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The occurrence of hepatocellular carcinoma (HCC) is closely related to the chronic inflammation which caused liver fibrosis and
cirrhosis, and the interaction between HCC and its microenvironment further drives tumorigenesis. However, the single-cell
resolution in vivo study is lacking, which limits our molecular understanding of tumour biology in the liver. Here, using
published single-cell sequencing technology (scRNA-seq) database, we analyzed the liver microenvironment at high resolution
in an unbiased manner and demonstrated the transcriptomic comparison between various cell populations and subpopulations
in HCC and cirrhosis tissues. We found that eight genes that are specifically expressed in the endothelial cell and stellate cell of
the HCC patients and correlated them with their survival rate, which may provide novel diagnosis and treatment targets for the
clinical application.

1. Introduction

Hepatocellular carcinoma (HCC) is the most common pri-
mary liver cancer, which seriously harms human health. In
recent years, the emerging targeted cancer therapy methods
have greatly changed the prospects of HCC treatment, but
their curative effect varies greatly among different HCC
patients [1, 2]. A detailed understanding of the microenvi-
ronment of adjacent tissues is of great reference value for bet-
ter understanding of HCC and the development of new
targeted therapies. A unique feature of HCC is that its occur-
rence and development are closely related to liver fibrosis.
More than 80% of HCC develops from fibrosis or cirrhosis
of the liver, which is different from most other tumours and
organs [3]. Fibrosis of other organs is usually not strongly
associated with cancer development, but reactive connective
tissue is formed after tumourigenesis. The unique connection
between HCC and fibrosis indicates that liver fibrosis in the
precancerous environment (PME) of the liver plays an

important role in the development of hepatocellular carci-
noma [4].

It has been known that the close interaction between
tumour cells and liver microenvironment drives tumourigen-
esis [5]. Although a large number of studies in the liver cir-
rhosis to HCC have provided in vitro evidence or animal
model for the role of cancer-associated fibroblasts (CAFs)
in promoting HCC, we still lack in vivo research evidence
[6]. In order to study the role of liver microenvironment in
the initiation of HCC, it is necessary to study the interaction
of HCC with different components of PME in a physiological
manner. Although recent studies in a variety of liver injury
models have emphasized the close interaction between
tumour cells and the liver microenvironment affected by
multiple risk factors for liver damage [7], the physiological
interaction of HCC with different components of PME is still
elusive. Recently, the emerging single-cell sequencing tech-
nology (scRNA-seq) provides a high sensitivity tool and
allows us to study low-abundance cell types in health and
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disease in vivo [8, 9]. Also, the high resolution of scRNA-seq
is changing our molecular understanding of liver function
and the tumour pathogenesis [10]. In oncology research,
molecular characterization of tumour cell populations at
the single-cell level helps to clarify the evolutionary trajectory
of cancer and the time sequence of cancer drivers, which
might provide insights into the interaction between tumour
cells and paracancerous cells for better cancer intervention
[11].

Here, we use scRNA-seq to analyze the liver microenvi-
ronment at high resolution in an unbiased manner. Our data
reveals the difference between various cell populations and
subpopulations in HCC and fibrosis and compares the spe-
cific gene expression of different cell subtypes. More impor-
tantly, we find genes that are specifically expressed in the
endothelial cell and stellate cell of the HCC patients and cor-
related them with their survival rate, which provides many
new diagnosis and treatment targets for the clinical
application.

2. Methods

2.1. Single-Cell mRNA Sequencing Data. NCBI-GEO (https://
www.ncbi.nlm.nih.gov/geo/) is a free database of gene pro-
files and next-generation sequencing, from which single-cell
RNA sequencing data of GSE136103 (health and fibrosis)
and GSE125449 (HCC) were obtained [11–13]. The two sets
of data were all based on preparation on the 10x Genomics
platform, 4 and 3 cases of noncancerous tissues from healthy
and cirrhotic patients, respectively, and 16 cases of HBV-
related HCC tissues.

2.2. Single-Cell mRNA Sequencing Data Analysis. R package
Seurat was used for data analyses. In the quality control, we
removed the UMI counts less than 500 and the doublets.
Also, cells were filtered with the percentage of mitochondrial
genes (>10%). Samples from healthy, cirrhotic, and HCC tis-
sues were normalized with sctransform method and inte-
grated with the reciprocal principal component analysis
(PCA) (https://satijalab.org/seurat/v3.1/integration.html)
[14]. The integrated dataset was further subjected to PCA
and considered for cluster analyses with a unified manifold
approximation and projection (UMAP, version 0.2.6.0) in a
resolution of 0.2.

