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The main aim of this study is to present a new variable fractional-order derivatives for novel coronavirus 

(2019-nCOV) system with the variable Caputo-Fabrizio in Caputo sense. By using the fixed point theory, 

we explore the new existence and uniqueness results of the solution for the proposed 2019-nCOV system. 

The existence result is obtained with the aid of the Krasnoselskii fixed point theorem while the unique- 

ness of the solution has been investigated by utilizing the Banach fixed point theorem. Furthermore, we 

study the generalized Hyers-Ulam stability as well as the generalized Hyers-Ulam-Rassias stability and 

also discuss some more interesting results for the proposed system. 
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. Introduction 

Fractional calculus (FC) is a powerful tool discovered in 1695 

hen Leibniz investigated the derivative of arbitrary order. Many 

esearcher have been studied the application of the fractional 

erivative and fractional differential equations (FDEs). There are 

ome mathematicians firstly define the fractional derivative, such 

s Liouville, Grunwald, Letnikov, Riemann, and Caputo. Vital phys- 

cal, real-world problems phenomena are well presented by FDEs, 

amely, acoustics, viscoelasticity, electrochemistry, electromagnet- 

cs, material science. The Complex system is describing by FC due 

o its applications [1–5,23–25] . 

In the city of china Wuhan, many researchers investigate that 

 variety of critical dynamical problems exhibit fractional-order 

ehavior that may vary with time/space. This phenomenon intro- 

uced that variable-order fractional calculus (VO-FC) is a nature to 

ive an effective and more powerful mathematical framework to 

resent the complex problems. The VO fractional derivative is an 

xtension of the standard/arbitrary derivative. It is not stable for 

haracterizing phenomena, for example, when the diffusion pro- 

ess evolves in a porous medium or the external field changes with 

ime. So, the VO fractional diffusion models have been used to 
∗ Corresponding author. 
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tudy many complex physical problems ranging from science and 

ngineering fields. The applications of the VO fractional derivative 

n processing of geographical data, signature verification, viscoelas- 

icity, diffusion processes [6,7] . 

In Wuhan, where was the first time identified, the virus is 

nown as novel corona virus in short COVID-19. It has been de- 

lared an epidemic virus because of its nature. In investigations, 

he researcher found that virus has been transmitted between peo- 

les and animals. The initial symptoms of this infection are fever, 

ough, and breathing difficulties and next steps, several acute res- 

iratory syndromes, the infection can cause pneumonia, kidney 

ailure, and even death. Researchers are motivated to study the sit- 

ation and establish concllusions, and based on the current senior- 

ty of the crucial time to analyze the virus through mathematical 

odeling. Many researchers developed the mathematical models 

or the virus with different situations/conditions and found sev- 

ral models to describe the corresponding situations. The system 

f ordinary differential equations describes the developed math- 

matical model for the COVID-19. In the previous work, the au- 

hors converted this model into the system of fractional differential 

quations for more upgrade versions of the odinary order models 

or more obatin informations of the models. However, in this sce- 

ario, this virus is getting more and more attention in the current 

ra. Many researchers are focused on finding the virus’s behavior 

ith various conditions and are also interested in obtaining the 

aturation stage of the virus [8–11] . In present work, we use vari- 

https://doi.org/10.1016/j.chaos.2020.110451
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110451&domain=pdf
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ble fractional operators for more effective results getting from the 

OVID-19 proposed model. 

In [12–15] , discussed the exact and approximate solutions by 

sing different numerical methods for various types of fractional 

ifferential equations (FDEs). They also described the error and 

onvergence analysis. The adopted methods are helpful to obtain 

he analytical-approximate solution for FDEs. The existence and 

niqueness of the fractional-order solution are discussed for the 

019-nCOV models to obtain the batter results compared to ordi- 

ary order 2019-nCOV models. For finding the results, many au- 

hors had utilized the fixed point theory as a reliable tool. This 

ffirmative approach confirms the existence and uniqueness of the 

019-nCOV models with fractional order. Also, for differential equa- 

ions, the stability analysis is an important aspect. From several 

ypes of stability theory generated in the literature, Ulam-Hyers 

ype stability is one of the most used and interesting types. The 

lam-Hyers-Rassiass stability is a generalized version of the Ulam- 

yers stability. For more general work, we use the Ulam-Hyers- 

assiass stability [16–20] . Motivation from this work, we also in- 

pired to obtain existence, uniqueness, and stability using the fixed 

oint theory and the Ulam-Hyers stabilities for more generalized 

019-nCOV models such as the 2019-nCOV model involve variable 

ractional order using a non-singular derivative. Here, we adopt the 

efinition for variable factional is known as the variable Caputo- 

abrizio fractional derivative involve the non-singular kernel with 

aputo derivative. Michele Caputo and Mauro Fabrizio discuss a 

ractional derivative operator in 2015 based on the non-sigular 

ernel and exponential function to overcome the singular kernel’s 

roblems. Their fractional derivative operators does not have a sin- 

ular kernel. They have demonstrated that their derivative operator 

as suitable for the solution of complex physical problems. Due to 

on-singular kernel, the derivative provides most appropriate re- 

ults for modeling of real-world problems [21,22] . 

This discussion aims to investigate the more generalized frame- 

ork for the proposed 2019-nCOV system with the variable frac- 

ional order using non-singular kernel derivative and study an 

nalysis of the generalized 2019-nCOV system. In the analysis, we 

stablish the new results for the existence and uniqueness of a 

olution with stability analysis. Additionally, the work is to find 

ut the existence of the position solutions, maximal/minimal so- 

utions for the proposed generalized 2019-nCOV system. This work 

nvestigates more reliable and suitable model for a novel coron- 

virus in real-world problems using VO fractional operators. The 

rder of the model extended as variable fractional order in which 

e replace integer order with bounded and continuous functions, 

eplacing the different types function as the order of the model, 

hich describes several roles of this virus on our daily life. We 

nd a new reliable model that will be more accurate and useful 

o analyze the virus. It is well Known that the fractional-order is a 

articular case of variable fractional order, so the fractional-order 

019-nCOV system is also a specific case of the variable fractional 

rder (VFO) 2019-nCOV system. Our proposed VFO 2019-nCOV sys- 

em provides a more realistic/suitable situations in the current 

tage of the virus. The analysis of the proposed VFO system is also 

nteresting to identify the existence, uniqueness of the solution, 

tability analysis is also required aspect, there exist any positive 

nd maximal/minimal solutions of the proposed model. These all 

oints promote the VFO model as well as suitability on the virus 

o present the situations that happened through this virus. Before 

btaining the numerical solutions, this analysis is important to im- 

rove further works for the proposed VFO 2019-nCOV system. 

