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a b s t r a c t 

Computed tomography (CT) and X-ray are effective methods for diagnosing COVID-19. Although several 

studies have demonstrated the potential of deep learning in the automatic diagnosis of COVID-19 using 

CT and X-ray, the generalization on unseen samples needs to be improved. To tackle this problem, we 

present the contrastive multi-task convolutional neural network (CMT-CNN), which is composed of two 

tasks. The main task is to diagnose COVID-19 from other pneumonia and normal control. The auxiliary 

task is to encourage local aggregation though a contrastive loss: first, each image is transformed by a 

series of augmentations (Poisson noise, rotation, etc.). Then, the model is optimized to embed represen- 

tations of a same image similar while different images dissimilar in a latent space. In this way, CMT-CNN 

is capable of making transformation-invariant predictions and the spread-out properties of data are pre- 

served. We demonstrate that the apparently simple auxiliary task provides powerful supervisions to en- 

hance generalization. We conduct experiments on a CT dataset (4,758 samples) and an X-ray dataset 

(5,821 samples) assembled by open datasets and data collected in our hospital. Experimental results 

demonstrate that contrastive learning (as plugin module) brings solid accuracy improvement for deep 

learning models on both CT (5.49%-6.45%) and X-ray (0.96%-2.42%) without requiring additional annota- 

tions. Our codes are accessible online. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

In December 2019, the coronavirus disease (COVID-19) broke 

ut in Wuhan, China. The severe acute respiratory syndrome coro- 

avirus 2 (SARS-CoV-2) was identified as the cause of COVID-19 

nd spread rapidly to other locations of China and the world. By 

ecember 1, 2020, there were more than 63,492,196 confirmed 

ases with 1469,003 deaths worldwide. The World Health Organi- 

ation (WHO) has declared COVID-19 as a global pandemic. The 

rognosis of COVID-19 is poor. According to several studies, over 

0% of patients died when the disease have developed to the se- 

ere/critical stage [1,2] . The main causes of death include mas- 

ive alveolar damage and progressive respiratory failure [3] . More- 
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ver, the respiratory viruses SARS-CoV-2 spread amongst humans 

o transmit even in the absence of symptoms. Therefore, fast and 

ccurate screening and diagnosis of COVID-19 is of great signifi- 

ance for planning early interventions, blocking the transmission 

ath and formulating clinical schemes to improve the prognosis 

4] . 

There are two main diagnostic methods for COVID-19. The first 

s nucleic detection implemented with real-time polymerase chain 

eaction (RT-PCR) test. RT-PCR has been widely used in clinical 

iagnosis, discharge assessment and recovery follow-up. However, 

he sensitivity of RT-PCR is low from swab samples [5] , which may 

esult in substantial false negative predictions [6] . The second ap- 

roach to detect COVID-19 is chest medical imaging. Clinical stud- 

es have suggested that certain manifestations on computed to- 

ography (CT) such as multiple small patches and ground glass 

hadow are associated with COVID-19 [7] . From the perspective 

f pathology, CT can provide detailed information to facilitate a 

uantitative assessment for pulmonary changes, which may have 
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rognostic implications [8] . Despite its high sensitivity (97%) [5] , 

T is not suitable for large-scale screening due to the relatively 

igh cost. Besides, CT has high radiation dose, which is harmful 

o human body [7] . Therefore, CT can be used for accurate clin- 

cal diagnosis, whereas not recommended in clinical applications 

here repetitive data-acquisition is required (e.g., recovery assess- 

ent and follow-up analysis). X-ray is another medical imaging to 

etect COVID-19. Considering that X-ray cannot provide 3D infor- 

ation like CT, radiologists generally use X-ray as a preliminary 

creening before CT diagnosis. However, X-ray has certain advan- 

ages. The low radiation dose brings less damage to human body. 

n addition, the relatively low cost makes it suitable for less devel- 

ped countries and regions as an important method for COVID-19 

iagnosis. At present, most researches have focus on CT diagnosis 

5,7,8] , whereas X-ray diagnosis has been less investigated [3] . 

Benefited from the strong representational learning ability of 

eep learning, artificial intelligence (AI) has demonstrated impres- 

ive capability in the automatic diagnosis of COVID-19 based on 

oth CT [9–12] and X-ray [13,14] . AI has four advantages: (1) Di- 

gnose quickly especially when the medical system is overloaded. 

2) Reduce the burden of radiologists. (3) Assist undeveloped areas 

o realize accurate diagnosis. (4) Most importantly, as a new pan- 

emic, current understandings on the sensitive and specific mani- 

estations of COVID-19 lack systematic consensus. AI can automat- 

cally learn discriminative features in a data-driven manner, espe- 

ially to distinguish COVID-19 from other pneumonia [4,10,13] . De- 

pite the success of AI in both CT and X-ray diagnosis of COVID-19, 

he generalization of these models needs to be improved. 

