assumption of smoothness.

. Estimation

Our estimation methodology is very simple. We work with daily data that is available for all countries since December
1st 2019. Each country in the database has a day of first case tcmin and day of first death tdmin; these vary by country with
hina having its first recorded cases (as far as this database is concerned) on December 31st, but other countries enter
nto the fray subsequently. The current time period is denoted t1 and so we have data {ycit , y

d
it , t = 1, . . . , K , i = 1, . . . , n},

hich are count data with many zeros at the beginning.6

6 For the model (4), t must be positive and so we define time from 1 to T .
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1. To estimate (3) we fix λ = 2 or λ = 4 and estimate the parameters α, γ for given µ by OLS of the log of counts plus
one (log(y + 1)) for each country using the estimation window data, which contains the most recent K datapoints
with rescaled time (t/K ).7 We then search for the minimum squared error across different µ. For (4) we estimate
by OLS directly. We allow country specific case and country specific death values for all parameters. We also include
day of the week dummy variables in each regression. We provide standard errors for the parameter estimates based
on NLLS theory, which is detailed in the Appendix. We use the LS standard errors for simplicity, given the small
sample size we have for each country the HAC-based standard errors can be subject to a lot of noise. We comment
on the residual properties below.

2. We then extrapolate the estimated regression curves outside the estimation window and take exponentials to
deliver predictions of the number of new cases and new deaths per day. That is, we calculate m̂(s) and M̂(s) =

exp(m̂(s))̂κ0 for any s from −∞ to +∞,8 where κ̂0 =
∑K

t=1 exp(̂εt )/K and ε̂t = log yt − m̂(t) are the least squares
residuals. We forecast ys for ANY TIME s by M̂(s). This is an asymptotically, i.e., as the estimation error disappears
(K → ∞), unbiased forecast.

3. We provide frequentist prediction intervals for M(s) for any fixed s,

I(s) =
[
M̂(s) exp

(̂
qα/2

)
, M̂(s) exp

(̂
q1−α/2

)]
, (10)

where q̂α is the α-quantile of the residuals {̂εt , t = 1, . . . , K }. As the estimation error disappears (K → ∞), this
interval will contain M(s) with probability converging to 1 − α.

4. We provide a forecast of the total number of cases: the total number of cases so far plus
∑

s>today M̂(s). Alternatively,
we use the formula for the total number of cases from the model m, which is approximately given by (7), (8), and
(9)

5. Selection of K . Our choice of K is often limited by data availability. We investigate in Section 9 a specific algorithm
for choosing K .

When viewed as a parametric model, the choice of specification is crucial to obtain consistent estimates of parameters.
However, there is one robustness result that does hold, namely, in the vertex model with λ0 > 0, provided there is data
on either side of the peak, our estimation procedures will robustly estimate the location of the peak µ for other values
of λ, although other parameters will not be consistently estimated.

Regarding the prediction intervals, a full disclosure. These are intended to assist the reader in gauging the fundamental
uncertainty that would be present were the parameter values known and the model were true. The reality is that neither
of these conditions are met. If one takes account of parameter uncertainty, then the prediction intervals expand rapidly
with horizon. Technically, the parameter uncertainty overwhelms the prediction uncertainty when the horizon is greater
than the square root of estimation sample size. We would argue that this is true of any model in this setting unless one
believes in Bayesian magic. We discuss short term prediction intervals that take account of parameter uncertainty in more
detail in the Appendix.

5. Data

We use daily data on new cases and fatalities downloaded from the website of the European Centre for Disease
Protection and Control (ECDC), which is an agency of the European Union. According to that website, the first case
worldwide was recorded as December 31st 2019 (day 1). We have the daily number of (new) cases and the number
of (new) deaths up to today’s date, which is 180+ days at the time of writing since day 1. These are count data with some
zeros initially but the counts get quite big quite quickly for the major countries.

We consider the 191+ countries and entities in the ECDC dataset but report separately only the thirty countries with
the largest number of cases (excluding China) and with at least K days of data. Specifically, cases are the reported daily
count of detected and laboratory (and sometimes, depending on the country reporting them and the criteria adopted
at the time, also clinically) confirmed positive and sometimes – depending on the country reporting standards – also
presumptive, suspect, or probable cases of detected infection. The size of the gap between detected (whether confirmed,
suspect or probable) and reported cases versus actual cases will depend on the number of tests performed and on the
country’s transparency in reporting. Most estimates have put the number of undetected cases at several multiples of
detected cases. There are a number of reporting issues. Some of these include official governmental channels changing
or retracting figures, or publishing contradictory data on different official outlets. National or State figures with old or
incomplete data compared to regional, local (counties, in the US) government’s reports is the norm.

6. Results

We consider the thirty countries with the largest number of cases (excluding China) and with at least K days of data.
We re-estimate every day as new data comes in. We fully expect the parameters to change over time and to vary across
country, and they do.

7 For the quadratic and log linear functional forms one can equivalently estimate by OLS the a, b, c parameters and then derive the quantities
of interest as functions of these parameters. Similarly for the model (4).
8 For the model (4), s runs from 0 to ∞.
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.1. Estimation of trend models

We fit the models (3) and (4) on each country’s case and death data separately with the most recent K datapoints
and using rescaled time with estimation window [t0, t1]) and report the most recent results below in: Table 1a (cases,
= 2), Table 1b (cases, λ = 4), Table 1c (cases, (4)), Table 2a (fatalities, λ = 2) and Table 2b (fatalities, λ = 4) and

able 1c (fatalities, (4)). We use K=100 here. The regressions generally have high R2 (not reported). There is quite a bit of
eterogeneity across the parameters consistent with different countries being at different stages of the cycle and having
aken different approaches to managing the epidemic and having different demographics. By now most countries have
significantly in the past, which means their peak has passed, but a number of countries still have yet to reach their

eak. The γ parameters are mostly negative but the standard errors are quite wide, and in some cases the confidence
ntervals around these estimates include zero. The ymax parameter is quite well estimated for most countries with some
xceptions. Most countries do not exhibit strong seasonal effects, although generally Monday and Tuesday seem to report
ower cases and deaths than other days of the week (see Table 2c).

We provide likelihood ratio test statistics ℓ that can be used to test the difference between the three models; the
ritical value for the likelihood ratio test is χ2

0.95 = 3.84. In the past there was not much to choose between the models,
or most countries. Currently, the US strongly prefers the fat-bottomed model, Brazil favours the quadratic regression,
hereas the UK favours the model (4).
The table below gives log(caset + 1) = α + γ |t − µ|

2
+
∑6

d=1 βdDd.

able 1a
mpirical Results of the quadratic model with K = 100.
Name ymax µ̂ γ̂ Mon Tue Wed Thu Fri Sat log_likelihood

USA 32600 139 −2.17 −0.18 −0.16 −0.11 −0.19 −0.03 −0.04 −37.69*
(3262) (4) (0.5) (0.14) (0.14) (0.14) (0.14) (0.14) (0.14)

Brazil 33548 180 −4.89 −0.32 −0.36 0.05 0.09 0.09 0.15 8.39***
(3217) (3) (0.32) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

Russia 15655 145 −13.01 0.09 −0.29 0.02 0.01 0.07 0.02 −82.68*
(2352) (1) (0.78) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22)

India 13710 174 −5.88 −0.03 −0.11 −0.09 −0.08 −0.11 −0.03 −18.04 *
(1460) (3) (0.41) (0.12) (0.12) (0.12) (0.11) (0.11) (0.12)

UK 5107 121 −6.53 −0.05 −0.2 −0.1 −0.16 −0.03 0.03 −30.5**
(480) (1) (0.47) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13)

Peru 7075 145 −11.54 0.14 −1.35 −0.48 0.33 0.12 −0.07 −166.64***
(1925) (3) (1.82) (0.51) (0.51) (0.51) (0.5) (0.5) (0.51)

Chile 17642 235 −2.09 −0.09 −0.15 −0.16 0 0.01 0.03 −41.85***
(9555) (27) (0.52) (0.15) (0.15) (0.15) (0.14) (0.14) (0.15)

Spain 53 278 1.34 −0.43 −0.03 −0.03 0.22 0.22 0.11 −55.61***
(65) (68) (0.6) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)

Italy NA −265 −0.49 −0.14 −0.32 −0.2 −0.04 −0.01 −0.04 −16.66**
(NA) (323) (0.41) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)

Iran 1730 99 1.28 −0.04 0.01 0.01 0.03 0 −0.49 −117.07**
(353) (27) (1.11) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31)

Mexico 4594 171 −5.46 0.01 −0.16 −0.01 0.02 0.1 0.11 30.96*
(289) (2) (0.25) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07)

France 315 218 1.56 −0.84 −0.25 0.1 −0.16 0.06 −0.1 −94.4***
(184) (52) (0.88) (0.25) (0.25) (0.25) (0.24) (0.24) (0.25)

Pakistan 13561 205 −3.27 −0.03 −0.1 −0.09 −0.46 −0.29 −0.88 −150.55***
(9385) (37) (1.55) (0.43) (0.43) (0.43) (0.43) (0.43) (0.43)

Turkey 2847 124 −4.88 −0.04 −0.09 0.01 −0.1 0.01 0.03 −97.42*
(460) (2) (0.91) (0.26) (0.26) (0.26) (0.25) (0.25) (0.26)

Germany 418 180 2.94 −0.23 −0.01 0.1 0.18 −0.15 0.35 −121.23***
(128) (21) (1.15) (0.32) (0.32) (0.32) (0.32) (0.32) (0.32)

Saudi Arabia 4241 163 −6.05 −0.13 −0.08 −0.06 −0.12 −0.07 −0.49 −92.9**
(747) (5) (0.87) (0.24) (0.24) (0.24) (0.24) (0.24) (0.24)

Bangladesh 3283 162 −11.15 0.14 0.2 0.22 0.17 0.23 0.17 −101.7*
(570) (3) (0.95) (0.27) (0.27) (0.27) (0.26) (0.26) (0.27)