The rest of this paper is structured in the following way. 

ection 2 , we present some fundamental results about variable 

aputo-Fabrizio fractional derivative and useful theorems, lemmas. 

n Section 3 , introduces the classical model of the 2019-nCOV sys- 

em. We describe the proposed 2019-nCOV system with variable 
2 
aputo-Fabrizio fractional derivative in Section 4 . We obtain the 

ew results existence, uniqueness, stability, and some important 

heorems for the generalized variable fractional 2019-nCOV system 

n Section 5 , the manuscript is finished by concluding remarks in 

ection 6 . 

. Fundamental results 

In this section, we recall useful definitions, results related to 

he nonsingular kernel variable fractional operator, namely, vari- 

ble Caputo-Fabrizio fractional derivative involves Caputo deriva- 

ive, and some useful theorems, lemmas are needed for the study 

f the main results. 

efinition 1. (Verma and Kumar [3] , 4 ], 5 ]) The function �(θ ) is

ifferenttiable, the variable Caputo derivative of order ϑ(θ ) ∈ [0 , 1) 

s given as 

 

 

D 

ϑ(θ ) 
θ

�(θ ) = 

1 

�(1 − ϑ(θ )) 

∫ θ

0 

1 

( θ − a ) ϑ(θ ) 
� 

′ ( a ) da. (1) 

Note: The VO fractional operators (derivatives/integral) of � −
 < ϑ(θ ) ≤ � and �(θ ) is bounded in interval θ ∈ [0 , T ] . 

efinition 2. (Dua et al. [6] , Jia et al. [7] ) Let �(θ ) ∈ H 

1 ([0 , T ]) ,

nd ϑ(θ ) ∈ [0 , 1) , then the ϑ(θ ) th-order variable Caputo-Fabrizio 

erivative of �(θ ) in the Caputo sence is defined as 

F 
 

D 

ϑ(θ ) 
θ

�(θ ) = 

E (ϑ(θ )) 

1 − ϑ(θ ) 

∫ θ

0 

� 

′ ( a ) exp 

(−ϑ( θ )( θ − a ) 

( 1 − ϑ(θ )) 

)
da, (2) 

Here, H 

1 (0 , T ) is a Hilbert space. The integral (2) on right con-

erges and the function E (ϑ(θ )) is a normalizing function depend- 

ng on ϑ(θ ) such that E (0) = E (1) = 1 . 

efinition 3. (Dua et al. [6] , Jia et al. [7] ) The nonsingular kernel

ype variable fractional integral is defined by 

F 
 

J ϑ(θ ) 
θ

�(θ ) = 

(1 − ϑ(θ )) 

E ( ϑ( θ )) 
�( θ ) + 

ϑ( θ ) 

E ( ϑ( θ )) 

∫ θ

0 

�( a ) da, 0 < ϑ(θ ) ≤ 1 . 

(3) 

emma 1. (Dua et al. [6] , Jia et al. [7] ) Let �(θ ) ∈ C([0 , T ]) , then the

olution of the following variable Caputo-Fabrizio fractional differen- 

ial equation 

CF 
0 D 

ϑ(θ ) 
θ

�(θ ) = ω(θ ) , θ ∈ [0 , T ] , 0 < ϑ(θ ) ≤ 1 , 

�(0) = ω 0 , ω 0 ∈ R , 

}
(4) 

is given by 

(θ ) = ω 0 + 

(1 − ϑ(θ )) 

E (ϑ(θ )) 
ω(θ ) + 

ϑ(θ ) 

E (ϑ(θ )) 

∫ θ

0 

ω(a ) da. (5) 

heorem 1. (Verma and Kumar [3–5] ) Every contraction mapping on 

 complete metric space has a unique fixed point. 

heorem 2. (Verma and Kumar [3–5] ) Let Y be a compact metric 

pace. Let C(Y, R ) be given the sup norm metric. Then a set P ⊂ C(Y )

s compact iff P is bounded, closed and equicontinous. 

heorem 3. (Shera et al. [9] ) Let η ⊂ X be a closed, bounded and 

onvex subset of real Banach space X and let Q 1 and Q 2 be operators 

n η satisfying the following conditions 

i) Q 1 (η
′ ) + Q 2 (η

′′ ) ∈ η, ∀ η′ , η′′ ∈ η, 

ii) Q 1 is a strict contraction on η, that is, there exists a r ∈ [0 , 1)

such that | Q 1 (x 1 ) − Q 1 (x 2 ) | ≤ r| x 1 − x 2 | , ∀ x 1 , x 2 ∈ η, 

ii) Q 2 is continuous on η and Q 2 is a relatively compact subset of X. 

Then there exist at least one solution η′ ∈ η such that Q 1 (η
′ ) + 

 (η′ ) = η′ . 
2 
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3 tem (non-fractional order) 

Gao et al. [10] , Tuan et al. [11] , describe as 

 , 

 

(ω) − ξq ζ ′ 
q η2 (ω) − b q η2 (ω) , 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

(6) 

al conditions for the system (6) are given by 

η 0) = γ5 > 0 , 

ζ (0) = γ10 > 0 , 

w

 order system to variable fractional order system via variable Caputo- 

F ction, we present the proposed system (6) as variable fractional order 

s

4 d on variable Caputo-Fabrizio (CF) fractional derivative 

l order, namely, variable Caputo-Fabrizio fractional derivative (VCF-FD). 

iable CF-FD as follows: 

ω) ε(ω) , 

ξq ) ζq η2 (ω) − ξq ζ ′ 
q η2 (ω) − b q η2 (ω) , 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(7) 

a

η 0) = γ5 > 0 , 

ζ (0) = γ1 0 > 0 . 