This paper proposes CMT-CNN, a novel multi-task framework 

or the improved generalization on unseen data. Different from 

ypical multi-task models, CMT-CNN requires no additional super- 

isions from related tasks, but seeks for annotation-free perfor- 

ance improvement based on the self-supervised learning [15–17] . 

ur work is quite different from that of Doersch and Zisserman 

18] , which explored multiple self-supervised tasks in a multi-task 

ramework, whereas no main task was explicitly appointed. Fur- 

hermore, different from recent advances in self-supervised learn- 

ng who have focused on generating well-aggregated embedding 

19–21] , CMT-CNN pays more attention on fulfilling certain tasks. 

he main contributions of this paper are: 

(1) A novel CMT-CNN model that brings solid improvement in 

generalization without additional annotations. While com- 

pleting specific tasks, the model seeks to evolve into an em- 

bedding function with fine spatial aggregating properties. 

(2) We present a series of effective augmentation methods 

for CMT-CNN based on distortion, painting and perspective 

transformations. They are not used as a data-preprocessing 

trick, but to enhance the representational learning at the 

model level. More importantly, these methods are highly re- 

lated to the characteristics of CT/X-ray images, and thereby 

having good interpretability. 

(3) Experimental results on a large-scale CT dataset and an X- 

ray dataset both demonstrate that CMT-CNN has significant 

advantage over CNN for diagnosing COVID-19 from other 

pneumonia and normal controls. 

. Related works 

We first review some representative works using AI to diagno- 

is COVID-19 (both CT and X-ray). Then, from the perspective of 

ethodology, we present a literature review on some highly rele- 

ant concepts or works to our method. 

Several studies have reported various results concerning deep 

earning in CT-based diagnosis. Li et al. [9] applied ResNet-50 as 

ackbone and added a fully-connected (FC) layer with SoftMax ac- 
2 
ivation to distinguish COVID-19 from community-acquired pneu- 

onia. They considered 4356 chest CT instances, and the sensitiv- 

ty was 90% with a specificity of 96% (AUC = 0.96). However, the 

ontrol group in the training set was randomly selected in hos- 

ital records, making the model being able to distinguish COVID- 

9 from all other conditions, whereas not being able to accurately 

istinguish COVID-19 from other pneumonia. Since COVID-19 and 

ther types of pneumonia share similar imaging manifestations [8] , 

xploiting and evaluating AI models that distinguish them is nec- 

ssary. Bai et al. [22] added two FCs on backbone EfficientNet B4 to 

istinguish COVID-19 from other pneumonia. They considered 512 

OVID-19 instances and 665 non-COVID-19 instances, and achieved 

n AUC of 0.95. This work demonstrated that AI model had higher 

est accuracy (96% vs. 85%), sensitivity (95% vs. 79%), and speci- 

city (96% vs. 88%) than radiologists. The sample size they used 

as relatively small comparing with relevant researches. Zhang 

t al. [4] developed an AI model to diagnose COVID-19 and dif- 

erentiate it from other common pneumonia and normal controls. 

hey considered 4154 patients and selected 3D ResNet-18 as back- 

one and added a FC layer activated by SoftMax to conduct three- 

ategory classification. They reported 92% accuracy, 95% sensitiv- 

ty and 91% specificity for distinguishing COVID-19 from other two 

lasses (common pneumonia and normal controls), and 92% accu- 

acy for the three-category classification. Most recently, some stud- 

es have exploited more sophisticated methods to diagnose COVID- 

9. For example, Ouyang et al. [10] proposed a dual-sampling 

ttention network to diagnose COVID-19 from other pneumonia, 

here segmented lesions are used to refine the attention localiza- 

ion. Wang et al. [11] proposed a weakly-supervised framework to 

mprove the lesion localization for diagnosing COVID-19 from other 

neumonia. Kang et al. [12] incorporated multiple radiomic fea- 

ures and handcrafted features into a multi-view learning frame- 

ork to separate COVID-19 from other pneumonia. The model used 

he complementary information from multiple types of features 

nd achieved an accuracy of 94% using 2522 CT samples. Others 

ave discussed about the feasibility of CT in screening and early 

iagnosis [7] , the multi-modal diagnosis [23] and the correlation 

f CT and RT-PCR results [5,6] . 

Compared with CT, X-ray has been less studied in the automatic 

iagnosis of this pandemic. Cohen et al. [24] contributed a dataset 

ontaining 221 COVID-19 instances, 4007 instances with other 

neumonia (MERS, SARS, ARDS, etc.) and 1583 normal controls. 

postolopoulos and Mpesiana [13] considered 1427 X-ray images 

onsisted of 224 COVID-19 instances, 700 common pneumonia in- 

tances and 504 normal controls. They systematically compared 

GG-19, MobileNet, Inception, Xception and Inception ResNet v2. 

xperimental results showed VGG-19 achieved the highest three- 

ategory accuracy (93%). This work shows the potential of a low- 

ost, rapid and automatic diagnosis of the disease. Oh et al. 