South Africa 0 −178 0.86 0.19 0.09 −0.01 0.08 0.26 0.28 −56.7**
(1) (21) (0.6) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)

Canada 1757 124 −7.57 −0.06 −0.06 −0.08 −0.01 0.04 −0.03 −33.81**
(171) (1) (0.48) (0.14) (0.14) (0.14) (0.13) (0.13) (0.14)

Qatar 2391 149 −10.93 −0.07 −0.14 −0.03 −0.15 −0.1 −0.48 −76.59**
(336) (2) (0.74) (0.21) (0.21) (0.21) (0.2) (0.2) (0.21)

Colombia 10458 272 −1.41 −0.19 −0.16 0 0.03 −0.62 0.07 −115.23**
(20669) (112) (1.09) (0.31) (0.31) (0.31) (0.3) (0.3) (0.31)

Sweden 688 132 −4.7 −0.26 0.18 0.6 0.76 0.79 0.14 −152.85*
(163) (5) (1.58) (0.44) (0.44) (0.44) (0.44) (0.44) (0.44)

Egypt 2528 188 −3.63 −0.65 −0.36 −0.1 −0.89 −0.19 −0.31 −157.87***
(1198) (28) (1.66) (0.47) (0.47) (0.47) (0.46) (0.46) (0.47)
(continued on next page)
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Table 1a (continued).
Name ymax µ̂ γ̂ Mon Tue Wed Thu Fri Sat log_likelihood

Belgium 1371 96 −5.45 −0.3 −0.51 −0.27 −0.26 0.02 0.03 −106.07**
(238) (6) (0.99) (0.28) (0.28) (0.28) (0.27) (0.27) (0.28)

Belarus 1414 144 −14.66 −0.14 0.59 0.45 0.42 0.62 0.56 −154.17**
(315) (2) (1.6) (0.45) (0.45) (0.45) (0.44) (0.44) (0.45)

Argentina 25 −46 1.02 −1.27 −0.26 −0.96 −0.39 −1.39 −0.41 −192.34**
(97) (401) (2.35) (0.66) (0.66) (0.66) (0.65) (0.65) (0.66)

Ecuador 881 150 −4.51 −0.14 −0.15 0.02 −0.03 −0.38 0.13 −133.09**
(136) (7) (1.3) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36)

Indonesia 1137 178 −2.76 −0.15 −0.27 −0.07 −0.33 −0.03 0 −69.65*
(215) (13) (0.69) (0.19) (0.19) (0.19) (0.19) (0.19) (0.19)

Netherlands 1561 42 −1.67 0 −0.57 −0.2 −0.16 0.11 0.08 −88.65**
(817) (43) (0.83) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)

UAE 1956 142 −12.36 −0.56 0.01 −0.08 −0.43 −0.18 −1.01 −151.5*
(426) (2) (1.56) (0.44) (0.44) (0.44) (0.43) (0.43) (0.44)

This table uses the latest K = 100 days’ data (until 2020-06-26) to fit the quadratic model.
tandard errors are in parentheses below the estimates.
ˆ is the estimated day of the peak, taking 201-12-31 as day 0.
he number of * at the last column denotes the relative goodness of fit based on log likelihood, where *** indicates the model of the best fit among
thers.

The table below gives log(caset + 1) = α + γ |t − µ|
4
+
∑6

d=1 βdDd.

Table 1b
Empirical Results of Quartic Model of Cases with K = 100.
Name ymax µ̂ γ̂ Mon Tue Wed Thu Fri Sat log_likelihood

USA 31178 138 −9.69 −0.19 −0.17 −0.13 −0.17 −0.02 −0.03 −15.73***
(37612) (126) (2.51) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)

Brazil 38309 250 −0.63 −0.33 −0.37 0.04 0.1 0.1 0.15 2.21*
(7695) (21) (0.12) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

Russia 10149 158 −15.87 0.07 −0.33 −0.03 0.01 0.05 0.04 −65.09***
(25297) (266) (3.6) (0.18) (0.18) (0.18) (0.18) (0.18) (0.18)

India 17207 247 −0.72 −0.03 −0.11 −0.1 −0.07 −0.11 −0.03 −5.52**
(3825) (23) (0.13) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

UK 4233 125 −28.99 −0.05 −0.2 −0.1 −0.13 −0.01 0.04 −48.42*
(3602) (92) (2.54) (0.16) (0.16) (0.16) (0.15) (0.15) (0.16)

Peru 5575 176 −5.7 0.13 −1.38 −0.52 0.31 0.08 −0.06 −168.7*
(16008) (402) (4.33) (0.52) (0.52) (0.52) (0.51) (0.51) (0.52)

Chile 6730 250 −0.52 −0.09 −0.15 −0.16 0.04 0.04 0.03 −60.14*
(2325) (39) (0.22) (0.18) (0.18) (0.18) (0.17) (0.17) (0.18)

Spain 318 250 0.46 −0.41 −0.01 −0.04 0.2 0.23 0.12 −72.63*
(123) (44) (0.25) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

Italy 5692 0 −0.4 −0.14 −0.32 −0.2 0 0.03 −0.05 −53.04*
(1778) (34) (0.19) (0.16) (0.16) (0.16) (0.16) (0.16) (0.16)

Iran 1634 11 0.11 −0.04 0.01 0 0.04 0.01 −0.49 −117.27*
(1034) (73) (0.43) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31)

Mexico 5761 244 −0.67 0.01 −0.17 −0.02 0.02 0.1 0.11 45.53***
(808) (14) (0.08) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

France 485 250 0.33 −0.85 −0.25 0.1 −0.17 0.06 −0.09 −98.55*
(224) (57) (0.32) (0.26) (0.26) (0.26) (0.25) (0.25) (0.26)

Pakistan 8976 250 −0.6 −0.03 −0.1 −0.09 −0.43 −0.27 −0.87 −152.75*
(6400) (97) (0.55) (0.44) (0.44) (0.44) (0.44) (0.44) (0.44)

Turkey 2566 131 −24.26 −0.05 −0.11 −0.02 −0.07 0.03 0.04 −90.66 **
(3154) (147) (3.94) (0.24) (0.24) (0.24) (0.23) (0.24) (0.24)

Germany 395 250 0.37 −0.23 −0.01 0.1 0.17 −0.16 0.35 −122.87*
(243) (72) (0.41) (0.33) (0.33) (0.33) (0.32) (0.32) (0.33)

Saudi Arabia 4865 226 −0.98 −0.13 −0.09 −0.07 −0.12 −0.08 −0.49 −92.69***
(3092) (70) (0.47) (0.24) (0.24) (0.24) (0.24) (0.24) (0.24)

Bangladesh 3957 221 −2.03 0.13 0.19 0.2 0.17 0.22 0.18 −99.87***
(2643) (81) (0.57) (0.26) (0.26) (0.26) (0.26) (0.26) (0.26)

South Africa 70 0 0.54 0.19 0.09 −0.01 0.02 0.21 0.28 −85.11*
(29) (47) (0.26) (0.23) (0.23) (0.23) (0.22) (0.22) (0.23)

Canada 1426 127 −34.37 −0.07 −0.06 −0.08 0.02 0.07 −0.03 −38.58*
(1071) (80) (2.27) (0.14) (0.14) (0.14) (0.14) (0.14) (0.14)

Qatar 1969 180 −5.18 −0.09 −0.17 −0.06 −0.16 −0.13 −0.46 −78.82*
(2625) (146) (1.5) (0.21) (0.21) (0.21) (0.21) (0.21) (0.21)

Colombia 2122 250 −0.48 −0.19 −0.16 0 0.07 −0.58 0.07 −119.27*

(continued on next page)
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able 1b (continued).
Name ymax µ̂ γ̂ Mon Tue Wed Thu Fri Sat log_likelihood

(1262) (70) (0.39) (0.32) (0.32) (0.32) (0.31) (0.31) (0.32)
Sweden 626 130 −23.51 −0.27 0.18 0.6 0.79 0.82 0.15 −151.51***

(1122) (260) (7.14) (0.44) (0.44) (0.44) (0.43) (0.43) (0.44)
Egypt 2440 250 −0.53 −0.65 −0.36 −0.1 −0.88 −0.18 −0.31 −159.25*

(1858) (104) (0.58) (0.47) (0.47) (0.47) (0.47) (0.47) (0.47)
Belgium 1690 19 −0.6 −0.29 −0.5 −0.27 −0.27 0.01 0.03 −109.04*

(1009) (73) (0.46) (0.29) (0.29) (0.29) (0.28) (0.28) (0.29)
Belarus 954 165 −12.01 −0.16 0.55 0.4 0.4 0.57 0.57 −154.66*

(3185) (510) (6.31) (0.45) (0.45) (0.45) (0.45) (0.45) (0.45)
Argentina 164 0 0.37 −1.27 −0.26 −0.96 −0.42 −1.42 −0.41 −193.39*

(128) (139) (0.76) (0.67) (0.67) (0.67) (0.66) (0.66) (0.67)
Ecuador 742 170 −3.04 0.01 −0.12 −0.01 −0.06 −0.34 0.23 −121.02***

(1471) (303) (3.5) (0.32) (0.32) (0.32) (0.32) (0.32) (0.32)
Indonesia 1129 232 −0.53 −0.15 −0.27 −0.07 −0.32 −0.02 0 −66.93**

(530) (50) (0.32) (0.19) (0.19) (0.19) (0.19) (0.19) (0.19)
Netherlands 1156 0 −0.3 0 −0.57 −0.2 −0.15 0.12 0.08 −92.16*

(512) (51) (0.28) (0.24) (0.24) (0.24) (0.24) (0.24) (0.24)
UAE 1187 145 −27.54 −0.58 −0.02 −0.14 −0.42 −0.19 −0.99 −150.17**

(5939) (724) (12.04) (0.43) (0.43) (0.43) (0.43) (0.43) (0.43)

This table uses the latest K = 100 days’ (until 2020-06-26) data to fit the quartic model.
tandard errors are in parentheses below the estimates.
ˆ is the estimated day of the peak, taking 2020-12-31 as day 0.
he number of * at the last column denotes the relative goodness of fit based on log likelihood, where *** indicates the model of the best fit among
thers.