Nonmalignant cells were extracted, and the first 10 clus-
ters were selected with UMAP analysis. We annotated the
cells based on known cell lineage-specific marker genes such
as T cells (CD2 and TRAC), B cells (CD79A and MS4A1),
plasma cells (IGHG1), endothelial cells (PLVAP, VWF,
ACKR1, and CDH5), stromal cells (COL1A2, PDPN, DCN,
and LUM), macrophages (CD14, CD163, MS4A7, and
CSF1R), and epithelial cells (KRT19, KRT18, and F2).

2.3. Single-Cell mRNA Sequencing Analysis Tool. Seurat (ver-
sion 2.3.4) was used to fuse single-cell sequencing data from
different sources, and treatments, data normalization, and
clustering were performed to find differentially expressed
genes [14]. Pseudotime analysis was performed using Mono-
cle (version 2.10.1), showing the trajectory of epithelial cells

and stromal cells in the fibrosis and HCC liver [15]. To detect
the differential expression genes (DEGs), volcano plots in R
package ggplot2 (version 3.3.2) were used.

2.4. The Survival Rate and Gene Expression Analysis. The sur-
vival rates were analyzed by a log rank analysis of 364 HCC
patients using TCGA database as described previously [16].
And the gene expression in HCC and normal liver was ana-
lyzed using TCGA and GTEx database, respectively. The sur-
vival and gene expression analyses were both performed by
using an online tool-GEPIA2 (http://gepia2.cancer-pku.cn/
#index).

3. Results

Unsupervised dimensionality reduction and hierarchical
clustering analysis were performed by UMAP, and 10 main
cell types were established, namely, TRAC+ T cells (c0),
PLVAP+ or VWF+ endothelial cells (c1, 5), COLA2+ stro-
mal cells (c2), IGHG1+ plasma cells (c3), MS4A7+ macro-
phages (c4), KRT18+ or F2+ hepatic cells (c6, 7), MS4A1+
B lymphocytes (c8), and NKG7+ NK cells (c9)
(Figure 1(a)). Each cell type has been successfully annotated
by known marker genes (Figures 1(b) and 1(c)), and these
clusters are distinctly identified in the samples of healthy,
fibrosis, and HCC patient (Figure 1(d)). As the source data
of healthy, fibrosis, and HCC samples were all derived from
10X Genomics analysis, we performed integration processing
using sctransform. Compared to standard log-normalization,
sctransform effectively removes technically driven variation
while preserving biological heterogeneity, which can easily
switch between RNA, protein, cell hashing, batch-correcte-
d/integrated, or imputed data. Comparing the samples of
healthy, fibrosis, and HCC patient (Figure 1(d)), we could
see the similarities of clustering after the sctransform integra-
tion. The clustering distance of UMAP cells is based on the
similarity of gene expression profiles. The clustering images
of liver fibrosis and hepatocellular carcinoma are close, indi-
cating that the gene expression profiles of the cells contained
in the two have a certain degree of similarity. We compared
the proportion of the classified liver cells and found that
healthy and fibrotic-derived cells contain more B cells, T
lymphocytes, macrophages, and plasma cells but contain
fewer endothelial cells and NK cells. This trend becomes
more pronounced in the hepatocellular carcinoma samples
(Figure 1(e)).

To further examine the molecular characteristics at the
individual cell level, we performed a subpopulation analysis
of endothelial cells. The UMAP map with a resolution of
0.25 showed at least 4 different subpopulations (Figure 2(a)),
and the top10 marker gene was found (Figure 2(b)). At the
same time, we compared the proportion of endothelial cell
subpopulations in the HCC with that of the healthy and liver
fibrosis patients (Figure 2(a)). CCL21+ endothelial cells (c3)
were significantly reduced in hepatocellular carcinoma. In
contrast, both PLVAP+ and VWF+ endothelial cells in the
fibrosis and HCC samples were increased compared with the
healthy cells, indicating that inflammation as well as angiogen-
esis happened in cirrhosis and malignant liver (Figure 2(c)).
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Analysis of differential gene expression in each subgroup
revealed the unique transcriptional profiles of the respective
endothelial cell subtypes that are derived from liver fibrosis
and hepatocellular carcinoma (Figure 2(d)).