25] proposed a patch-based CNN for COVID-19 diagnosis, where 

ecisions are made based on the majority voting from multiple 

atches at random locations within lungs on X-rays. The patch- 

ased methods allow for a relatively small number of training sam- 

les and trainable parameters. 

The medical imaging datasets used in the above researches are 

uch smaller than those in computer vision tasks (e.g., ImageNet ). 

o enhance the generalization ability of the diagnostic models, 

e integrate contrastive learning into CNN, and hereby propos- 

ng a multi-task learning framework: CMT-CNN. In the following, 

e review some concepts or works that are highly relevant to our 

ethod. 

Multi-task Learning (MTL). MTL improves the generalization 

y leveraging the domain-specific information contained in the 

raining signals of related tasks [26,27] . MTL typically involves 

 main task and an auxiliary task. The auxiliary task enables 

he model to learn representations that are shared or helpful for 
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he main task. Substantial studies have presented both theoretical 

28] and empirical [29,30] evidences that machine learning mod- 

ls would generalize better by sharing representations between re- 

ated tasks. The labeled data for an auxiliary task are available in a 

ypical MTL scenario. When labeled data are unavailable, pseudo- 

abels can be defined and used. For example, Ganin and Lempitsky 

31] used domain label as the pseudo-label and applied an adver- 

arial training scheme to reduce the representational differences 

etween domains. Finding an effective and pervasive approach to 

mprove the model generalizations in the absence of explicitly- 

nnotated auxiliary tasks is a challenging and interesting topic. We 

hink the self-supervised learning which develops rapidly in the 

ear past is a feasible solution. 

Self-supervised Learning (SSL) . SSL designs pretext tasks to 

ynthesize pseudo labels and then formulates it as a prediction 

ask to learn the representations [15] . For example, Gidaris et al. 

17] proposed to augment 2D images by applying rotations, and 

hen learn image features to recognize the rotations. They demon- 

trated that this task provided a powerful supervisory signal for 

emantic feature learning and significantly closed the gap between 

upervised learning and unsupervised learning. Doersch et al. 

32] proposed to learn representations by predicting context infor- 

ation of local patches. Noroozi and Favaro [33] approached SSL 

y predicting the position of randomly rearranged local patches of 

mages. Pathak et al. [34] used inpainting to learn representations. 

hen et al. [35] proposed a SSL strategy based on context restora- 

ion to exploit unlabeled medical images. They conducted classifi- 

ation on 2D ultrasound images, localization on CT images and seg- 

entation on magnetic resonance (MR) images. Experimental re- 

ults showed the semantic features learned by context restoration 

mproved the performance of machine learning models on these 

asks. 

From the perspective of whether manual annotations are 

eeded, SSL belongs to the unsupervised learning. In terms of 

he learning principle, SSL belongs to the discriminative learning. 

iscriminative approaches learn representations through objective 

unctions associated with pretext tasks, and the models are opti- 

ized in a supervised manner. SSL approaches rely on heuristics 

o design pretext tasks. In particular, we regard Instance Recogni- 

ion (IR) as one type of SSL, whose pretext task is to identify each 

nstance. The model can be parametric or non-parametric. The Ex- 

mplar CNN [36] is a parametric example. The instance discrimina- 

ion method [37] is a non-parametric example. 

Contrastive Learning. This approach learns representations by 

ontrasting sample pairs. IR is typically implemented using con- 

rastive learning. The Exemplar CNN [36] represented each instance 

s a vector and trained a network to recognize each instance. 

ampling is an important issue in contrastive learning. Wu et al. 

37] constructed a memory bank to store instance vectors, and sev- 

ral works have used in-batch samples instead of memory banks 

o conduct contrastive learning. Recently, Chen et al. proposed the 

imCLR [16] , which generated augmentation-invariant embedding 

or input images. SimCLR outperformed previous SSL and semi- 

upervised learning on ImageNet . With a linear classifier trained on 

he learned representations, SimCLR reached a matching top-1 ac- 

uracy (76.5%) to that of ResNet-50. He et al. [38] proposed the 

omentum contrast ( MoCo ) for visual representational learning. 

oCo built a large and consistent dictionary to facilitate efficient 

ontrastive learning. Experimental results show that the represen- 

ations learned by MoCo outperform their supervised pre-training 

ounterparts in detection and segmentation tasks on benchmark 

ASCAL VOC, COCO , etc. These works showed that contrastive learn- 

ng can effectively bridge the gap between unsupervised learning 

nd supervised learning. The models in contrastive learning usu- 

lly involve more parameters than their supervised counterparts. 

or example, to achieve a comparable top-1 accuracy, the parame- 
3 
ers of SimCLR are 16 times of ResNet-50. We refer to contrastive 

earning as a special case of SSL. A typical SSL method defines pre- 

ext tasks on a same instance, whereas contrastive learning defines 

asks on instance pairs. 