The table below gives log(caset + 1) = a + bt + c log(t) +
∑6

d=1 βdDd.

Table 1c
Empirical Results of Gamma Model of Cases with K = 100.
Name ymax µ̂ ĉ Mon Tue Wed Thu Fri Sat log_likelihood

USA 33085 133 8.21 −0.19 −0.16 −0.11 −0.18 −0.03 −0.04 −31.09**
(22014) (3) (1.41) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13)

Brazil 50411 218 14.64 −0.33 −0.37 0.04 0.09 0.09 0.15 7.69 **
(57481) (11) (0.95) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

Russia 13501 143 40.48 0.08 −0.31 0 0.02 0.07 0.03 −70.12**
(16091) (1) (2.08) (0.19) (0.19) (0.19) (0.19) (0.19) (0.19)

India 16085 194 18.57 −0.03 −0.11 −0.1 −0.07 −0.11 −0.03 −4.5***
(17871) (7) (1.08) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

UK 5369 118 21.01 −0.05 −0.21 −0.11 −0.15 −0.03 0.03 −11.21***
(1777) (1) (1.15) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)

Peru 6187 145 34.37 0.13 −1.36 −0.5 0.33 0.11 −0.06 −167.02**
(15394) (5) (5.47) (0.51) (0.51) (0.51) (0.5) (0.5) (0.51)

Chile NA 4101 5.69 −0.09 −0.15 −0.17 0 0.01 0.03 −43.4**
(NA) (37121) (1.59) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)

Spain NaN −127 −2.53 −0.43 −0.03 −0.02 0.22 0.22 0.11 −57.38**
(NaN) (186) (1.83) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)

Italy 14321 42 2.48 −0.14 −0.32 −0.2 −0.04 −0.01 −0.04 −15.14***
(32526) (13) (1.2) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)

Iran 1698 101 −4.13 −0.03 0.01 0.01 0.03 0 −0.49 −116.95***
(375) (16) (3.32) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31)

Mexico 5206 189 16.81 0.01 −0.17 −0.02 0.02 0.1 0.11 45.47**
(3470) (4) (0.65) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

France NaN −787 −3.03 −0.84 −0.25 0.1 −0.15 0.06 −0.1 −95.27**
(NaN) (5143) (2.67) (0.25) (0.25) (0.25) (0.25) (0.25) (0.25)

Pakistan NA 436 8.76 −0.03 −0.11 −0.1 −0.46 −0.3 −0.87 −151.06**
(NA) (594) (4.67) (0.44) (0.44) (0.44) (0.43) (0.43) (0.44)

Turkey 3058 121 17.89 −0.04 −0.09 0 −0.08 0.02 0.04 −88.89***
(2248) (2) (2.51) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)

Germany 220 264 −7.1 −0.23 −0.01 0.1 0.19 −0.14 0.35 −122.49**
(980) (152) (3.51) (0.33) (0.33) (0.33) (0.32) (0.32) (0.33)

Saudi Arabia 4358 175 18.17 −0.13 −0.09 −0.07 −0.12 −0.07 −0.49 −92.94*
(9388) (11) (2.61) (0.24) (0.24) (0.24) (0.24) (0.24) (0.24)

Bangladesh 3346 172 33.73 0.13 0.19 0.2 0.17 0.23 0.17 −100.57**
(6902) (6) (2.82) (0.26) (0.26) (0.26) (0.26) (0.26) (0.26)

South Africa 18 42 −3.33 0.19 0.09 −0.01 0.07 0.26 0.28 −55.94***

(continued on next page)
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Table 1c (continued).
Name ymax µ̂ ĉ Mon Tue Wed Thu Fri Sat log_likelihood

(58) (15) (1.8) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)
Canada 1819 120 23.89 −0.07 −0.07 −0.09 −0.01 0.04 −0.03 −17.07***

(711) (1) (1.22) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)
Qatar 2103 149 33.02 −0.08 −0.16 −0.04 −0.15 −0.11 −0.47 −75.16***

(2862) (2) (2.18) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)
Colombia NaN −1177 4.55 −0.19 −0.16 0 0.03 −0.62 0.07 −115.09***

(NaN) (8904) (3.26) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3)
Sweden 670 128 14.22 −0.27 0.18 0.59 0.76 0.79 0.15 −152.78**

(975) (5) (4.75) (0.44) (0.44) (0.44) (0.44) (0.44) (0.44)
Egypt 7702 292 9.4 −0.65 −0.36 −0.1 −0.9 −0.2 −0.31 −158.55**

(46487) (217) (5.03) (0.47) (0.47) (0.47) (0.46) (0.46) (0.47)
Belgium 1451 100 17.61 −0.3 −0.51 −0.28 −0.25 0.02 0.04 −103.37***

(244) (3) (2.9) (0.27) (0.27) (0.27) (0.27) (0.27) (0.27)
Belarus 1202 143 44.67 −0.15 0.57 0.43 0.42 0.61 0.56 −152.79***

(2332) (3) (4.75) (0.44) (0.44) (0.44) (0.44) (0.44) (0.44)
Argentina 109 59 −4.04 −1.27 −0.26 −0.96 −0.39 −1.39 −0.41 −192.26***

(466) (54) (7.05) (0.66) (0.66) (0.66) (0.65) (0.65) (0.66)
Ecuador 862 150 14.54 −0.2 −0.16 0.01 −0.03 −0.4 0.12 −136.54*

(1344) (11) (4.04) (0.38) (0.38) (0.38) (0.37) (0.37) (0.38)
Indonesia 1184 193 9.51 −0.15 −0.27 −0.07 −0.32 −0.02 0 −66.76***

(2348) (24) (2.01) (0.19) (0.19) (0.19) (0.18) (0.18) (0.19)
Netherlands 1098 80 6.45 0 −0.57 −0.2 −0.16 0.11 0.08 −87.18***

(1030) (11) (2.46) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)
UAE 1717 139 38.15 −0.57 0 −0.1 −0.42 −0.18 −1.01 −149.51***

(3063) (3) (4.59) (0.43) (0.43) (0.43) (0.42) (0.42) (0.43)

This table uses the latest K = 100 days’ data (until 2020-06-26) to fit the Gamma model.
tandard errors are in parentheses below the estimates.
ˆ is the estimated day of the peak, taking 2019-12-31 as day 0.
he number of * at the last column denotes the relative goodness of fit based on log likelihood, where *** indicates the model of the best fit among
thers.

The table below gives log(deatht + 1) = α + γ |t − µ|
2
+
∑6

d=1 βdDd.

Table 2a
Empirical Results of Quadratic model with K = 100.
Name ymax µ̂ γ̂ Mon Tue Wed Thu Fri Sat log_likelihood

USA 2500 131 −9.57 −0.33 −0.23 0.25 0.25 0 0.14 −112.99*
(457) (1) (1.06) (0.3) (0.3) (0.3) (0.29) (0.29) (0.3)

Brazil 1146 155 −8.71 −0.4 −0.3 0.22 0.1 0.18 0.07 −2.69*
(83) (1) (0.35) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

Russia 164 152 −10.02 0 −0.12 0.23 0.21 0.25 0.25 −31.22*
(15) (1) (0.47) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13)

India 349 173 −5.76 0.14 0.02 0.19 0.12 0.07 0.07 −53.9*
(50) (5) (0.59) (0.17) (0.17) (0.17) (0.16) (0.16) (0.17)

UK 801 122 −8.41 −0.69 −0.6 0.3 0.18 0.06 0.13 −87.75**
(120) (1) (0.82) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)

Peru 215 153 −8.26 −0.28 −0.8 −0.3 0.01 −0.06 −0.1 −118.37*
(43) (4) (1.12) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31)

Chile 29522 427 −0.79 0.13 −0.46 −0.62 −0.09 −0.07 0.01 −96.64**
(198732) (342) (0.9) (0.25) (0.25) (0.25) (0.25) (0.25) (0.25)

Spain 1353 85 −6.43 0.66 0.82 0.18 0.19 0.68 0.21 −153.85*
(182) (11) (1.6) (0.45) (0.45) (0.44) (0.44) (0.45) (0.45)

Italy 1110 52 −2.34 −0.36 −0.29 −0.17 −0.1 −0.07 −0.05 7.88**
(192) (10) (0.32) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

Iran 68 134 3.32 −0.02 0.04 0.03 0.07 0.05 −0.36 −72.4***
(10) (3) (0.71) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

Mexico 547 165 −7.97 −0.38 −0.09 0.24 0.29 0.23 0.28 −56.89*
(70) (3) (0.61) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)

France 385 100 −6.4 −0.37 0.35 0.76 0.21 0.36 0.22 −85.53**
(55) (4) (0.81) (0.23) (0.23) (0.23) (0.22) (0.22) (0.23)

Pakistan 141 197 −3.17 0.02 0 0.07 −0.14 −0.02 −0.15 −69.82**
(42) (15) (0.69) (0.19) (0.19) (0.19) (0.19) (0.19) (0.19)

Turkey 87 124 −7.82 0 0 0.01 −0.03 0.04 −0.05 −86.86**
(13) (1) (0.82) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)

Germany 101 115 −8.88 −0.23 0.61 0.88 0.62 0.41 0.49 −128.69**
(21) (2) (1.24) (0.35) (0.35) (0.35) (0.34) (0.34) (0.35)

(continued on next page)
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able 2a (continued).
Name ymax µ̂ γ̂ Mon Tue Wed Thu Fri Sat log_likelihood

Saudi Arabia 546 342 −0.83 −0.09 −0.24 −0.06 −0.18 −0.09 −0.29 −43.32**
(1223) (137) (0.53) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)

Bangladesh 115 235 −1.86 −0.11 −0.09 −0.09 −0.05 −0.17 −0.15 −63.09***
(75) (37) (0.64) (0.18) (0.18) (0.18) (0.18) (0.18) (0.18)