< ϑ(ω) ≤ 1 and ω ∈ [0 , ν] . 

5 -FD 

lam stabilities, existence of positive solution, existence of maximal and 

m he following subsections: 

5

 results of the solution with the help of fixed point theory and variable 

f xpress the right-side of the system (7) , as 
. Classical mathematical system of the proposed 2019-nCOV sys

In this section we consider the 2019-nCOV system suggested in 

η′ 
1 (ω) = a q − b q η1 (ω) − c q η1 (ω)[ x (ω) + ρ
(ω)] − c εη1 (ω) ε(ω)

η′ 
2 (ω) = c q η1 (ω)[ x (ω) + ρ
(ω)] + c εη1 (ω) ε(ω) − (1 − ξq ) ζq η2

x ′ (ω) = (1 − ξq ) ζq η2 (ω) − [ αq + b q ] x (ω) , 

′ (ω) = ξq ζ ′ 

q η2 (ω) − [ α′ 
q + b q ]
(ω) , 

h 

′ (ω) = αq x (ω) + α′ 
q 
(ω) − b q h (ω) , 

ε′ (ω) = δ[ x (ω) + d
(ω) − ε(ω)] , 

Here, a q , b q , c q , ρ, c q , αq , δ, d are nonzero constants, and the initi

1 (0) = γ1 > 0 , η2 (0) = γ2 > 0 , x (0) = γ3 > 0 , 
(0) = γ4 > 0 , h (

q (0) = γ6 > 0 , ζ ′ 
q (0) = γ7 > 0 , α′ 

q (0) = γ8 > 0 , αq (0) = γ9 > 0 , ε

here 

η1 : the susceptible people. 

η2 : The symbolize exposed people. 

x : The symptomatic infected people. 


: The asymptomatic infected people. 

h : Remove people (Recovered and died people). 

a q : The birth rate. 

b q : The death rate. 

c q : The transmission rate. 

ρ: Transfer coefficient. 

ε: The reservoir (the seafood area). 
1 
ζ

: The incubation period of bat infection. 

1 
α : The infections period of bat infection. 

We generalized the 2019-nCOV system [10,11] from an integer

abrizio fractional derivative with Caputo derivative. In the next se

ystem. 

. Mathematical system of the proposed 2019-nCOV system base

In this section, we replace the integer order by variable fractiona

We consider the system (6) and describe in the form of the var

CF 
0 D 

ϑ(ω) 
ω η1 (ω) = a q − b q η1 (ω) − c q η1 (ω)[ x (ω) + ρ
(ω)] − c εη1 (

CF 
0 D 

ϑ(ω) 
ω η2 (ω) = c q η1 (ω)[ x (ω) + ρ
(ω)] + c εη1 (ω) ε(ω) − (1 −

CF 
0 D 

ϑ(ω) 
ω x (ω) = (1 − ξq ) ζq η2 (ω) − [ αq + b q ] x (ω) , 

CF 
0 D 

ϑ(ω) 
ω 
(ω) = ξq ζ ′ 

q η2 (ω) − [ α′ 
q + b q ]
(ω) , 

CF 
0 D 

ϑ(ω) 
ω h (ω) = αq x (ω) + α′ 

q 
(ω) − b q h (ω) , 
CF 
0 D 

ϑ(ω) 
ω ε(ω) = δ[ x (ω) + d
(ω) − ε(ω)] , 

nd the initial conditions are 

1 (0) = γ1 > 0 , η2 (0) = γ2 > 0 , x (0) = γ3 > 0 , 
(0) = γ4 > 0 , h (

q (0) = γ6 > 0 , ζ ′ 
q (0) = γ7 > 0 , α′ 

q (0) = γ8 > 0 , αq (0) = γ9 > 0 , ε

Where the operator CF 
0 

D 

ϑ(ω) 
ω is the variable CF-FD with order 0 

. Main results of the proposed 2019-nCOV system based on VCF

In this section, we investigate the uniqueness, existence, Hyers-U

inimal solutions and the continuation theorem are presented in t

.1. Existence and uniqueness of solution 

In the present section, we discuss the uniqueness and existence

ractional order for the proposed 2019-nCOV system (7) . Now, we e
3 
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c q η1 (ω )[ x (ω ) + ρ
(ω)] − c εη1 (ω ) ε(ω ) , 
 ρ
(ω)] + c εη1 (ω ) ε(ω ) − (1 − ξq ) ζq η2 (ω) − ξq ζ ′ 

q η2 (ω) − b q η2 (ω) , 
) − [ αq + b q ] x (ω) , 
′ 
q + b q ]
(ω) , 
ω) − b q h (ω) , 
) − ε(ω)] , 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

(8) 

b n the following form 

(9) 

w  , �0 (ω ) = (η10 , η20 , x 0 , 
0 , h 0 , ε0 ) , and 

χ

� (a )) da. (10) 

 = max ω∈ [0 ,ν] {| �| , ∀ � ∈ β} and ϑ 

∗ = min { ϑ(ω) , ω ∈ [0 , ν] } and ϑ 

∗∗ = 

m  of the variable fractional order ϑ(ω) on [0 , ν] . 

in our main results: 

t 

|

|
fine operator Q : β → β as 

Q (a, �(a )) da. (11) 

(�(ω)) = Q 1 (�(ω)) + Q 2 (�(ω)) , where 

Q (12) 

Q (13) 

T  constant B > 0 such that 

B (14) 

