Skip to main content
. 2021 Jan 8;3(1):100078. doi: 10.1016/j.opresp.2020.100078

Table 2.

Artificial intelligence applied to thoracic Ct images for diagnosis.

Author Method Subjects Task classification Results
Jin36 U-Net++ 723 covid
413 other
Covid/other S: 97.4%
SP: 92.2%
Jin37 CNN 496covid
1385 other
Covid/other S: 94.1%
SP: 95.5%
Li42 COV-Net
RESNET 50
468 covid
1551 nac
1303 other
Covid/pneumonia/other S: 90.0%
SP: 96.0%
AUC: 0.96
Chen38 U-Net++ 50 covid
55 other
Covid/other S: 100%
SP: 93.6%
A: 95.2%
Wang41 M. Inception 79covid
180 viral pneumonia
15 covid
Covid/pneumonia
Prediction (pcr -)
A: 82.5%
S: 75%
SP: 86%
A: 85.2%
Xu44 RESNet18 219 covid
224 influenza a
175normal
Covid/influenza a/normal A: 86.7%
Zheng39 U-Net+3D DEEP NETWORK 313covid
229 other
Covid/other S: 90.7%
SP: 91.1%
A: 90.8
AUC: 0.959
Shi47 V-Net
RANDOM FOREST
1658 covid
1027 pneumonia
Covid/pneumonia S: 90.7%
SP: 83.3%
AUC: 87.9%
Song43 DRE-NET
RESNET 5°
88 covid
101 pneumonia
86 normal
Covid/pneumonia/normal A: 86%
AUC: 0.95
Bai40 Efficient-Net B4 521 covid
665 pneumonia
Covid/pneumonia A: 96%
AUC: 0.95