South Africa 0 −775 0.27 −0.22 0.16 −0.15 0.22 0.14 0.31 −83.78**
(0 ) (2621) (0.79) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22)

Canada 229 133 −13.43 −0.4 −0.39 −0.21 −0.07 −0.02 −0.06 −65.95*
(29) (1) (0.66) (0.19) (0.19) (0.19) (0.18) (0.18) (0.19)

Qatar 1 90 1.86 0.2 0.04 0.1 0.11 0.01 0.18 −59.19**
(0 ) (13) (0.62) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)

Colombia 153 234 −1.79 0.07 −0.03 −0.02 −0.18 −0.26 0.09 −85.05**
(119) (48) (0.8) (0.23) (0.23) (0.23) (0.22) (0.22) (0.23)

Sweden 62 127 −9.41 −1.46 0.36 1.01 1.2 0.63 0.72 −120.28*
(11) (2) (1.14) (0.32) (0.32) (0.32) (0.32) (0.32) (0.32)

Egypt 1390 393 −0.58 −0.18 −0.12 −0.09 −0.56 −0.19 −0.2 −107.9**
(8209) (462) (1.01) (0.28) (0.28) (0.28) (0.28) (0.28) (0.28)

Belgium 151 114 −10.99 −0.03 −0.06 0.27 0.44 0.25 0.37 −100.86**
(24) (2) (0.94) (0.26) (0.26) (0.26) (0.26) (0.26) (0.26)

Belarus 7 150 −4.05 −0.04 0.03 −0.09 −0.09 0.1 −0.13 −26.8*
(1) (3) (0.45) (0.13) (0.13) (0.13) (0.12) (0.12) (0.13)

Argentina 44 234 −1.14 −0.65 0.04 −0.14 −0.01 −0.01 −0.09 −78.22**
(32) (70) (0.75) (0.21) (0.21) (0.21) (0.21) (0.21) (0.21)

Ecuador 58 143 −5.27 0.12 −0.03 −0.02 0.25 −0.53 0.78 −166.03*
(12) (7) (1.8) (0.51) (0.51) (0.51) (0.5) (0.5) (0.51)

Indonesia 59 206 −1.06 0.05 −0.27 −0.2 −0.29 0.02 −0.04 −74.89*
(23) (54) (0.73) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

Netherlands 124 102 −7.21 −0.56 −0.8 0.15 −0.01 0 0.05 −72.11**
(16) (3) (0.71) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

UAE 6 132 −6.52 0 0.15 0.11 0.05 0.06 −0.05 −71.67**
(1) (1) (0.7) (0.2) (0.2) (0.2) (0.19) (0.19) (0.2)

This table uses the latest K = 100 days’ data (until 2020-06-26) to fit the quadratic model.
tandard errors are in parentheses below the estimates.
ˆ is the estimated day of the peak, taking 201-12-31 as day 0.
he number of * at the last column denotes the relative goodness of fit based on log likelihood, where *** indicates the model of the best fit among
thers.

The table below gives log(deatht + 1) = α + γ |t − µ|
4
+
∑6

d=1 βdDd.

Table 2b
Empirical Results of Quartic Model of Deaths with K = 100.
Name ymax µ̂ γ̂ Mon Tue Wed Thu Fri Sat log_likelihood

USA 1885 132 −42.44 −0.34 −0.25 0.22 0.29 0.03 0.15 −94.9***
(2730) (171) (4.31) (0.25) (0.25) (0.25) (0.25) (0.25) (0.25)

Brazil 1057 194 −3 −0.41 −0.31 0.19 0.1 0.17 0.08 19.77***
(402) (39) (0.35) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

Russia 146 189 −3.8 0 −0.14 0.2 0.21 0.24 0.26 −30.11**
(101) (72) (0.68) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13)

India 414 241 −0.79 0.14 0.01 0.18 0.13 0.07 0.08 −46.97**
(140) (37) (0.22) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)

UK 643 126 −39.88 −0.69 −0.61 0.29 0.22 0.1 0.14 −90.82*
(730) (136) (3.83) (0.24) (0.24) (0.24) (0.24) (0.24) (0.24)

Peru 199 193 −2.85 −0.29 −0.82 −0.32 0.01 −0.07 −0.1 −117.82**
(269) (158) (1.43) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31)

Chile 125 250 −0.55 0.13 −0.46 −0.62 −0.04 −0.02 0.01 −108.52*
(61) (63) (0.35) (0.29) (0.29) (0.29) (0.28) (0.28) (0.29)

Spain 1417 0 −0.56 0.69 0.82 0.18 0.21 0.67 0.2 −153.01**
(495) (93) (0.51) (0.45) (0.45) (0.44) (0.44) (0.45) (0.45)

Italy 903 0 −0.38 −0.36 −0.29 −0.17 −0.1 −0.05 −0.05 −8.6*
(191) (22) (0.12) (0.11) (0.11) (0.11) (0.1) (0.1) (0.11)

Iran 77 130 13.89 −0.02 0.04 0.03 0.05 0.03 −0.36 −75.17*
(89) (124) (3.36) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

Mexico 586 219 −1.62 −0.38 −0.1 0.22 0.3 0.23 0.29 −45.97**
(264) (48) (0.34) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)

France 499 17 −0.59 −0.37 0.35 0.77 0.19 0.34 0.21 −94.57*
(256) (62) (0.38) (0.25) (0.25) (0.25) (0.24) (0.24) (0.25)

(continued on next page)
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Table 2b (continued).
Name ymax µ̂ γ̂ Mon Tue Wed Thu Fri Sat log_likelihood

Pakistan 116 250 −0.53 0.02 0 0.06 −0.12 −0.01 −0.15 −73.2*
(46) (44) (0.25) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

Turkey 70 129 −35.23 −0.01 −0.02 −0.02 0.01 0.06 −0.04 −88.75*
(79) (133) (3.75) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)

Germany 80 122 −39.19 −0.24 0.61 0.88 0.66 0.45 0.5 −139.68*
(153) (272) (6.8) (0.39) (0.39) (0.39) (0.38) (0.38) (0.39)

Saudi Arabia 40 250 −0.41 −0.09 −0.24 −0.06 −0.15 −0.05 −0.28 −56.95*
(14) (37) (0.21) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)

Bangladesh 48 250 −0.47 −0.11 −0.09 −0.09 −0.02 −0.14 −0.15 −71.67*
(19) (43) (0.24) (0.2) (0.2) (0.2) (0.19) (0.19) (0.2)

South Africa 2 0 0.5 −0.21 0.16 −0.14 0.16 0.09 0.3 −102.88*
(1) (56) (0.31) (0.27) (0.27) (0.27) (0.27) (0.27) (0.27)

Canada 150 132 −55.41 −0.42 −0.41 −0.23 −0.02 0.02 −0.04 −60.63**
(164) (119) (3.04) (0.18) (0.18) (0.18) (0.17) (0.17) (0.18)

Qatar 1 1 0.16 0.2 0.04 0.1 0.11 0.01 0.18 −59.86
(0 ) (37) (0.2) (0.18) (0.18) (0.18) (0.17) (0.17) (0.18)

Colombia 69 250 −0.45 0.07 −0.03 −0.02 −0.15 −0.23 0.09 −87.21*
(30) (51) (0.28) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)

Sweden 47 129 −43.7 −1.47 0.35 0.99 1.24 0.67 0.73 −116.64**
(63) (176) (4.96) (0.31) (0.31) (0.31) (0.3) (0.3) (0.31)

Egypt 66 250 −0.36 −0.18 −0.12 −0.09 −0.52 −0.16 −0.2 −111.47*
(34) (64) (0.36) (0.29) (0.29) (0.29) (0.29) (0.29) (0.29)

Belgium 128 66 −2.61 −0.02 −0.04 0.3 0.39 0.22 0.36 −123.1*
(176) (183) (1.72) (0.33) (0.33) (0.33) (0.32) (0.32) (0.33)

Belarus 7 177 −2.36 −0.04 0.02 −0.1 −0.09 0.09 −0.12 −23.64***
(6) (94) (1) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12)

Argentina 26 250 −0.29 −0.65 0.04 −0.14 0.01 0.01 −0.09 −79.16*
(11) (47) (0.26) (0.21) (0.21) (0.21) (0.21) (0.21) (0.21)

Ecuador 48 150 −9.62 0.12 −0.05 −0.05 0.26 −0.54 0.79 −165.18***
(234) (876) (13.38) (0.5) (0.5) (0.5) (0.49) (0.49) (0.5)

Indonesia 51 250 −0.2 0.05 −0.27 −0.2 −0.28 0.03 −0.04 −74.63**
(20) (45) (0.25) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

Netherlands 147 32 −0.93 −0.56 −0.79 0.16 −0.03 −0.02 0.05 −84.25*
(86) (67) (0.46) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22)

UAE 5 133 −22.67 −0.01 0.14 0.09 0.06 0.06 −0.04 −82.18*
(6) (153) (3.83) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22)

This table uses the latest K = 100 days’ (until 2020-06-26) data to fit the quartic model.
tandard errors are in parentheses below the estimates.
ˆ is the estimated day of the peak, taking 2020-12-31 as day 0.
he number of * at the last column denotes the relative goodness of fit based on log likelihood, where *** indicates the model of the best fit among
thers.

The table below gives log(deatht + 1) = a + bt + c log(t) +
∑6

d=1 βdDd.