P

‖
) | 
′′ (a )) da 

∣∣∣
 

�1 (ω, η1 (ω) , η2 (ω ) , x (ω ) , 
(ω ) , h (ω ) , ε(ω )) = a q − b q η1 (ω) −
�2 (ω, η1 (ω) , η2 (ω ) , x (ω ) , 
(ω ) , h (ω ) , ε(ω )) = c q η1 (ω )[ x (ω ) +
�3 (ω, η1 (ω) , η2 (ω ) , x (ω ) , 
(ω ) , h (ω ) , ε(ω )) = (1 − ξq ) ζq η2 (ω
�4 (ω, η1 (ω) , η2 (ω ) , x (ω ) , 
(ω ) , h (ω ) , ε(ω )) = ξq ζ ′ 

q η2 (ω) − [ α
�5 (ω, η1 (ω) , η2 (ω ) , x (ω ) , 
(ω ) , h (ω ) , ε(ω )) = αq x (ω) + α′ 

q 
(
�6 (ω, η1 (ω) , η2 (ω ) , x (ω ) , 
(ω ) , h (ω ) , ε(ω )) = δ[ x (ω) + d
(ω

y using system (8) , the generalized system (7) can be presented i

CF 
0 D 

ϑ(ω) 
ω �(ω) = χ(ω , �(ω )) , ω ∈ [0 , ν] , 0 < ϑ(ω) ≤ 1 , 

�(0) = �0 , 

}

here the vectors �(ω) = (η1 (ω) , η2 (ω ) , x (ω ) , 
(ω ) , h (ω ) , ε(ω ))

(ω, �(ω)) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

�1 (ω, η1 (ω) , η2 (ω) , x (ω) , 
(ω) , h (ω) , ε(ω)) , 
�2 (ω, η1 (ω) , η2 (ω) , x (ω) , 
(ω) , h (ω) , ε(ω)) , 
�3 (ω, η1 (ω) , η2 (ω) , x (ω) , 
(ω) , h (ω) , ε(ω)) , 
�4 (ω, η1 (ω) , η2 (ω) , x (ω) , 
(ω) , h (ω) , ε(ω)) , 
�5 (ω, η1 (ω) , η2 (ω) , x (ω) , 
(ω) , h (ω) , ε(ω)) , 
�6 (ω, η1 (ω) , η2 (ω) , x (ω) , 
(ω) , h (ω) , ε(ω)) . 

Using Lemma 1 , the Eq. (9) , becomes 

(ω) = �0 (ω) + 

(1 − ϑ(ω)) 

E (ϑ(ω)) 
χ(ω , �(ω )) + 

ϑ(ω ) 

E (ϑ(ω )) 

∫ ω 

0 

χ(a, �

Let β = C([0 , ν]) be a Banach space with norm defined as ‖ �‖
ax ω∈ [0 ,ν] { ϑ(ω) , ω ∈ [0 , ν] } be the minimum and maximum value

To proceed further, we assume the following hypotheses to obta

[ M 1 ]: There exist constants G χ , H χ > 0 , and k ∈ [0 , 1) such tha

 χ(ω, �(ω)) | ≤ G χ | �| k + H χ . 

[ M 2 ]: There exists constants N χ > 0 , such that 

 χ(ω, �′ (ω)) − χ(ω, �′′ (ω)) | ≤ N χ | �′ (ω) − �′′ (ω) | . 
Now, we convert the system (9) into fixed point problem, we de

(�(ω)) = �0 (ω) + 

(1 − ϑ(ω)) 

E (ϑ(ω)) 
χ(ω, �(ω)) + 

ϑ(ω) 

E (ϑ(ω)) 

∫ ω 

0 

χ

Let us present two operators, from the operator (11) such that Q

 1 (�(ω)) = �0 (ω) + 

(1 − ϑ(ω)) 

E (ϑ(ω)) 
χ(ω, �(ω)) , 

 2 (�(ω)) = 

ϑ(ω) 

E (ϑ(ω)) 

∫ ω 

0 

χ(a, �(a )) da. 

heorem 4. Assume that the hypothesis [ M 2 ] hold and there exists a

 = 

[ 
(1 − ϑ 

∗) N χ

E (ϑ 

∗) 
+ 

ϑ 

∗N χν

E (ϑ 

∗) 

] 
< 1 , 

then Q has unique fixed point for the system (9) on β . 

roof. Les us consider �′ , �′′ ∈ β, then 

 Q �′ − Q �′′ ‖ ≤ ‖ Q 1 �
′ − Q 1 �

′′ ‖ + ‖ Q 2 �
′ − Q 2 �

′′ ‖ 

≤ (1 − ϑ(ω)) 

E (ϑ(ω)) 
max 

ω∈ [0 ,ν] 
| χ(ω, �′ (ω)) − χ(ω, �′′ (ω)

+ 

ϑ(ω) 

E (ϑ(ω)) 
max 

ω∈ [0 ,ν] 

∣∣∣
∫ ω 

0 

χ(a, �′ (a )) da −
∫ ω 

0 

χ(a, �

≤
[ 
(1 − ϑ(ω)) N χ

E (ϑ(ω)) 
+ 

ϑ(ω) N χω 

E (ϑ(ω)) 

] 
max 

ω∈ [0 ,ν] 
| �′ − �′′ |

≤
[ 
(1 − ϑ 

∗) N χ

E (ϑ 

∗) 
+ 

ϑ 

∗N χν

E (ϑ 

∗) 

] 
‖ �′ − �′′ ‖ 

≤ B‖ �′ − �′′ ‖ . 

Since B = 

[ 
(1 −ϑ ∗) N χ

E (ϑ ∗) 
+ 

ϑ ∗N χ ν
E (ϑ ∗) 

] 
< 1 . 
4 



P. Verma and M. Kumar Chaos, Solitons and Fractals 142 (2021) 110451 

t

u

T  

P

w

‖

s

Q

‖

 

s

‖

Q

s

5

p

s

D

a

‖  

t

t

‖

t  

E

‖
t

R  

e

(

(

L

|
P

(

�

U

|

D

b  

i

‖  

t

t

‖  

 

a

(

‖
t

R  

e

(

(

L

|
P  

g

�

| a 

] 

T

s

b

This impels that the operator Q has unique fixed point, by 

he Banach fixed point theorem. Consequently, the system (9) has 

nique solution. �

heorem 5. Assume that the hypotheses [ M 1 ]-[ M 2 ] holds and if 0 <
(1 −ϑ ∗) N χ

E (ϑ ∗) 
< 1 , then the system (9) has at least one solution. 

roof. Firstly, we present the operator Q is contraction. Let � ∈ T , 
here T = { � ∈ β : ‖ �‖ ≤ w, w > 0 } is closed convex set, then 

 Q 1 (�
′ (ω)) − Q 1 (�

′′ (ω)) ‖ 

= 

(1 − ϑ(ω)) 

E (ϑ(ω)) 
max 

ω∈ [0 ,ν] 
| χ(ω, �′ (ω))) − χ(ω, �′′ (ω)) | 

≤ (1 − ϑ 

∗) 
E (ϑ 

∗) 
N χ‖ �′ (ω) − �′′ (ω) ‖ . 