Recent studies have proved that SSL can improve the qual- 

ty of few-shot learning [39] , transfer learning [40] and semi- 

upervised learning [37] . However, the value of SSL in the MTL 

ramework remains undiscovered. We argue that SSL is able to 

rovide annotation-free supervisions to improve the generaliza- 

ion performance of supervised learning in a MTL scheme. MTL, 

n turn, provides clear task-specific orientations for SSL. The CMT- 

NN proposed in this paper integrates SSL as a plugin module into 

T-CNN, which can improve the diagnostic accuracy of COVID-19 

hen the data amount is not very large. 

. Methods 

Our goal is to learn a parametric model F θ (·) from a set of 

abeled images D = { ( x 1 , y 1 ) , · · · , ( x N , y N ) } , where N denotes the 

ample amount of the dataset. We hope that the representations 

enerated by F θ (·) are able to (1) facilitate the high-accuracy clas- 

ification model denoted as G ϕ (·) , and (2) exhibit good embedding 

roperties. The former can be achieved by supervised training to 

ield inductive bias. The latter improves the quality of the repre- 

entations to enhance the generalization on unseen samples, es- 

ecially when the data amount is small. Recent works have shown 

vidences that high-quality embedding can achieve good classifica- 

ion performance with limited labeled data [16,41] , or even in the 

bsence of labeled data [16,38] . We therefore propose the CMT- 

NN, a MTL solution to achieve these goals simultaneously. In the 

ollowing, we will introduce the flowchart of CMT-CNN in an in- 

uitive manner, formulate the objective function, and then explain 

he optimization procedure. 

.1. Data preparation 

We conduct CT experiment using 3D volumes, which involve 

ubstantial pixels (e.g., 512 × 512 × 300 ). To avoid overfitting, 

hey are uniformly sampled as 128 × 128 × 128 volumes to feed 

he CMT-CNN. The X-ray images are originally stored as 3-channel 

mages. We resize every X-ray image to 512 × 512 as a greyscale 

mage. For every 3D CT volume and every 2D X-ray image, we nor- 

alize the pixels to [ 0 , 1 ] using min-max scaling, and then every 

ixel is subtracted by 0.5. Therefore, the pixel values are normal- 

zed to [ −0 . 5 , 0 . 5 ] . 

.2. Contrastive multi-task convolutional neural network (CMT-CNN) 

The flowchart of the proposed framework is summarized in 

ig. 1 , which involves a main task: COVID-19 diagnosis , and an 

uxiliary task: Contrastive learning . The main task is implemented 

ith the supervised training of neural networks, like relevant stud- 

es have done [4,9,10,22] . The flexible SoftMax classification can 

e adopted to the binary classification (COVID-19 and other con- 

itions), the ternary classification (COVID-19, other pneumonia and 

ormal control) or any other tasks. 

The auxiliary task endows the model with the ability of making 

ransformation-invariant predictions. Inspired by several studies in 

SL [16,21,42] , we adopt a series of data-augmentation methods as 

ransformations. Then, contrastive learning is conducted based on 

he SoftMax embedding [21] to endow the model with fine spatial 

ggregation properties: (1) augmentations of a same instance are 

rouped together, and (2) augmentations of different instances are 

cattered across the embedding space. 
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Fig. 1. Flowchart of the proposed Contrastive Multi-task Convolutional Neural Network (CMT-CNN). The framework allows various choices of medical images. We opt for 

simplicity and adopt X-rays and two types of transformations for illustration. Images sampled in a training batch are transformed and fed into the feature extraction network 

(FEN) denoted as F θ (·) . On the top of FEN, contrastive learning is conducted to attract features belonging to a same instance closer, whereas features belonging to different 

instances are separated. The features are then fed into a FC layer activated by SoftMax denoted as G ϕ (·) for COVID-19 diagnosis. Note that the test images do not need to be 

transformed, and the original images are directly fed into the model. 

Fig. 2. Illustrations of the transformations applied to X-ray images. The distortion methods, painting methods and perspective methods are highlighted in green, blue, and 

red, respectively. By making the representations of different transformations performed on a same image similar in a latent space, the model learns semantic features with 

transformation-invariant characteristics. The distortion methods change pixel values on a micro scale, making the model pay attention to macro features including the global 

geometry, lesion spatial layout, shape and texture . The painting methods lead to context-awareness by randomly sheltering part of the image, which encourages the model 

to learn the lesion spatial layout and local continuities . The perspective methods encourage the model to learn the location, shape and appearance information. These are 

important information for the diagnosis of COVID-19 and many other diseases using medical images. For CT, the transformations are applied to each slice. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.2.1. Transformations applied to images 

The transformations used in relevant literatures are quite dif- 

erent. Giving full consideration to the characteristics of CT/X-ray 

iagnosis of pneumonia, we define three categories of transforma- 

ions, and new transformations can be easily added to our frame- 

ork. Fig. 2 visualizes the applied transformations. We randomly 

ick out a COVID-19 X-ray for illustration. 

(1) Distortion methods. These methods change the value of 

pixels on the image. Because the pixel values at the micro 
4 
level have changed, the model can pay more attentions to 

macro features such as shape and texture . We believe that 

this characteristic is beneficial to the diagnosis of COVID-19. 