Table 2c
Empirical Results of Gamma Model of Deaths with K = 100.
Name ymax µ̂ ĉ Mon Tue Wed Thu Fri Sat log_likelihood

USA 2512 127 31.76 −0.33 −0.24 0.24 0.26 0 0.14 −101.92**
(2532) (1) (2.85) (0.27) (0.27) (0.27) (0.26) (0.26) (0.27)

Brazil 1055 159 26.76 −0.4 −0.31 0.2 0.1 0.18 0.08 16.49**
(697) (2) (0.87) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

Russia 148 154 30.35 0 −0.13 0.22 0.21 0.25 0.25 −26.6***
(138) (2) (1.34) (0.13) (0.13) (0.13) (0.12) (0.12) (0.13)

India 395 191 18.34 0.14 0.01 0.18 0.12 0.07 0.08 −46.76***
(623) (10) (1.64) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)

UK 854 118 27.57 −0.69 −0.61 0.29 0.19 0.07 0.14 −75.29***
(505) (1) (2.19) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

Peru 198 156 25.09 −0.29 −0.81 −0.31 0.01 −0.06 −0.1 −117.66***
(423) (6) (3.34) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31)

Chile NaN −101 2.64 0.13 −0.47 −0.62 −0.09 −0.07 0.02 −96.54***
(NaN) (190) (2.71) (0.25) (0.25) (0.25) (0.25) (0.25) (0.25)

Spain 1325 94 21.65 0.66 0.81 0.17 0.2 0.68 0.19 −151.52***
(261) (5) (4.69) (0.44) (0.44) (0.43) (0.43) (0.44) (0.44)

Italy 857 78 7.55 −0.37 −0.29 −0.17 −0.09 −0.07 −0.05 12.87***
(355) (3) (0.91) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

(continued on next page)
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able 2c (continued).
Name ymax µ̂ ĉ Mon Tue Wed Thu Fri Sat log_likelihood

Iran 71 131 −9.34 −0.01 0.04 0.03 0.07 0.05 −0.37 −73.89**
(67) (4) (2.16) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

Mexico 551 175 24.96 −0.38 −0.1 0.23 0.29 0.23 0.28 −47.77***
(778) (5) (1.66) (0.16) (0.16) (0.16) (0.15) (0.15) (0.16)

France 417 103 21.52 −0.38 0.34 0.75 0.22 0.36 0.22 −75.8***
(72) (2) (2.2) (0.21) (0.21) (0.21) (0.2) (0.2) (0.21)

Pakistan 336 284 9.59 0.02 0 0.06 −0.14 −0.03 −0.15 −69.67***
(995) (81) (2.07) (0.19) (0.19) (0.19) (0.19) (0.19) (0.19)

Turkey 92 120 26.33 0 −0.01 0 −0.01 0.05 −0.05 −71.7***
(58) (1) (2.11) (0.2) (0.2) (0.2) (0.19) (0.19) (0.2)

Germany 111 113 29.33 −0.24 0.6 0.87 0.63 0.42 0.5 −122.37***
(75) (2) (3.5) (0.33) (0.33) (0.33) (0.32) (0.32) (0.33)

Saudi Arabia NaN −371 3.29 −0.09 −0.24 −0.06 −0.18 −0.08 −0.28 −42.3***
(NaN) (715) (1.57) (0.15) (0.15) (0.15) (0.14) (0.14) (0.15)

Bangladesh 15240 1098 5.54 −0.12 −0.09 −0.09 −0.05 −0.17 −0.15 −63.15 **
(84165) (3050) (1.94) (0.18) (0.18) (0.18) (0.18) (0.18) (0.18)

South Africa 0 19 −1.11 −0.22 0.16 −0.15 0.22 0.14 0.31 −83.73***
(2) (35) (2.38) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22)

Canada 216 129 41.48 −0.41 −0.4 −0.23 −0.06 −0.02 −0.05 −50.83***
(153) (1) (1.71) (0.16) (0.16) (0.16) (0.16) (0.16) (0.16)

Qatar 1 95 −5.7 0.2 0.04 0.1 0.1 0.01 0.18 −58.99***
(0 ) (8) (1.86) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)

Colombia 530 412 6.69 0.07 −0.03 −0.02 −0.18 −0.26 0.09 −83.52***
(2282) (346) (2.38) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22)

Sweden 63 123 30.12 −1.46 0.35 0.99 1.21 0.63 0.72 −114.89***
(58) (1) (3.25) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3)

Egypt NaN −219 2.44 −0.18 −0.12 −0.1 −0.55 −0.19 −0.2 −107.73***
(NaN) (757) (3.03) (0.28) (0.28) (0.28) (0.28) (0.28) (0.28)

Belgium 169 112 35.51 −0.03 −0.07 0.26 0.45 0.26 0.37 −87.33***
(74) (1) (2.47) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)

Belarus 7 150 12.48 −0.04 0.02 −0.1 −0.09 0.1 −0.12 −24.4**
(6) (4) (1.32) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12)

Argentina 85 386 4.41 −0.65 0.03 −0.14 −0.01 −0.01 −0.09 −77.38***
(330) (421) (2.23) (0.21) (0.21) (0.21) (0.21) (0.21) (0.21)

Ecuador 55 141 16.67 0.12 −0.04 −0.03 0.26 −0.53 0.79 −165.51**
(97) (8) (5.39) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)

Indonesia 66 252 4.06 0.05 −0.27 −0.2 −0.28 0.02 −0.04 −74.16***
(179) (142) (2.16) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

Netherlands 137 103 23.39 −0.57 −0.8 0.14 −0.01 0 0.05 −61.35***
(22) (2) (1.9) (0.18) (0.18) (0.18) (0.18) (0.18) (0.18)

UAE 6 129 19.69 −0.01 0.15 0.1 0.05 0.05 −0.05 −71.11***
(5) (2) (2.1) (0.2) (0.2) (0.2) (0.19) (0.19) (0.2)

This table uses the latest K = 100 days’ data (until 2020-06-26) to fit the Gamma model.
tandard errors are below the estimates.
ˆ is the estimated day of the peak, taking 2019-12-31 as day 0.
he number of * at the last column denotes the relative goodness of fit based on log likelihood, where *** indicates the model of the best fit among
thers.

.2. Prediction of the future

We present the estimated curves along with their 95% prediction intervals for selected countries in the graphs below.
he estimated curve in solid blue, confidence intervals in dotted blue, and data points in red. The extrapolation curve is
scaled density function as mandated by our curve models (see Figs. 1–3).
We estimate the time that it has taken for selected countries to pass from peak to trough, where trough is defined as the

stimated peak number of new cases divided by 10. Admittedly, this is not a very exacting standard, but the advantage is
hat there are several countries that have effectively satisfied this. An empirical estimator is just based on the first passage
ime

t̂TP = min
t>τmax

{
log10(yτmax ) − log10(yt ) ≥ 1

}
,

here log10(10) ≃ 1 and τmax = argmaxs log10(ys). For New Zealand, Australia, and Austria, t̂TP = 14, for South Korea
TP = 15, for China t̂TP = 19, for Norway t̂TP = 21, for Israel t̂TP = 21, while for Switzerland t̂TP = 31. These estimates are
ather rough and in each case there was some bounce back. Incidentally, looking at these successful countries’ trajectories,
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Fig. 1. Plots of cases and deaths of the best models of selected countries Part1.
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Fig. 2. Plots of cases and deaths of the best models of selected countries Part2.
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Fig. 3. Plots of cases and deaths of the best models of selected countries Part3.
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here seems to be a fairly symmetric curve around the peak, see below the case of New Zealand.

We can also estimate the passage time from the model for countries that have not yet passed the threshold by
omputing

min {t : m(τmax) − m(τmax + t) ≥ 1} ,

his is equivalent to (t −µ) ≥
√

−1/γ . For the UK, this gives around 28 days based on the latest estimates, although the
onfidence interval is rather wide.

. Model tests and robustness

.1. One step ahead prediction

he choice of K. This section illustrates the selection of the window width K . Let today (2020-06-26) be the day 0, K
anges from 14 to 100 and L is the length of the test data. Due to the missing data, we only list 27 out of top 30 countries.
e compute the one step ahead forecast m̂(1 − l; K ) of log y1−l based on the data from {−l,−l − 1, . . . ,−l − K } for

= 1, 2, . . . , L and calculate:

Q̂ (K ; L) =
1
L

L∑
1

|(log yi−l) − m̂(1 − l; K )|.

nd we show the empirical results for both daily infections and fatalities below. Although K=100 is not the best choice
or all countries with top cases, it still works well for most of them.

Table 3
One Step Ahead Prediction Loss of Cases.

Minimum Average Loss Average Loss of K = 100

Name 1a 1b 1c 1a 1b 1c

USA 6463 9480 5186 16247 14250 16755
Brazil 3263 2395 2753 6139 5737 4130
Russia 103 845 120 2440 2757 1499
India 2761 1004 2612 5348 4902 4529
UK 109 93 109 292 258 267
Peru 1553 1800 1583 1677 2968 1885
Chile 1115 949 1100 3606 1143 3840
Italy 94 67 98 139 165 140
Iran 38 100 46 1102 1086 1014
Mexico 956 547 872 1448 1072 1050
France 207 202 211 207 304 213
Pakistan 706 1012 825 4907 3081 5554
Turkey 115 64 137 679 479 717
Germany 74 50 63 210 110 246

(continued on next page)
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Table 3 (continued).
Minimum Average Loss Average Loss of K = 100

Name 1a 1b 1c 1a 1b 1c

Saudi Arabia 77 95 86 302 745 594
South Africa 346 297 371 364 3837 397
Canada 32 21 27 64 65 44
Qatar 163 160 221 330 1110 613
Colombia 917 681 875 1248 1595 1194
Sweden 797 787 798 1310 1368 1281
Egypt 361 554 420 1256 767 1310
Belgium 86 75 88 91 95 90
Belarus 196 209 203 257 1132 443
Argentina 1099 1067 1108 1680 2023 1643
Indonesia 47 62 46 155 213 155
Netherlands 6 14 6 13 14 14
UAE 40 76 43 127 633 170

This table summarizes the average loss of one step prediction for new daily cases when L = 5. And K
ranges from 14 to 100 days. The second column presents the minimum average loss of 5 days within
that range. And the corresponding results of K = 100 are provided for comparisons.

Table 4
One Step Ahead Prediction Loss of Deaths.