Hence Q 1 is contraction. Further to prove that the second con- 

ider operator Q 2 is compact and continuous, for any � ∈ T , then 

 2 is contraction as χ is continuous, then 

 Q 2 (�(ω)) ‖ = max 
ω∈ [0 ,ν] 

∣∣∣ ϑ(ω) 

E (ϑ(ω)) 

∫ ω 

0 

χ(a, �(a )) da 

∣∣∣
≤ | ϑ(ω) | 

| E (ϑ(ω)) | 
∫ ω 

0 

| χ(a, �(a )) | da 

≤ ϑ 

∗ν
E (ϑ 

∗) 
[ G χ | �| k + H χ ] . 

Which shows that Q 2 is bounded. Next, let ω 1 > ω 2 ∈ [0 , ν] ,

uch that 

 Q 2 (�(ω 1 )) − Q 2 (�(ω 2 )) ‖ 

= 

ϑ 

∗

E (ϑ 

∗) 
max 

ω∈ [0 ,ν] 

∣∣∣
∫ ω 1 

0 

χ(a, �(a )) da −
∫ ω 2 

0 

χ(a, �(a )) da 

∣∣∣
≤ ϑ 

∗[ G χ | �| k + H χ ] 

E (ϑ 

∗) 
| ω 1 − ω 2 | . 

This implies that ‖ Q 2 (�(ω 1 )) − Q 2 (�(ω 2 )) ‖ → 0 as ω 1 → ω 2 . 

Hence, the operator Q 2 is equicontinuous. So, by the Theorem 2 , 

 2 is compact. Thus, the corresponding system has at least one 

olution. �

.2. Stability analysis 

In this section, we present the Ulam types stabilities of the pro- 

osed system (9) . Before proceed the further process, we discuss 

ome definitions and notions as given by 

efinition 4. The proposed system (9) is Ulam-Hyers stable if for 

ny ε > 0 and let � ∈ β be any solution of the inequality 

 

CF 
0 D 

ϑ(ω) 
ω �(ω) − χ(ω , �(ω )) ‖ ≤ ε, ω ∈ [0 , ν] , (15)

here exists unique solution �′ of the system (9) with J k > 0 such 

hat 

 �(ω) − �′ (ω) ‖ ≤ J k ε, ω ∈ [0 , ν] . (16) 

Further, the system (9) will be generalized Ulam-Hyers stable if 

here exists � ∈ C(R , R ) with �(0) = 0 , for any solution � of the

q. (15) and �′ be unique solution of (9) such that 

 � − �′ ‖ ≤ �(ε) , (17) 

hen the system (9) is generalized Ulam-Hyers stable. 

emark 1. If there exists G ∈ C([0 , ν] , R ) , the � ∈ β satisfies in-

quality (15) if 

i) |G(ω) | ≤ ε, ∀ ω ∈ [0 , ν] , 

ii) CF 
0 

D 

ϑ(ω) 
ω �(ω) = χ(ω , �(ω )) + G(ω) , ∀ ω ∈ [0 , ν] . 
5 
Let us consider the corresponding system (9) as 

CF 
0 D 

ϑ(ω) 
ω �(ω) = χ(ω , �(ω )) + G(ω) , 

�(0) = �0 . 

}
(18) 

We need the following result for further analysis. 

emma 2. The following inequality hold to the problem (18) . 

 �(ω) − Q �(ω) | ≤
[ 
(1 − ϑ 

∗) 
E (ϑ 

∗) 
+ 

ϑ 

∗ν
E (ϑ 

∗) 

] 
ε. 

roof. With the help of Lemma 1 , the solution of the system 

18) is given by 

(ω) = �0 + 

CF 
0 J ϑ(ω) 

ω (χ(ω , �(ω ))) + 

CF 
0 J ϑ(ω) 

ω (G(ω)) . 

sing the operator (11) , we have 

 �(ω) − Q �(ω) | ≤
[ 
(1 − ϑ(ω)) 

E (ϑ(ω)) 
|G(ω) | + 

ϑ(ω) 

E (ϑ(ω)) 

∫ ω 

0 

|G(ω) | da 

] 

≤
[ 
(1 − ϑ 

∗) 
E (ϑ 

∗) 
+ 

ϑ 

∗ν
E (ϑ 

∗) 

] 
ε. 

�

efinition 5. The proposed system (9) is Ulam-Hyers-Rassias sta- 

le for � ∈ C([0 , ν] , R ) , if for ε > 0 and � ∈ β be any solution of

nequality 

 

CF 
0 D 

ϑ(ω) 
ω �(ω) − χ(ω , �(ω )) ‖ ≤ �(ω) ε, ω ∈ [0 , ν] , (19)

here exists unique solution �′ of the system (9) with J k > 0 such 

hat 

 �(ω) − �′ (ω) ‖ ≤ J k �(ω) ε, ω ∈ [0 , ν] . (20)

Further, for � ∈ C([0 , ν] , R ) if there exists J k, � and ε > 0 , for

ny solution � of the Eq. (19) and �′ be unique solution of 

9) such that 

 � − �′ ‖ ≤ J k, ��(ω) , ω ∈ [0 , ν] , (21) 

hen the system (9) is generalized Ulam-Hyers-Rassias stable. 

emark 2. If there exists G ∈ C([0 , ν] , R ) , the � ∈ β satisfies in-

quality (19) if 

i) |G(ω) | ≤ ε�(ω) , ∀ ω ∈ [0 , ν] , 

ii) CF 
0 

D 

ϑ(ω) 
ω �(ω) = χ(ω , �(ω )) + G(ω) , ∀ ω ∈ [0 , ν] . 