We adopt three distortion methods. The first is Hounsfield 

transformation , which was recently proposed by Zhou et al. 

[42] to provide strong pixel-wise supervision. Restoring im- 

ages distorted by the Hounsfield transformation can focus 

the model on learning lesion appearance in terms of shape 

and intensity distribution . We use the Bézier curve, a smooth 
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and monotonous function to assign every pixel a value. 

The second is local pixel shuffling . For a given image, this 

method randomly samples some windows, and then shuffles 

the order of the pixels within the window. Apparently, the 

pixel values have not changed, but the relative positions be- 

tween the pixels have changed. Zhou et al. [42] have demon- 

strated that to recover from local pixel shuffling, the model 

must memorize the global geometry, lesion spatial layout, lo- 

cal boundaries and texture , which encourage the model to 

learn the shapes and boundaries of disease-related lesions as 

well as the relative layout of different parts of them. To avoid 

changing the global content of the image, the window size 

should be smaller than the receptive field of the model. The 

third is Poisson noise. We propose the Poisson noise as a 

new training scheme for SSL. CT and X-ray images are based 

on X-ray. Physicists and radiologists have pointed out that 

the quantum noise of the X-ray imaging obeys the Poisson 

distribution [43] rather than the widely-used Gaussian noise 

in computer vision tasks [16] . Different from the Hounsfield 

transformation, which computes the values of every pixel 

based on its context pixels, the Poisson noise applies ran- 

dom noise to CT and X-ray images to improve the robustness 

to random noise, aside from the same benefits brought by 

Hounsfield transformation. The first row of Fig. 2 gives an 

example of how the distortion methods change an image. 

(2) Painting methods. These methods block part of the im- 

age randomly using random windows. As part of the im- 

age is lost, the model has to seek for complementary in- 

formation in other pixels across the image. This characteris- 

tic will lead to context-awareness . Different from the context 

encoder [34] conducting in-painting at the central region 

of images, we adopt both in-painting and out-painting , 

which are suitable for SSL in medical image analysis. As 

for in-painting, the pixels inside the window are replaced 

by a constant, and the pixels outside the window are pre- 

served. This characteristic allows the model to learn lo- 

cal continuities of lesions via interpolating [42] . As for out- 

painting, the pixels in the window are preserved, and the 

pixels outside the window are replaced by a constant. This 

characteristic compels the model to learn global geometry 

and lesion layout via extrapolating [42] . The in-painting and 

out-painting operations are complementary to each other. 

COVID-19 often manifests as multiple pathological changes 

on CT and X-ray images, and the painting operations allow 

the model to make context-aware predictions. We illustrate 

the effect of the painting methods at the second row of 

Fig. 2 . 

(3) Perspective methods. These methods view the same image 

from different geometric perspectives, and then compel the 

model to recognize the semantic concept in them without 

difference. We adopt two perspective methods. The first is 

rotation , and the second is flip . Inspired by several recent 

studies in SSL [16,17] , we rotate the image according to an 

angle set { 90 ◦, 180 ◦, 270 ◦} . Different form the rotation pre- 

diction [17] which decodes the rotation at the output of the 

model via a classification task, we focus on making the ro- 

tated images with exact semantic information share similar 

representations. We argue that in order a model to be able 

to generate rotation-invariant representations it will require 

to understand the semantic concepts of objects (lesions) in 

the image, including the location , the shape , the appearance , 

and in particular, the type of the lesions. Based on similar 

motivations, we introduce the flip operation. The second row 

of Fig. 2 depicts how the perspective methods transform an 
image. t

p

5 
.2.2. Contrastive learning 

Contrastive learning is the auxiliary task of the CMT-CNN. Fig. 3 

hows its effect in the representational learning. Numerous studies 

ave demonstrated that well-optimized embedding through rep- 

esentational learning can provide high-quality representations for 

ownstream tasks [15,16,38] . Motivated by this, we introduce con- 

rastive learning as the auxiliary task to enhance the embedding 

uality so as to improve the model generalization. Note that the 

eature extractor F θ (·) can be seen as an embedding function, 

hich is trained based on self-supervisions. The self-supervisions 

e use are the instance labels, i.e., the network can recognize ev- 

ry instance in a transformation-invariant manner and the distance 

etween paired instances is encouraged. 