Minimum Average Loss Average Loss of K = 100

Name 2a 2b 2c 2a 2b 2c

USA 389 149 393 609 564 595
Brazil 48 70 58 225 89 120
Russia 16 19 20 22 60 31
India 27 26 28 57 53 43
UK 43 29 45 74 75 72
Peru 86 80 84 102 82 89
Chile 34 48 35 76 155 69
Italy 18 15 18 18 17 18
Iran 13 3 20 19 20 26
Mexico 240 268 245 344 284 288
France 8 6 8 12 9 11
Pakistan 27 28 30 47 33 50
Turkey 2 3 2 15 12 15
Germany 4 4 4 8 8 7
Saudi Arabia 2 2 2 5 12 4
South Africa 20 14 20 32 110 32
Canada 7 11 9 7 14 9
Qatar 2 1 2 2 2 2
Colombia 31 31 39 49 58 49
Sweden 13 13 14 24 25 23
Egypt 38 33 38 45 58 47
Belgium 5 5 5 5 5 5
Belarus 1 1 1 1 1 1
Argentina 9 8 9 11 13 11
Indonesia 4 3 4 4 6 4
Netherlands 1 1 1 1 1 1
UAE 0 0 0 1 1 1

This table summarizes the average loss of one step prediction for new daily deaths when L=5. And K
ranges from 14 to 100 days. The second column presents the minimum average loss of 5 days within
that range. And the corresponding results of K = 100 are provided for comparisons.

Table 5
One Step Ahead Prediction of Cases.

Predicted Cases Reported Cases t-statistics

Name 1a 1b 1c 1a 1b 1c

USA 20555 21768 19793 40949 −1.8 −0.79 −2.04
Brazil 35116 35861 40111 39483 −0.55 −0.08 −0.05
Russia 3970 10810 5149 7113 −1.13 0.21 −0.74
India 11443 12221 12610 17296 −1.38 −0.27 −1.23
UK 568 437 624 1118 −2 −1.08 −2.1

(continued on next page)
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Table 5 (continued).
Predicted Cases Reported Cases t-statistics

Name 1a 1b 1c 1a 1b 1c

Peru 2268 6038 3203 3913 −0.64 0.02 −0.38
Chile 9787 6095 10446 4648 1.69 0.06 1.85
Spain 237 474 212 400 −1.29 0.01 −1.52
Italy 171 102 164 296 −1.89 −0.05 −2.09
Iran 3973 3944 3782 2595 0.34 0.01 0.29
Mexico 4722 5363 5412 6104 −1.26 −0.16 −0.72
France 421 607 377 0 8.48 1.44 8.32
Pakistan 8678 6818 9694 2775 0.66 0.07 0.75
Turkey 631 691 610 1458 −1.41 −0.56 −1.58
Germany 329 391 282 477 −0.59 −0.07 −0.76
Saudi Arabia 3391 4314 3996 3372 −0.18 0.04 0.04
Bangladesh 3138 4618 4169 3946 −0.58 −0.01 −0.2
South Africa 8717 19777 8774 6579 0.39 0.03 0.42
Canada 194 136 223 369 −1.9 −1.24 −1.77
Qatar 844 1791 1131 1060 −0.57 0.22 −0.04
Colombia 1334 937 1390 3486 −1.3 −0.29 −1.26
Sweden 454 297 525 1566 −1.34 −0.71 −1.22
Egypt 1830 1586 2165 2989 −0.62 −0.12 −0.49
Belgium 32 32 35 109 −1.87 −0.08 −1.79
Belarus 523 1819 749 437 −0.2 0.25 0.11
Argentina 743 1275 783 2606 −1.03 −0.01 −1
Indonesia 1088 1025 1094 1178 −0.29 −0.1 −0.28
Netherlands 77 61 75 110 −0.74 −0.02 −0.78
UAE 325 967 419 430 −0.58 0.11 −0.35
τPY 1.18 −0.39 1.43

This table presents the results of one step ahead prediction of new cases for 2020-06-26 along with the
reported values and t-statistics of the prediction. All three models are applied. K = 100 and τPY is the
joint prediction test statistics of all listed countries as Pesaran and Yamagata (2012), see Appendix.

Table 6
One Step Ahead Prediction of Deaths.

Predicted Deaths Reported Deaths t-statistics

Name 2a 2b 2c 2a 2b 2c

USA 214 194 241 2437 −3.31 −1.64 −3.55
Brazil 859 1259 1032 1141 −1.08 0.1 −0.52
Russia 113 196 147 92 0.44 0.59 1.23
India 350 377 395 407 −0.55 −0.08 −0.28
UK 54 36 59 149 −1.8 −1.07 −1.84
Peru 120 183 148 175 −0.64 −0.04 −0.39
Chile 193 94 193 172 −0.09 −0.18 −0.09
Italy 24 19 25 34 −1.39 −0.04 −1.31
Iran 129 157 115 134 −0.2 0.05 −0.42
Mexico 579 691 680 718 −0.66 −0.07 −0.31
France 10 12 10 21 −1.34 −0.04 −1.36
Pakistan 134 101 142 59 1.36 0.13 1.5
Turkey 8 8 8 21 −1.68 −0.7 −1.84
Germany 3 1 3 21 −1.99 −1.15 −2.02
Saudi Arabia 54 32 52 41 0.47 −0.12 0.41
Bangladesh 51 34 55 39 0.35 −0.08 0.48
South Africa 146 355 147 87 0.62 0.03 0.64
Canada 15 14 20 20 −0.77 −0.34 −0.21
Qatar 4 4 4 2 0.83 0.02 0.71
Colombia 53 41 54 163 −2.02 −0.41 −2.04
Sweden 8 5 9 21 −1.39 −0.77 −1.25
Egypt 63 43 64 168 −1.5 −0.33 −1.49
Belgium 1 0 1 4 −1.49 −1.04 −1.48
Belarus 5 6 5 5 −0.11 0.15 0.08
Argentina 27 22 26 39 −0.84 −0.2 −0.89
Indonesia 53 48 51 47 −0.04 −0.05 −0.08
Netherlands 1 1 1 3 −1.66 −0.06 −1.64

(continued on next page)



S. Li and O. Linton / Journal of Econometrics 220 (2021) 130–157 149

7

a
w

A

w
a

Table 6 (continued).
Predicted Deaths Reported Deaths t-statistics

Name 2a 2b 2c 2a 2b 2c

UAE 1 1 1 1 −0.57 −0.07 −0.26
τPY 0.38 −0.46 0.58

This table presents the results of one step ahead prediction of new deaths for 2020-06-26 along with
the reported values and t-statistics of the prediction. All three models are applied. K = 100 and τPY is
the joint prediction test statistics of all listed countries as Pesaran and Yamagata (2012), see Appendix.

.2. Residual properties

In this section we look at the properties of the residuals from the trend fitting. The model assumptions do not exclude
utocorrelation or heteroskedasticity but there is limited scope to improve efficiency by exploiting these properties. They
ould however affect standard errors and might suggest alternative short term predictors (see Tables 5 and 6).

utocorrelation. We first estimate the autocorrelation function of {ϵ̂it , t = 1, 2, . . . , K } denoted ρ̂i(j), j = 1, 2, . . . , J for
all the available countries that have at least 100 observations, currently, n = 150 countries. We take J = 21 to allow
for long lag effects, which might be predicted for deaths by epidemiological models. We calculated the estimated mean
value of ρ̂i(j) across countries along with standard errors that take account of the cross-sectional averaging but allow for
cross sectional correlation as Linton (2020). The pattern of autocorrelation is similar in both cases and deaths for all three
models, the weak positive correlation at low lags that declines across horizon to negative autocorrelation after around
ten days, and then remains a very low level closed to zero.

Distributional properties. We next show the kernel density estimate of the pooled standardized residuals of both cases
and death of all three models, which appears not far from a Gaussian shape, at least, roughly symmetrical.

Cross-sectional correlation. We analysis cross-sectional correlation by computing the n × n pairwise correlation matrix
of time series residuals. We compare the plot of the pairwise correlation density and normal distribution. For cases, the
mean value of the pairwise correlation is very close to zero and distributed similarly to normal distribution for all three
models. However, for deaths, the mean value is slightly positive, such as 0.18 for the quadratic model (2a), 0.09 for the
quartic model (2b) and 0.13 for the Gamma model (2c).

Heteroskedasticity. We look at time-varying heteroskedasticity in the residuals, specifically we graph the time series of
mean squared residuals

∑n
i=1 ϵ̂

2
it/n. It seems that there are limited spikes for residuals of cases models while more outliers

of deaths models in the cross country variability of the error terms. However, it moves, generally speaking, in a modest
range.

We show the results of all four residual properties of the quadratic model of cases (1a) in Fig. 4 and deaths (1b) in
Fig. 5.

8. Combining case and fatality models

Total fatalities should be a fraction of the total cases reported, and fatalities should follow cases, at least individually.
For this reason we consider the following model, which imposes that the fatality curve is a delayed and shifted (because
this is the log of cases) version of the case curve. Let ydit denote deaths and ycit denote cases, where:

log
(
ydit
)

= md
i (t) + εdit ,

log
(
ycit
)

= mc
i (t) + εcit .

We suppose that for some θi < 0 and ki ≥ 0

md
i (t) = θi + mc

i (t − k), (11)

which is a special case of the model considered by Hardle and Marron (1990). This imposes restrictions across the
coefficients of the two quadratic equations. The turning point for md occurs k periods after the turning point for mc ,
that is, αd

= αc
+ θ and µd

= µc
+ k. The only equality restriction is that the γ parameter is the same across both cases

and deaths. We can test this by comparing the statistic

γ̂ d
− γ̂ c√

v̂ar(γ̂ d − γ̂ c)
(12)

ith the standard normal critical values. Regarding the inequality restrictions αd
− αc < 0 and µd

− µc > 0, these can
lso be tested separately by similar t-statistics with one-sided critical values. Specifically, we consider

µ̂c
− µ̂d√
c d

.

var(µ̂ − µ̂ )
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Fig. 4. Residual properties of quadratic model of cases.

Fig. 5. Residual properties of quadratic model of deaths.
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The tests results are presented below in two tables. The model does not fare well on either count (although the significance

mostly disappears when HAC standard errors are used)

We estimate the constrained model as described in the Appendix, the results are shown below graphically. For the

UK the results look quite plausible (see Tables 7 and 8).