Let us consider the corresponding system (9) as 

CF 
0 D 

ϑ(ω) 
ω �(ω) = χ(ω , �(ω )) + G(ω) , 

�(0) = �0 . 

}
(22) 

We need the following result for further analysis. 

emma 3. The following inequality hold to the problem (9) . 

 �(ω) − Q �(ω) | ≤
[ 
(1 − ϑ 

∗) 
E (ϑ 

∗) 
+ 

ϑ 

∗ν
E (ϑ 

∗) 

] 
�(ω) ε. 

roof. With the help of Lemma 1 , the solution of the system (9) is

iven by 

(ω) = �0 + 

CF 
0 J ϑ(ω) 

ω (χ(ω , �(ω ))) + 

CF 
0 J ϑ(ω) 

ω (G(ω)) . 

Using the operator (11) , we have 

 �(ω) − Q �(ω) | ≤
[ 
(1 − ϑ(ω)) 

E (ϑ(ω)) 
|G(ω) | + 

ϑ(ω) 

E (ϑ(ω)) 

∫ ω 

0 

|G(ω) | d

≤
[ 
(1 − ϑ 

∗) 
E (ϑ 

∗) 
+ 

ϑ 

∗ν
E (ϑ 

∗) 

] 
�(ω) ε. 

�

heorem 6. Under the hypotheses of Lemma 2 , the solution of the 

ystem (9) is Ulam-Hyers stable and also generalized Ulam-Hyers sta- 

le if 

[ 
(1 −ϑ ∗) N χ

E (ϑ ∗) 
+ 

N χ ν
E (ϑ ∗) 

] 
≤ 1 . 
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roof. Consider � ∈ β be any solution and �′ ∈ β be unique solu- 

ion of the system (9) , then we have 

 �(ω) − �′ (ω) | = | �(ω) − Q �(ω) | + |Q �(ω) − �′ (ω) | 
≤

[ 
(1 − ϑ 

∗) 
E (ϑ 

∗) 
+ 

ϑ 

∗ν
E (ϑ 

∗) 

] 
ε

+ 

[ 
(1 − ϑ 

∗) N χ

E (ϑ 

∗) 
+ 

N χν

E (ϑ 

∗) 

] 
| �(ω) − �′ (ω) | 

≤

[ 
(1 −ϑ ∗) 
E (ϑ ∗) + 

ϑ ∗ν
E (ϑ ∗) 

] 

1 −
[ 

(1 −ϑ ∗) N χ
E (ϑ ∗) + 

N χ ν
E (ϑ ∗) 

] ε. 

Thus, the proposed model (9) is Ulam-Hyers stable as well as 

eneralized Ulam-Hyers stable. �

heorem 7. Under the hypotheses of Lemma 3 , the solution of the 

ystem (9) is Ulam-Hyers-Rassias stable and also generalized Ulam- 

yers-Rassias stable if 

[ 
(1 −ϑ ∗) N χ

E (ϑ ∗) 
+ 

N χ ν
E (ϑ ∗) 

] 
≤ 1 . 

roof. Consider � ∈ β be any solution and �′ be unique solution 

f the system (9) , then we have 

 �(ω) − �′ (ω) | = | �(ω) − Q �(ω) | + |Q �(ω) − �′ (ω) | 
≤

[ 
(1 − ϑ 

∗) 
E (ϑ 

∗) 
+ 

ϑ 

∗ν
E (ϑ 

∗) 

] 
�(ω) ε

+ 

[ 
(1 − ϑ 

∗) N χ

E (ϑ 

∗) 
+ 

N χν

E (ϑ 

∗) 

] 
| �(ω) − �′ (ω) | 

≤

[ 
(1 −ϑ ∗) 
E (ϑ ∗) + 

ϑ ∗ν
E (ϑ ∗) 

] 

1 −
[ 

(1 −ϑ ∗) N χ
E (ϑ ∗) + 

N χ ν
E (ϑ ∗) 

] �(ω) ε. 

Thus, the proposed system (9) is Ulam-Hyers-Rassias stable as 

ell as generalized Ulam-Hyers-Rassias stable. �

.3. Positive solutions theorems 

In this section, we study the existence of positive, continuous 

olution for the proposed system (9) . 

For further analysis we use following assumptions for the sys- 

em (9) . 

[ V 1 ]: The function χ(ω, �(ω)) : [0 , ν] × R 

6 → R 

6 is a continu-

us function. 

[ V 2 ]: There exist two different positive constant M 1 and M 2 

uch that M 1 ≤ χ(ω, �(ω)) ≤ M 2 . 

[ V 3 ]: � = 

(
(1 −ϑ ∗) 
E (ϑ ∗) 

+ 

ϑ ∗ν
E (ϑ ∗) 

)
. 

Let V ⊂ β be a cone define by V = { � ∈ β : �(ω) ≥ 0 , 0 ≤ ω ≤
} . The (β, V) forms an ordered Banach space. Let Q : V → V be

he operator defined as in Eq. (11) , then we have the following 

emma. 

emma 4. Let assume the hypotheses [ V 1 ]-[ V 2 ] be satisfied. Then Q is

ompletely continuous. 

roof. The operator Q is a bounded. We next to prove that Q : 

 → V is continuous. Let � ∈ V, where ‖ �‖ ≤ d. Suppose R = 

 �′ ∈ V : ‖ � − �′ ‖ ≤ g 1 } . Then ‖ �′ ‖ ≤ d + g 1 := g, ∀ �′ ∈ R . Since

is continuous on [0 , ν] × [0 , g] , then it is uniformly continuous

n [0 , ν] × [0 , g] . 