In order to study the relationship between simulated liver
fibrosis and HCC origin, we first performed fusion and sub-
group analysis on all hepatocytes derived from healthy peo-
ple, patients with liver fibrosis and HCC (Figures 3(a)–
3(c)). We found that the c1 subgroup has a significant
increase in HCC. Then, using the feature of single-cell
sequencing to allow single-cell trajectory analysis, using
Monocle to perform pseudotime analysis on the c1 subpopu-
lation, we firstly merged the results of single-cell sequencing
including healthy people, patients with liver fibrosis and
HCC. According to the characteristics of the gene expression
of a single cell, it is arranged in a simulated time sequence to
show the development trajectory of the cell. The results of the
trajectory analysis suggest that HCC has great heterogeneity

(Figure 3(d)). Analysis of differential gene expression for
each subgroup (except c2) revealed the unique transcrip-
tional configuration potential of epithelial cells derived from
liver fibrosis and hepatocellular carcinoma (Figure 3(e)).

Also, we firstly performed fusion and subgroup analysis
on the macrophages and stromal cells derived from healthy
people, patients with liver fibrosis, and HCC patients
(Figures 4(a) and 4(b)). Comparing the proportion of sub-
groups, we found a consistent increase of c0 subgroup from
the heathy to the fibrosis and HCC group (Figure 4(c)).
Using the stellate cell marker—RGS5, we classified the stro-
mal cluster 0 as hepatic stellate cells (HSCs) and noticed that
compared with liver cirrhosis, the proportion of HSC in HCC
tissue was further increased (Figure 4(c)). Trajectory analysis
shows many bifurcations in HSCs development, which is
pronouncedly increased in the HCC group (Figure 4(d)).
Analysis of differential gene expression for each subgroup
revealed the unique transcriptional configuration potential
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Figure 1: Single-cell RNA-seq analysis in the liver sample from healthy, fibrosis, and HCC patient. (a) UMAP diagram describes the 10 main
cell types in the integrated liver biopsy samples. (b) Heat map annotated the different genes of the 10 main cell types. (c) Violin plots show the
expression and distribution of marker genes. (d) Single-cell data of healthy (ha), fibrosis (fa), and HCC (hcc) patients. (e) Bar graphs quantify
and compare the proportion of single-cell data of healthy (ha), fibrosis (fa), and HCC (hcc) patients.
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of stromal cells derived from liver fibrosis and hepatocellular
carcinoma (Figure 4(e)).

Based on TCGA and GTEx database, we performed the
survival rate and gene expression analysis based on the
selected integrating gene expression (Figure 5). We found 5
genes including CKS2, HSP90AB1, RPL12, S100A6, and
MIF that were associated with significantly shorter overall
survival (OS) in HCC patients with high expression com-
pared to those with low expression (Figure 5(a)). In addition,
the mRNA expression level of CKS2, HSP90AB1, RPL12, and
S100A6 was significantly higher in HCC tissues compared to
normal tissues, indicating those 4 genes might be considered
the oncogenes. In contrast, we found other 3 genes including
CCL14, CD5L, and APOC3 that were associated with signif-
icantly shorter OS in HCC patients with low expression com-
pared to those with high expression (Figure 5(b)). And the

level of CCL14 and CD5L mRNA expressions was signifi-
cantly decreased in HCC tissues, revealing CCL14 and
CD5L as the potential tumour-suppressor genes. The biolog-
ical functions of those identified genes need further investiga-
tion in order to explore the new biomarkers for HCC
diagnosis and the new potential targets for HCC therapy.