For a clear description, we first introduce the algorithm using 

wo images and two transformations (see Fig. 1 ). Let x ∈ R m ×n be 

 CT/X-ray image, where m and n are rows and columns of the 

mage, respectively. The image is transformed by T 1 (·) and T 2 (·) , 
espectively. Then, T 1 (x ) and T 2 (x ) are fed into the feature extrac- 

or F θ (·) , which can be arbitrary CNN structures. After substan- 

ial layers of convolution and pooling, the augmented images are 

rojected to a latent space, where vectors are defined as r ∈ R d 

 d is the dimensionality of the latent space). We denote F θ ( T 1 (x ) ) 

s r 1 , and F θ ( T 1 (x ) ) as r 2 . Similarly, we obtain the representations

f another image x ′ , i.e., r 1 
′ and r 2 

′ . We adopt the cosine distance 

im ( u, v ) = u T v / ‖ u ‖‖ v ‖ to measure the distance between any two

ectors in the latent space. Contrastive learning can be seen as an 

nformation retrieval task. Assuming that r 1 is fixed, we use r 2 as a 

uery to search from a dictionary { r 1 , r 1 ′ , r 2 ′ } , where r 1 is the cor- 

ect retrieval. Conversely, the correct retrieval for r 1 is r 2 . 

Now we present the contrastive learning scheme within a train- 

ng batch consisting of N randomly-sampled images from the train- 

ng set. We apply two transformations to the training batch, and 

 N data points are thus obtained. Let { r i , r j } be a positive pair, i.e., 

hey are representations of two views of a same image. When r i is 

xed, the loss function can be written as 

 i, j = − log 
exp 

(
sim 

(
r i , r j 

)
/τ

)
∑ 2 N 

k =1 I ( k, i ) exp ( sim ( r i , r k ) /τ ) 
, (1) 

here τ is a temperature parameter controlling the concentra- 

ion level of the sample distribution. Several studies have demon- 

trated that an appropriate τ can help learn from hard negatives 

16,21,44] . The value of τ is generally small (e.g., 0.1). The indica- 

or function I( k, i ) is defined as 

 ( k, i ) = 

{
1 , k � = i 
0 , k = i 

. (2) 

The loss function in Eq. (1) have been used in several works 

37] , and was termed the normalized temperature-scaled cross en- 

ropy ( NT-Xent ), which has shown significant advantage over NT- 

ogistic and Margin Triplet in contrastive learning [16] . The NT- 

ent loss can guide the model to achieve good embedding results 

y learning transformation-invariant and spread-out features. Con- 

idering that both the logarithmic function and the exponential 

unction are monotonically increasing, minimizing Eq. (1) requires 

aximizing sim ( r i , r j ) and minimizing sim ( r i , r k ) , k � = i . Note that

is l 2 normalized. Maximizing sim ( r i , r j ) means increasing the co- 

ine similarity between r i and r j , and thereby drawing them closer 

n the latent space. This will result in transformation-invariance 

ince { r i , r j } is a positive pair. Meanwhile, minimizing sim ( r i , r k ) 

eans all the other vectors are separated from r i . Since the loss 

unction will be computed across a training batch, the representa- 

ions of different samples are separated from each other. 

There are two notable issues about the NT-Xent. First, nega- 

ive examples are not explicitly assigned, but rather, aside from the 

ositive pair, the other 2( N − 1 ) examples are treated as negative 
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Fig. 3. Illustration of the effect of contrastive learning. We use different colors to distinguish different samples. Each image is transformed by a series of augmentation 

operations, and the feature extractor projects the transformed images to the latent embedding space. Contrastive learning is used to optimize the model for better spatial 

aggregating properties: representations belonging to a same image are concentrated together to formulate semantic clusters, whereas representations belonging to different 

images are scattered across the latent embedding space. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

e

i

l

L

w

f

θ

3

f

r  

a  

i  

w

t

l

D

w  

a

w

L

c(
3

L
w

t

t⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w

s

b

i

l

p

o

3

e

s

A

c

C

c

fi

a

o

e

w

d

4

d

o

C

w

n

A

p

n

m

n

t

h

b

t

p

1 http://ncov-ai.big.ac.cn/download?lang=en . 
xamples. Second, both l i, j and l j,i will be computed across all pos- 

tive pairs to yield a final loss for a training batch. Therefore, the 

oss function on a training batch is defined as 

 cst = 

1 

2 N 

N ∑ 

k =1 

(
l 2 k −1 , 2 k + l 2 k, 2 k −1 

)
, (3) 

here l 2 k −1 , 2 k is typically not equal with l 2 k, 2 k −1 . We are seeking 

or parameter θ for F θ (·) according to 

˜ = arg min 

θ
L cst . (4) 

.2.3. COVID-19 diagnosis 

Diagnosing COVID-19 is the main task of CMT-CNN, which is 

ormulated as a binary or ternary classification task. The latent 

epresentation of an image sample x ∈ R m ×n is r = F ( T ( x ) ) ∈ R d ,

nd ˜ y = G (r) ∈ R is the predicted label. Our goal is to make ˜ y sim-

lar to y , which is the true label of the sample. In a training batch,

e use the Kullback-Leibler (K-L) divergence to measure the dis- 

ance between the true label distribution P (y ) and the predicted 

abel distribution P ( ̃  y ) : 

 KL ( P ( y ) ‖ P ( ̃  y ) ) = −H ( P ( y ) ) + 

[ 

−
N ∑ 

k =1 

P 
(
y k 

)
log 

(
P 
(

˜ y k 
))] 