Thus, for ε > 0 , there exists γ > 0 (γ < g 1 ) such that

 χ(ω, �(ω)) − χ(ω, �′ (ω)) ‖ ≤ ε
� , for ‖ � − �′ ‖ ≤ γ , ω ∈ [0 , ν] .

f ‖ � − �′ ‖ ≤ γ then �′ ∈ R and ‖ �′ ‖ ≤ g. Let us consider 
′ ∈ R ⊂ V, ‖ �′ ‖ ≤ γ , similarly ‖ �‖ ≤ γ . Finally, we have 

Q � − Q �′ ‖ ≤ ε, hence Q is continuous. Then, Q has a fixed 

oint (see Theorem 5 ). �
6 
Then we have the following analysis. 

heorem 8. Let assume the hypotheses [ V 1 ]-[ V 2 ] hold. Then (9) has

t least one positive solution. 

roof. Let U 1 = { � ∈ β : ‖ �‖ ≤ | �0 (ω) | + M 1 �} and U 2 =
 � ∈ β : ‖ �‖ ≤ | �0 (ω) | + M 2 �} . For � ∈ V ∩ ∂U 2 , we have

 ≤ �(ω) ≤ �M 2 , ω ∈ [0 , ν] . Since χ(ω, �(ω)) ≤ M 2 , we have 

(�(ω)) = �0 (ω) + 

(1 − ϑ(ω)) 

E (ϑ(ω)) 
χ(ω, �(ω)) 

+ 

ϑ(ω) 

E (ϑ(ω)) 

∫ ω 

0 

χ(a, �(a )) da 

≤ | �0 (ω) | + 

(
(1 − ϑ 

∗) 
E (ϑ 

∗) 
+ 

ϑ 

∗ν
E (ϑ 

∗) 

)
M 2 

≤ | �0 (ω) | + �M 2 . 

Hence, this implies that ‖ Q(�(ω)) ‖ ≤ ‖ �‖ . For � ∈ V ∩ ∂U 1 ,
e obtain 0 ≤ �(ω) ≤ | �0 (ω) | + �M 1 , ω ∈ [0 , ν] . Since

(ω, �(ω)) ≥ M 1 , we have ‖ Q(�(ω)) ‖ ≥ | �0 (ω) | + �M 1 =
 �‖ . This means that the Eq. (9) has a positive solution (see

heorem 1.2 in Ibrahim and Momani [20] ). The operator Q ha a 

xed point in V ∩ ( Ū 2 �U 1 ) . Which implies that the system (9) has

 positive solution. �

heorem 9. Let χ(ω, �(ω)) : [0 , ν] × R 

6 → R 

6 is a continuous and

on-decreasing for each ω ∈ [0 , ν] . Let there exist ϕ 0 , � 0 satis-

ying CF 
0 

D 

ϑ(ω) 
ω ϕ 0 ≤ ϕ 0 , 

CF 
0 

D 

ϑ(ω) 
ω � 0 ≥ � 0 and 0 ≤ ϕ 0 ≤ � 0 ≤ ω ≤ ν. 

he system (9) has a positive solution. 

roof. Let ϕ, � ∈ V such that ϕ ≤ � , then we have 

(ϕ(ω)) = ϕ 0 (ω) + 

(1 − ϑ(ω)) 

E (ϑ(ω)) 
χ(ω, ϕ(ω)) 

+ 

ϑ(ω) 

E (ϑ(ω)) 

∫ ω 

0 

χ(a, ϕ(a )) da 

≤ � 0 (ω) + 

(1 − ϑ(ω)) 

E (ϑ(θ )) 
χ(ω, � (ω)) 

+ 

ϑ(ω) 

E (ϑ(ω)) 

∫ ω 

0 

χ(a, � (a )) da = Q(� (ω)) . 

Thus, Q(ϕ(ω)) ≤ Q(� (ω )) , ∀ ω , then there exist ϕ 0 , � 0 such

hat 0 ≤ ϕ 0 ≤ � 0 with Q(ϕ 0 (ω)) ≤ ϕ 0 (ω) , Q(� 0 (ω)) ≥ � 0 (ω) ,

rom theorem 1.3 in Ibrahim and Momani [20] . The operator Q is 

ompact and has a fixed point in ordered Banach space 〈 ϕ, � 〉 .
hus Q : 〈 ϕ 0 , � 0 〉 → 〈 ϕ 0 , � 0 〉 is compact. Q has a fixed point � ∈
 ϕ, � 〉 . Thus, the system (9) has a positive solution. �

In the following Corollaries, we assume that the func- 

ion χ(ω, �(ω)) : [0 , ν] × R 

+ × R 

+ × R 

+ × R 

+ R 

+ × R 

+ →
 

+ × R 

+ × R 

+ × R 

+ × R 

+ × R 

+ be continuous, non-decreasing 

nd have a existing limit as � → ∞ . The 2019-nCOV variable frac- 

ional oreder system (9) has a positive solution (see Theorem 9 ). 

orollary 1. Let χ(ω, �(ω)) : [0 , ν] × R 

+ × R 

+ R 

+ × R 

+ R 

+ × R 

+ →
 

+ × R 

+ × R 

+ × R 

+ × R 

+ × R 

+ be continuous and non-decreasing in 

0 , ν] . If 0 < lim �→∞ 

χ(ω, �(ω)) < ∞ , ω ∈ [0 , ν] , then the system

9) has a positive solution. 

orollary 2. Let χ(ω, �(ω)) : [0 , ν] × R 

+ × R 

+ × R 

+ × R 

+ ×
 

+ × R 

+ → R 

+ × R 

+ × R 

+ × R 

+ R 

+ × R 

+ be continuous and non- 

ecreasing in [0 , ν] . If 0 < lim ‖ �‖→∞ 

max ω∈ [0 ,ν] 
χ(ω, �(ω)) 

‖ �‖ < ∞ ,ω ∈ 

0 , ν] , then the 2019-nCOV variable fractional order system (9) has a

ositive solution. 