4. Discussion

The liver microenvironment related to liver cancer has
hardly been studied with single-cell resolution, which limits
our molecular understanding of liver function and disease
biology. The recent emergence of sensitive single-cell RNA
sequencing methods allows us to study cell types and their
disease pathogenesis in health and tumour-related diseases.
Using scRNA-seq, we analyzed here the transcriptome of
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Figure 2: Subcluster analysis and quantification of the liver endothelial cells. (a) UMAP diagram depicts 4 subtypes of the endothelial cells.
(b) Heat map annotated differential genes of 4 endothelial cell subtypes. (c) Bar graphs quantify and compare the proportion of endothelial
cell subtypes of healthy, fibrosis, and HCC patients. (d) Volcano plots show the DEGs between fibrosis and HCC in 4 subtypes.
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Figure 3: Subcluster analysis of the epithelial cells. (a) UMAP diagram depicts 4 subtypes of the epithelial cells. (b) Bar graphs quantify and
compare the proportion of epithelial cell subtypes of healthy (ha), fibrosis (fa), and HCC (hcc) patients. (c) Differential genes of 4 epithelial
cell subtypes. (d) Analysis of the trajectory of cluster 1 in the healthy (ha), fibrosis (fa), and HCC (hcc) state. (e) Volcano plots show the DEGs
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Figure 4: Subcluster analysis of the macrophages and the stroma cells. (a) UMAP diagram depicts the subclustering of macrophages and
stroma cells. (b) Heat map annotated the different genes of the subcluster cell types. (c) Bar graphs quantify and compare the proportion
of subclusters of healthy, fibrosis, and HCC patients. (d) Analysis of the trajectory of cluster 0 in the healthy, fibrosis, and HCC state. (e)
Volcano plots show the DEGs between fibrosis and HCC in 4 subtypes.
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Figure 5: Impact of the DEGs between fibrosis and HCC in the HCC patients. (a, b) Kaplan-Meier analysis of overall survival according to the
gene expression in HCC patients from the TCGA dataset. The p value was calculated by the log-rank test. (a) The high expression of CKS2,
HSP90AB1, RPL12, S100A6, and MIF predicts poor prognosis. Analysis of mRNA expression in HCC compared to normal liver tissue. ∗p
< 0:05. (b) The low expression of CCL14, CD5L, and APOC3 predicts poor prognosis. Analysis of mRNA expression in HCC compared
to normal liver tissue. ∗p < 0:05.
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liver cells from healthy, fibrosis, and HCC patients, at high
resolution and in an unbiased manner. Our analyses (1) show
that the cell types and their proportions in the liver develop
in order, from the healthy to the fibrotic and the malignant
liver; (2) reveal the subdivision of endothelial, epithelial,
and stromal cells and demonstrate a high heterogeneity that
are caused by tumourigenesis; and (3) determine the DEGs
in the cell clusters that are sequentially developed from the
healthy to the fibrotic and then to the malignant samples
and indicate some of the DEGs as the potential novel progno-
sis markers of survival rate.

On the whole, the process from healthy tissues to liver
fibrosis and then to HCC is a process of increasing immune
cells, especially T cells, which is related to the inflammatory
damage in liver cirrhosis and the immune response caused
by tumour tissue. On the other hand, NK cells are signifi-
cantly reduced in the HCC. It is known that liver NK cells
have special phenotypes and functions that are different
from peripheral blood and spleen NK cells which can sup-
press the tumour progression through the TRAIL pathway
[17]. The loss of NK cells accelerates the tumour progres-
sion in the HCC. Also, we observed a significant increase
in B cells and plasma cells in HCC tissues, and a large
number of tumour-related macrophages have also been
found. This result is consistent with the published single-
cell sequencing of HCC immune cells [18]. Although we
also did a subtype analysis in this study, since other
studies have already had detailed analyses, we did not con-
tinue to study here. The current discussion mainly focuses
on the subtype analysis and gene expression of nonim-
mune cells.

From liver cirrhosis to HCC, the main two types of endo-
thelial cells are continuously reduced, and this reduction is
mainly caused by tissue cirrhosis and the damage to the vas-
culature. However, from the perspective of endothelial cell
subtypes, there is a visible formation of tumour-related blood
vessels. The acceleration of tumour growth creates a hypoxic
microenvironment, which means that the formation of new
blood vessels in the tumour is a process mediated by hypoxia
stimulation and growth factors [19]. From a transcriptomic
perspective, tumour endothelial cells upregulate
angiogenesis-related genes, such as CD99, KLF10, and
ADAMTS4, while losing scar tissue-related Notch molecule
HES4 and antigen presentation molecule HLA-DRA. Vascu-
lar cells not only bring nutrition to the tumours; the interac-
tion between endothelial hepatocytes and HSCs may
contribute to the formation of HCC tumour microenviron-
ment (TME) [20].

Compared to the heathy controls, the stromal cell popu-
lation is dramatically increased in the cirrhosis and HCC
group. Focusing on the HSCs, which is the stromal cluster 0
and RGS5+ [12], we noticed that HSC proportion was further
enhanced in the HCC tissue compared to the cirrhosis. How-
ever, the trajectory study indicates a large heterogeneity in
the HSCs of the HCC tissue, suggesting a high complexity
of HSCs under HCC condition. On the other hand, the fail-
ure of characterizing the DEGs from those HSCs of HCC
shows the chaos of the tumour HSCs, which definitely
requires further studies.

In summary, we analyzed in this study the differences
between various cell populations and subpopulations in
HCC and fibrosis, in a high-resolution and unbiased manner,
and compared the specific gene expression of different cell
subtypes. More importantly, we found that eight genes are
specifically expressed in the endothelial cell and stellate cell
of the HCC patients and correlated them with their survival
rate, which might provide many new diagnostic and thera-
peutic targets for clinical applications.
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