Table 7
The Hypotheses Test On γ̂case = γ̂death of Top 30 Countries Until 2020-06-26 and K = 100.
countryname γ̂case γ̂death s.e(∆γ̂ ) t-stat

UAS −2.1263 −9.3089 0.731 9.826
Brazil −4.7037 −8.4341 0.334 11.169
Russia −12.7193 −9.7444 0.764 −3.894
India −5.7853 −5.638 0.478 −0.308
UK −6.4149 −8.1086 0.716 2.366
Peru −11.06 −7.9733 0.95 −3.249
Chile −2.013 −0.7313 0.888 −1.443
Spain 1.6029 −8.809 1.806 5.765
Italy −0.4951 −2.1971 0.406 4.192
Iran 1.303 3.3044 0.566 −3.536
Mexico −5.3239 −7.6995 0.567 4.19
France −0.1307 −6.2251 1.189 5.126
Pakistan −3.2801 −3.1389 1.089 −0.13
Turkey −4.7904 −7.6543 0.355 8.067
Germany 2.8744 −8.622 0.794 14.479
Saudi Arabia −5.9082 −0.8122 0.873 −5.837
Bangladesh −10.9014 −1.8296 0.833 −10.891
South Africa 0.8659 0.3374 0.988 0.535
Canada −7.3964 −13.0866 0.635 8.961
Qatar −10.7066 1.8031 0.893 −14.009
Colombia −1.4845 −1.8614 0.757 0.498
Sweden −4.3263 −8.8669 1.446 3.14
Egypt −3.6688 −0.6793 1.033 −2.894
Belgium −5.3037 −10.6704 0.828 6.482
Belarus −14.2614 −3.9488 1.462 −7.054
Argentina 0.8656 −1.0505 1.975 0.97
Ecuador −2.0516 −5.2959 1.792 1.81
Indonesia −2.7413 −1.0625 0.675 −2.487
Netherlands −1.5925 −6.9629 0.762 7.048
UAE −12.1046 −6.3816 1.561 −3.666

We calculate the ratio of expected total deaths to expected total cases (the fatality ratio) by country as

Fr = exp(αd
− αc) = exp

(
ad − ac −

(bd)2
+

(bc)2
)
.

c c
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Table 8
The Hypotheses Test On µ̂case < µ̂death of Top 30 Countries Until 2020-06-26 and K = 100.
countryname µ̂case µ̂death s.e(∆µ̂) t-stat

USA −0.389 −0.4642 0.03 2.507
Brazil 0.0396 −0.2182 0.037 6.968
Russia −0.3254 −0.2524 0.016 −4.563
India −0.0311 −0.0364 0.041 0.129
UK −0.5664 −0.5593 0.012 −0.592
Peru −0.3159 −0.2354 0.018 −4.472
Chile 0.5982 2.6875 3.871 −0.54
Spain 0.6927 −0.8921 0.443 3.577
Italy −4.3904 −1.2917 3.126 −0.991
Iran −0.7841 −0.4399 0.255 −1.35
Mexico −0.0593 −0.1186 0.03 1.977
France −12.2877 −0.7758 102.432 −0.112
Pakistan 0.272 0.1937 0.264 0.297
Turkey −0.5309 −0.5346 0.013 0.285
Germany 0.0299 −0.6219 0.201 3.243
Saudi Arabia −0.1377 1.6637 1.348 −1.336
Bangladesh −0.1499 0.5781 0.348 −2.092
South Africa −3.4868 −7.7151 16.794 0.252
Canada −0.5359 −0.4478 0.009 −9.789
Qatar −0.2855 −0.8835 0.132 4.53
Colombia 0.8555 0.5091 0.74 0.468
Sweden −0.4535 −0.5077 0.043 1.26
Egypt 0.0942 1.7521 3.007 −0.551
Belgium −0.8177 −0.642 0.054 −3.254
Belarus −0.3293 −0.273 0.031 −1.816
Argentina −2.4996 0.6446 4.894 −0.642
Ecuador −0.3769 −0.3477 0.178 −0.164
Indonesia 0.0011 0.2768 0.467 −0.59
Netherlands −1.3903 −0.7647 0.45 −1.39
UAE −0.3542 −0.4502 0.027 3.556

At the time of writing, UK has 0.136, France has 0.170, Italy has 0.132, Spain has 0.101, Germany has 0.045, Australia
as 0.052, and USA has 0.051. This may be saying more about the disparity between countries in testing rather than the
uality of treatment.
Epidemiological models often build in the effect of lagged cases on deaths, reflecting the natural causal ordering of

ases on deaths. We consider an alternative model that combines that feature with our quadratic regression. Suppose
hat the log death regression is a weighted delay of the log cases regression

md(t) =

∫
∞

0
wsmc(t − s)ds. (13)

In principle, if mc,md were both nonparametric and estimable one might be able to estimate the function w by sieve
expansion, using the methods described in inter alia (Chen, 2007) and (Chen and Christensen, 2015). We take a parametric
approach where both m functions are quadratic. This is possible provided

ad + bdt + cdt2 =

∫
∞

0
ws
(
ac + bc(t − s) + cc(t − s)2

)
ds

=

∫
∞

0
ws
(
ac + bc t + cc t2

)
ds −

∫
∞

0
wss

(
bc + 2cc t

)
ds + cc

∫
∞

0
wss2ds

= ac
∫

∞

0
wsds − bc

∫
∞

0
wssds + cc

∫
∞

0
wss2ds + t

(
bc
∫

∞

0
wsds − 2cc

∫
∞

0
wssds

)
+ t2cc

∫
∞

0
wsds.

We suppose that w is a constant ψ times the density of a normal random variable whose mean is ϑ and whose
ariance is one. This shape seems plausible since it implies a peak loading some days previous. We need the constants
j =

∫
∞

0 sjwsds. Suppose that ϕj(θ ), where θ = (ψ, ϑ) ∈ R2
; these constants are obtainable in closed form as integrals of

ormal densities, (Barr and Sherrill, 1999):∫
∞

0
wsds = ψ

∫
∞

−ϑ

φ(s)ds = ψ (1 −Φ(−ϑ)) = ψΦ(ϑ)∫
∞

wssds = ψ

∫
∞

φ(s)sds = ψE(Z |Z > −ϑ) Pr(Z > −ϑ) = ψφ(ϑ)

0 −ϑ
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∫
∞

0
wss2ds = ψ

∫
∞

−ϑ

φ(s)s2ds = ψE(Z2
|Z > −ϑ) Pr(Z > −ϑ) = ψ

1
2

∫
∞

ϑ2

1
23/2Γ (3/2)

u1/2e−u/2du

= ψ
1
2

(
1 − Fχ2(3)(ϑ

2)
)
,

where φ,Φ are the density function and c.d.f. of a standard normal random variable. This expresses the parameters of
he death curve uniquely as a function of the parameters of the case curve and the two parameters ψ, ϑ . In particular,
the location of the death peak is related to the case peak as follows

µd
=

−bd

2cd
= −

bc
∫

∞

0 wsds − 2cc
∫

∞

0 wssds

2cc
∫

∞

0 wsds
=

−bc

2cc
+

∫
∞

0 wssds∫
∞

0 wsds
=

−bc

2cc
+
φ(ϑ)
Φ(ϑ)

= µc
+ λ(ϑ).

Since the Heckman correction λ(ϑ) ≥ 0, this implies that µd
≥ µc as for the previous model. This equation allows the

determination of ϑ because the function λ(ϑ) = φ(ϑ)/Φ(ϑ) > 0 is monotonic decreasing. That is, ϑ = λ−1(µd
− µc).

hence, ψ = cd/ϕ0(ϑ)cc . It follows that the quadratic model for both cases and deaths is compatible with the posited
elation between deaths and cases.

Regarding the peak of the two curves, we have

md
max = ad −

(bd)2

4cd
= ψ

[
ϕ0mc

max + cc
(
ϕ2 −

ϕ2
1

ϕ0

)]
.

y the Cauchy–Schwarz inequality, ϕ2 −
ϕ21
ϕ0

≥ 0 so that with negative cc we have md
max ≤ ψϕ0mc

max. This model imposes
exactly one restriction like the shape invariant model but the nature of the restrictions are quite different. We plan to
investigate this model in the sequel.

9. Concluding remarks

There are many challenges in modelling the COVID data. Countries differ widely in their reporting methods and
standards, which makes the data noisy and sometimes very unreliable. Our model does not impose any restrictions across
countries for the evolution of the epidemic and we find there are very large differences across countries in all the key
parameters. Another complication is due to different interventions implemented in different countries at different times.
Actually, most European countries introduced lockdown measures within the month of March 2020 so that whatever
effects these measures have had will be fully reflected in the subsequent data. Our model allows us to estimate future
turning points of the curves without imposing much structure. It also allows the forecasting of total number of cases,
although the confidence intervals around such estimates are extremely large when proper attention is given to parameter
uncertainty.

The one day ahead forecasting record of our model has been quite good, discounting the problems arising from late
and incorrect reporting of data. The main source of forecasting error was late reporting. On the other hand, longer term
forecasting has proved more challenging. We have consistently underestimated the likely total number of cases and deaths
for the UK and US.

We have some specific findings from the empirical work that is worth commenting. First, the shapes of the curves
appear to be quite different across countries. Second, the timing of peak deaths in some countries precedes the peak
of cases, which seems to be against the epidemiological models. This may be because testing capacity has increased a
lot and treatment has improved. Third, the characteristics of endgame countries vary a lot: being a small island seems
to help, but countries as diverse as Luxembourg, China, South Korea, Israel, Switzerland have also reached the endgame
relatively quickly. There are also differences across countries in terms of the ratios of deaths to cases. Part of this is due
to how much testing is done (USA) and different death definitions (Russia), but there must be more factors at play such
as demographics, lifestyle choices and social norms.