The following Corollaries are generalized Corollaries for the 

eneralized system (9) . 
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orollary 3. There exist constants h 1 , h 2 > 0 , a ∈ (0 , 1] such that

(ω, �(ω)) = h 1 �(ω) + h a 
2 
, then the generalized system (9) has a

ositive solution. 

orollary 4. The function Let χ(ω, �(ω)) : [0 , ν] × R 

+ × R 

+ × R 

+ ×
 

+ R 

+ × R 

+ → R 

+ × R 

+ × R 

+ × R 

+ × R 

+ × R 

+ be continuous and 

 χ(ω, �1 (ω)) − χ(ω, �2 (ω)) | ≤ α| �1 − �2 | , ∀ �1 (ω) , �2 (ω) ∈ 

 

+ such that 

[ 
(1 −ϑ ∗) N χ

E (ϑ ∗) 
+ 

ϑ ∗N χ ν
E (ϑ ∗) 

] 
< 1 , then the generalized system 

9) has a positive solution (See Theorem 4 ). 

orollary 5. Assume that there exist continuous function g 1 and g 2 
uch that 0 < g 1 (ω) ≤ χ(ω , �(ω )) ≤ g 2 (ω ) , (ω , �(ω )) ∈ [0 , ν] ×
 

+ × R 

+ × R 

+ × R 

+ × R 

+ × R 

+ , then the generalized system (9) has 

 positive solution � ∈ β . �

.4. Existence of maximal and minimal solutions 

In this subsection, we study results for maximal and minimal 

olution of the system (9) . 

efinition 6. Let M 1 be a solution of the generalized system (9) in 

0 , ν] . Then M 1 is said to be maximal solution of the Eq. (9) , if

or every �(ω) of (9) existing on [0 , ν] . The inequality �(ω) ≤
 1 (ω) , θ ∈ [0 , ν] , holds. 

efinition 7. Let M 2 be a solution of the generalized system (9) in 

0 , ν] . Then M 2 is said to be minimal solution of the Eq. (9) , if

or every �(ω) of (9) existing on [0 , ν] . The inequality �(ω) ≥
 2 (θ ) , θ ∈ [0 , ν] , holds. 

heorem 10. Let χ(ω, �(ω)) : [0 , ν] × R 

+ × R 

+ × R 

+ × R 

+ × R 

+ ×
 

+ → R 

+ × R 

+ × R 

+ × R 

+ × R 

+ × R 

+ are continuous and non- 

ecreasing function in � and there exist two constants p 1 , p 2 > 

 (p 1 < p 2 ) such that 

p 1 
�0 + �(χ(ω, �(ω))) 

< 1 < 

p 2 
�0 + �(χ(ω, �(ω)) 

. 

Thus, there exist a maximal and minimal solution the generalized 

ystem (9) on [0 , ν] . 

roof. The fractional integral equation (FIE) of the generalized sys- 

em (9) , we have 

(ω) = �0 + 

CF 
0 J ϑ(ω) 

ω (χ(ω , �(ω )) . (23) 

onsider the new FIE from the Eq. (23) is 

(ω) = Z + �0 + 

CF 
0 J ϑ(ω) 

ω (χ(ω , �(ω ))) , ω ∈ [0 , ν] , Z > 0 . (24)

Then �(ω) is given in the Eq. (24) is a solution of the general-

zed system (9) in (p 1 , p 2 ) , θ ∈ [0 , ν] , for some constants p 1 , p 2 >

 such that 

p 1 
Z + �0 + �(χ(ω, �(ω)) 

< 1 < 

p 2 
Z + �0 + �(χ(ω, �(ω)) 

. 

Now, let 0 < Z 2 < Z 1 ≤ Z. Then we have �Z 2 (0) < �Z 1 (0) .

ow, we can prove that 

Z 2 (ω) ≤ �Z 1 (ω) , ∀ ω ∈ [0 , ν] . 

Assume that it is not true. Then there exists a ν1 such that 

�Z 2 (ω 1 ) = �Z 1 (ω 1 ) and �Z 2 (ω) < �Z 1 (ω) , ∀ ω ∈ [0 , ω 1 ) . 

Since, it is given that the function χ(ω, �(ω)) is mono- 

onic non-decreasing in �, it follows that χ(ω, �Z 2 (θ )) ≤
(ω, �Z 1 (θ )) . Consequently, using the Eq. (24) , we have 

Z 2 (ω 1 ) = Z 2 + �0 + 

CF 
0 J ϑ(ω 1 ) 

ω 1 (χ(ω 1 , �Z 2 (ω 1 )) 

 Z 1 + �0 + 

CF 
0 J ϑ(ω 1 ) 

ω 1 (χ(ω 1 , �Z 1 (ω 1 )) 
 �Z 1 (ω 1 ) . 

(25) 

Which is contradiction for �Z 2 (ω 1 ) = �Z 1 (ω 1 ) . Hence the 

bove inequality �Z 2 (ω) < �Z 1 (ω) is true. This implies, there ex- 

sts a decreasing sequence Z n such that Z n → 0 as n → ∞ and
7 
im n →∞ 

�Z n (ω) exists uniformly in [0 , ν] . Let us denote the lim- 

ting value is M 1 . Clearly, by the uniform continuity of the func- 

ions χ(ω, �(ω)) : [0 , ν] × R 

+ × R 

+ × R 

+ × R 

+ × R 

+ × R 

+ → R 

+ ×
 

+ R 

+ × R 

+ × R 

+ × R 

+ . Then the equation 

Z n (ω) = Z + �0 + 

CF 
0 J ϑ(ω) 

ω (χ(ω , �Z n (ω ))) , (26) 

hich yields that M 1 is a solution of the generalized system (9) . 

o show that M 1 is maximal solution of the generalized system 

9) , let �(ω) be any solution of the generalized system (9) . Then,

e have 

(ω) < Z + �0 + 

CF 
0 J ϑ(ω) 

ω (χ(ω , �(ω )) = �Z (ω) (27) 

Here, the maximal solution is unique, it is obvious that �Z (ω) 

ends to M 1 (ω) uniformly exists in [0 , ν] as Z → 0 , which implies

hat the existence of maximal solution for the generalized system 

9) . Similarly, we can show that the minimal solution with similar 

rgument holds. �

. Conclusion 

In this work, we generalized the proposed 2019-nCOV system 

y replacing the integer-order with variable Caputo-Fabrizio frac- 

ional order in Caputo sense. We found the new existence and 

niqueness conditions of solution 2019-nCOV system with vari- 

ble Caputo-Fabrizio fractional-order via fixed point theory. Fur- 

hermore, we study the stability of the generalized 2019-nCOV sys- 

em by using Hyers-Ulam stabilities. Additionally, we investigated 

ome important results for the proposed generalized 2019-nCOV 

ystem involving variable Caputo-Fabrizio fractional order. 
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