, (5) 

here the first term is the (negative) entropy of P (y ) , a constant in

 training batch. The second term is the cross entropy loss, which 

e denote as 

 cls = − 1 

N 

N ∑ 

k =1 

P 
(
y k 

)
log 

(
P 
(

˜ y k 
))

(6) 

We are seeking for parameters θ and ϕ for F θ (·) and G ϕ (·) ac- 

ording to 

˜ θ, ˜ ϕ 

)
= arg min 

θ,ϕ 
L cls . (7) 

.3. Loss function and optimization 

We write the overall loss function of CMT-CNN as 

 = L cls + λL cst , (8) 

here λ ∈ [ 0 , 1 ] balances the main task and the auxiliary task. In 

he optimization process, we use the following method to update 

he model parameters: 
 

 

 

 

 

 

 

 

 

θ ← θ − α

(
∂ L cls 

∂θ
+ λ

∂ L cst 

∂θ

)

ϕ ← ϕ − α

(
∂ L cls 

∂ϕ 

) , (9) 
6 
here α is the learning rate. Note that the update procedure 

hown in (9) is applied on training batches with N instances. Large 

atchsize tends to smooth the training curves, and existing stud- 

es have demonstrated large batchsize is beneficial to contrastive 

earning such as SimCLR [16] . In our training scheme, L cls is ap- 

lied to optimize both F θ (·) and G ϕ (·) , whereas L cst is applied to 

ptimize F θ (·) only. 

.4. Evaluation metrics 

We regard the performance on the test data as the proxy to 

valuate the generalization ability of CMT-CNN. For the binary clas- 

ification, the performance is measured under four metrics: (1) 

ccuracy measuring by what percentage the test instances are 

orrectly classified. It has been used in many works concerning 

OVID-19 diagnosis [4,9,13] . (2) Sensitivity measuring by what per- 

entage the COVID-19 instances are correctly identified. (3) Speci- 

city measuring by what percentage the non-COVID-19 instances 

re correctly excluded. (4) AUC depicting the area of the receiver 

perating characteristic curve (ROC). AUC comprehensively consid- 

rs the sensitivity and the specificity. For the ternary classification, 

e use the accuracy as the metric, like several recent works have 

one [4,13] . 

. Experiments and results 

We evaluate the method on a CT dataset [4] and an X-ray 

ataset [13] for both the binary and ternary classifications. 

We use the CC 

–CCII 1 dataset to validate the CMT-CNN. To 

ur knowledge, it is currently the largest public dataset for 

T-based COVID-19 diagnosis. There are totally 4356 CT scans, 

hich encompass 1578 COVID-19 scans, 1614 common pneumo- 

ia scans, and 1164 normal control scans from 2778 peoples. 

mong these, COVID-19 diagnosis is made by confirmed RT-PCR 

ositive. The common pneumonia includes viral pneumonia (ade- 

oviral, influenza and parainfluenza pneumonia), bacterial pneu- 

onia and mycoplasma pneumonia. All of the common pneumo- 

ias are diagnosed based on standard clinical, radiological and cul- 

ure/molecular assay results. In addition to the CC 

–CCII dataset, our 

ospital has 402 CT scans from 108 diagnosed patients confirmed 

y RT-PCR test, which are added to the COVID-19 class. 

The X-ray dataset contains three subsets of X-ray images of pa- 

ients which are positive of COVID-19 or other viral and bacterial 

neumonia plus X-ray images of normal controls. The COVID-19 

http://ncov-ai.big.ac.cn/download?lang=en
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Table 1 

The mean classification performance (%) of CMT-CNN on CT. 

CNN Model Binary Cls Ternary Cls 

Accuracy Sensitivity Specificity AUC Accuracy 

VGG-19 86.45 83.22 81.22 82.76 84.56 

ResNet-50 91.66 90.44 89.16 84.18 89.75 

EfficientNet 93.46 + 

∗ 90.57 + 90.84 + 89.22 + 

∗ 91.45 + 

∗

Table 2 

The mean classification performance (%) of CMT-CNN on X-ray. 

CNN Model Binary Cls Ternary Cls 

Accuracy Sensitivity Specificity AUC Accuracy 

VGG-19 93.42 89.91 89.13 87.15 91.34 

ResNet-50 95.66 90.85 90.98 89.74 92.52 

EfficientNet 97.23 + 

∗ 92.97 + 

∗ 91.91 + 92.13 + 

∗ 93.49 + 

λ  
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nstances are from three sources. The first is contributed by Co- 

en et al., 2 and the second is from a Kaggle competition. 3 The 

hird is from our hospital. 4 There are 231 COVID-19 instances with 

onfirmed RT-PCR diagnosis in total. The pneumonia (MERS, SARS, 

RDS, etc.) and normal control instances are from one public re- 

ource, which can be accessed by searching for the ‘labeled optical 

oherence tomography (OCT) and chest X-ray images for classifica- 

ion’ on the Mendeley data website. 5 There are 4007 instances for 

neumonia, and 1583 instances for normal controls, respectively. 