The models we have considered impose a single peak, although when we use a rolling window analysis, a second peak
will be detected from the updated sample. We may allow for multiple peaks in a global model by taking higher order
polynomial time trends. For example, quartic polynomials allow two peaks. We may parameterize this explicitly as the
double peak model

m(t) = α − γ (t − µ1)
2 ((t − µ2)

2
+ δ

)
has twin peaks at µ1 and µ2 with the difference in peak heights given by γ δ (µ2 − µ1)

2. Using this model we have found
that South Korea and China and Portugal show signs of a second peak, although the height of this second peak is an order

of magnitude lower than the first round.
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ppendix

.1. Missing data

In all the datasources we have worked with there are sometimes clearly ‘‘erroneous’’ data, such as negative values.
ealth agencies sometimes report negative values to correct earlier mistakes, and they often do not break down the
orrections by date rather just post a single correction. For example, on 21/05/2020 the UK posted — 515 new cases,
hile on 03/07/2020 they posted — 29726. This was accompanied by the statement

We have updated the methodology of reporting positive cases, to remove duplicates within and across pillars
1 and 2, to ensure that a person who tests positive is only counted once. Methodologies between nations differ
and we will be making future revisions to align approaches as much as possible across the 4 nations. Due to this
change, and a revision of historical data in pillar 1, the cumulative total for positive cases is 30,302 lower than if
you added the daily figure to yesterday’s total. We will revise the methodology note explaining this in more detail
in due course

We take the following steps to adjust our estimation for these data issues. Suppose that at dates t1, . . . , tr , the outcome
ariable is negative for country i. We then exclude yit1 , . . . , yitr and estimate the model using the data excluding these
bservations. We then impute the missing observations by

ŷits = exp(m̂(ts))̂κ0. (14)

hen we take the original negative values and the imputed ones yits − ŷits and redistribute them to all the observations
yit , t ≤ ts} equally. Finally we reestimate the model with the full sample reflecting the level shift(s). We have also carried
ut quantile regressions instead, which provides some robustness to missrecording. The results are quite similar to the
east squares ones.

.2. Standard errors

Here, we consider standard errors for a regression function of the form m(t) = α+ γ |t − µ|
λ
+
∑6

j=1 βjDjt , where µ is
he location of the peak and λ > 1 is a known parameter that measures the type of peak, while Djt are day of the week
ummies. We let θ = (α, γ , µ, β

⊺
)
⊺
, where β = (β1, . . . , β6)

⊺
, and let θ̂ minimize

QK (θ ) =
1
K

K∑
t=1

⎛⎝yt − α − γ |t − µ|
λ
−

6∑
j=1

βjDjt

⎞⎠2

.

In fact we solve this in two steps: for given µ, (α, γ , β
⊺
)
⊺
can be found by closed form OLS estimation, we then do grid

search over µ. By standard theory for profile likelihood, this procedure is equivalent to the MLE.
The score function components are

∂QK (θ )
∂α

=
1
K

K∑
t=1

⎛⎝yt − α − γ |t − µ|
λ
−

6∑
j=1

βjDjt

⎞⎠
∂QK (θ )
∂γ

=
1
K

K∑
t=1

⎛⎝yt − α − γ |t − µ|
λ
−

6∑
j=1

βjDjt

⎞⎠ |t − µ|
λ

∂QK (θ )
∂µ

=
1
K

K∑
t=1

⎛⎝yt − α − γ |t − µ|
λ
−

6∑
j=1

βjDjt

⎞⎠ λγ |t − µ|
λ−1.

∂QK (θ )
∂β

=
1
K

K∑
t=1

⎛⎝yt − α − γ |t − µ|
λ
−

6∑
j=1

βjDjt

⎞⎠Dt ,

here Dt = (D1t , . . . ,D6t )
⊺
. We can drop the constant term λγ from the score for µ (assuming that γ ̸= 0). Define the

× 9 data matrix

X =
(

1 |ti − µ̂|
λ

|ti − µ̂|
λ−1 D1t · · · D6t

)K
i=1

M̂ = X
⊺
X/K .
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It follows that (under iid error assumptions) as K → ∞

M̂−1/2
√
K
(̂
θ − θ

)
H⇒ N(0, σ 2

ε ),

here σ 2
ε is the error variance. Standard errors are computed as

σ̂εsqrt(diag(M̂−1)),

where σ̂ 2
ε is the residual variance. We use these standard errors for the quadratic and quartic vertex models; for the log

odel we just use OLS standard errors. The Gaussian log likelihood is

−K log σ 2
ε −

1
2σ 2

ε

K∑
t=1

⎛⎝yt − α − γ |t − µ|
λ
−

6∑
j=1

βjDjt

⎞⎠2

.

o compare across different λ we can consider the likelihood ratio statistic, ℓλ − ℓ2, where

ℓλ = K log (σ̂ε(λ)) ,

hich should be approximately χ2 with one degree of freedom under the null hypothesis that the true λ = 2.

.3. Forecasting test

We discuss here our approach to obtaining prediction intervals. We have a classical linear regression with K
bservations:

yt = θ
⊺
xt + εt , t = 1, . . . , K

θ̂ = (X
⊺
X)−1X

⊺
y

V−1/2 (̂θ − θ ) H⇒ N(0, I), V = σ 2
ε (X

⊺
X)−1

yK+s|K = θ̂
⊺
xK+s.

e have

yK+s − yK+s|K = (̂θ − θ )
⊺
xK+s + εK+s ≃ N

(
0, σ 2

ε x
⊺

K+s(X
⊺
X)−1xK+s

)
+ εK+s,

where we assume that the two random variables are independent.
As K → ∞, the parameter uncertainty is small for given s, but as s → ∞, the parameter uncertainty grows without

bound (in our case since xK+s = (1, 1+ s/K , (1+ s/K )2)
⊺
). In fact the estimator of m is only consistent in the range where

s2/K → 0. Our intervals, or any intervals, are only valid over short horizons without strong additional assumptions or
Bayesian magic. In our graphs above we have ignored the contribution from estimation uncertainty, which mostly affects
long term prediction intervals, and affects them dramatically.

A simple approach is to assume normality for εK+s, in which case εK+s|K = yK+s − yK+s|K ∼ N
(
0, σ 2

ε (1 + x
⊺

K+s(X
⊺
X)−1

xK+s)). We provide a test of the vector of one step ahead predictions for n = 30 countries. We have for the vector of one
step ahead predictions

εK+1|K ∼ N
(
0, (1 + x

⊺

K+1(X
⊺
X)−1xK+1)Ωε

)
,

where Ωε is the error covariance matrix, so that

ti =
yK+1 − yK+1|K√

(1 + x⊺

K+1(X
⊺X)−1xK+1)σ̂ii

,

s approximately standard normal for each i. Since n > K , we use a version of the Pesaran and Yamagata (2012) statistic
to aggregate across countries

τPY =

∑n
i=1 t

2
i − n√

2i⊺n
(̂
Rε ⊙ R̂ε

)
in
, R̂ε = diag(Ω̂ε)−1/2Ω̂εdiag(Ω̂ε)−1/2,

which is asymptotically standard normal under the null (provided n is large and the cross-sectional dependence is weak);
the test is rejected if τPY > z1−α , where Φ(za) = a. Here, ⊙ denotes Hadamard product and Ω̂ε is the residual covariance
matrix estimate

Ω̂ε =
1
K

K∑
t=1

ε̂t ε̂
⊺
t .

These are the statistics reported in Tables 3 and 4.
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.4. Restricted model estimation

We next discuss how to estimate the restricted model of Section 5. In this case we have a pair of quadratic equations
ith an equality restriction,

log
(
yct + 1

)
= αc

+ βc t + γ c t2 + εct ,

log
(
ydt + 1

)
= αd

+ βdt + γ dt2 + εdt ,

where

E
[(

εct
εdt

) (
εct εdt

)]
= Ω.

his is a SUR with a cross-equation restriction and the optimal estimator is a GLS. The unrestricted estimator vector θ̂ =

(̂αc, β̂c, γ̂ c, α̂d, β̂d, γ̂ d)
⊺
has variance Ω⊗ (X

⊺
X)−1. We define θ = (αc, βc, αd, βd, γ )

⊺
and L the 6 × 5 matrix of zeros and

ones that picks out the right element

θ̃ =
(
L
⊺ (
Ω̂−1

⊗ (X
⊺
X)
)
L
)−1

L
⊺ (
Ω̂−1

⊗ (X
⊺
X)
)
θ̂

with asymptotic variance(
L
⊺ (
Ω−1

⊗ (X
⊺
X)
)
L
)−1

.

In our second model, the quasi likelihood can be used with one step taken from initial consistent estimators of
θ = (ac, bc, cc, ψ, ϑ)

⊺
. The quasi-likelihood is

ℓ(θ,Ω) = −
K
2
log detΩ −

1
2

K∑
t=1

(yt − mt (θ ))
⊺
Ω−1 (yt − mt (θ )) ,

here yt = (yct , y
d
t )

⊺
and mt = (mc

t ,m
d
t )

⊺
, where, with ϕ0(ϑ) = Φ(ϑ), ϕ1(ϑ) = φ(ϑ), and ϕ2(ϑ) =

1
2 (1 − Fχ2(3)(ϑ2)), we

ave

md
t = ψ

(
acϕ0(ϑ) − bcϕ1(ϑ) + ccϕ2(ϑ)

)
+ tψ

(
bcϕ0(ϑ) − 2ccϕ1(ϑ)

)
+ t2ψccϕ0(ϑ).

This is an SUR system with a nonlinear cross equation restriction. The efficient estimator should use the error covariance
matrix.

We can alternatively estimate the unrestricted model (ac, bc, cc, ad, bd, cd)
⊺
and then impose the restrictions afterwards

by minimum distance where⎛⎝ ad

bd

cd

⎞⎠ = ψ

(
ϕ0(ϑ) −ϕ1(ϑ) ϕ2(ϑ)

0 ϕ0(ϑ) −2ϕ1(ϑ)
0 0 ϕ0(ϑ)

)( ac
bc
cc

)
.

for some norm. This is similar to the case we have already studied because there are five unrestricted parameters and 6
estimable quantities.
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