.1. Model implementation details 

MT-CNN embraces any kinds of CNNs without constriction. To 

emonstrate the advantages of contrastive learning in improving 

he generalization ability of the model, we explore the following 

hree CNNs, which are the most commonly-used classical mod- 

ls, or the latest and most powerful model in computer vision 

asks. Note that all these three CNNs have been applied to diag- 

ose COVID-19 under single-task schemes [9,13,22] . 

(1) VGG-19. This CNN won the localization and classification on 

ILSVRC 2014 with an architecture like the AlexNet. VGG-19 

has 16 convolution layers using 3 × 3 kernel with stride 1 for 

feature extraction followed by three FC layers to fulfill tasks. 

Note that five 3 × 3 max-polling kernels are inserted in the 

sequential convolutions. VGG-19 has been used for analyzing 

X-ray images for COVID-19 diagnosis [13] . We use the output 

of the first FC layer (4096-D) as the latent representation of 

a given image. 

(2) ResNet-50. This CNN won the classification on ILSVRC 2015. 

Since then, it has been widely applied as backbone for com- 

puter vision tasks including medical image analysis. ResNet- 

50 introduces shortcut connections to combat the problem 

of gradient-vanishing in deep structures. ResNet-50 has been 

used for the automatic diagnosis of COVID-19 based on both 

X-ray [13] and CT [9] . For each CT/X-Ray image, we adopt 

the output of the last max-pooling layer (4096-D) as the la- 

tent representation. 

(3) EfficientNet. This CNN was proposed in 2019 and achieved 

state-of-the-art top-1 accuracy on ImageNet, and the over- 

all performance surpassed those of the ResNet-101, NASNet- 

A, GPipe, etc. in both training speed and accuracy. Efficient- 

Net B4 is adjusted in terms of model width, model depth 

and image resolution based on EfficientNet B0 obtained by 

network architecture search. EfficientNet B4 has been used 

in a recent research for the diagnosis of COVID-19 [22] and 

therefore we adopt this version. We use the output of the 

first FC layer (4096-D) as the latent representation of a given 

image. 

The models are trained from scratch using PyTorch with Adam 

ptimizer with a learning rate of 1e-3. Large batchsize (e.g., 2048, 

096) seems to be necessary in SSL for providing reliable gradi- 

nts [45] . However, this will require a large-scale memory and 

igh hardware requirements such as multiple TPU training. In our 

xperiment, CMT-CNN considers supervisions from the disease la- 

els, which allows for small batchsize for SSL during training. We 

nd that the CMT-CNN works well with small batchsize, and as- 

ign the batchsize to 8 and 64 for CT and X-ray, respectively. We 

dopt the suggested setting in the literature [16] and set τ = 0 . 1 .

he optimal value of λ is determined by the validation accuracies. 

e search for λ ∈ [ 0 , 1 ] with a step of 0.25, and finally determine
2 https://github.com/ieee8023/covid-chestxray-dataset . 
3 https://www.kaggle.com/andrewmvd/convid19- x- rays . 
4 https://github.com/JPLi1109/CMT- CNN- for- COVID- 19- diagnosis . 
5 https://data.mendeley.com/ . 

h

a

r
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= 0 . 25 . We use the NVIDIA TITAN X Pascal GPU for training and

valuation, and the training/test time for a single image is within 

.17/0.06 second, respectively. 

.2. Evaluation on the CT dataset 

We use five-fold cross-validation to validate the CMT-CNN on 

he CT dataset. The results are summarized at Table 1 . To eval- 

ate the three CNN models, we use the symbol ‘ + ’ to indicate 

tatistical significant improvement ( p < 0 . 05 evaluated by paired 

-test ) of EfficientNet with respect to VGG-19, and the symbol ‘ ∗’ 

o indicate statistical significant improvement ( p < 0 . 05 evaluated 

y paired t-test ) of EfficientNet with respect to ResNet-50. For the 

inary classification, EfficientNet outperforms VGG-19 and ResNet- 

0 with significant advantages in accuracy and AUC. The highest 

UC is 89.22% with an accuracy of 93.46%, a sensitivity of 90.57% 

nd a specificity of 90.84%. For the ternary classification, Efficient- 

et outperforms VGG-19 with significant advantage, and the mean 

ccuracy is higher than that of ResNet-50. The best accuracy is 

1.45% in distinguishing COVID-19, common pneumonia and nor- 

al control. These results are comparable to the results achieved 

y Zhang et al. [4] , where the best binary accuracy and ternary 

ccuracy was both 92.49%. Their model also use the 3D CNN to 

nalysis 3D CT volumes. Although using 2D slices enables more 

raining samples, 3D models are more straight-forward in CT anal- 

sis. However, Zhang et al. [4] used a two-stage scheme: the pul- 

onary parenchyma segmentation and the classification on the 

ropped pulmonary area. As a comparison, the proposed CMT-CNN 

s a single-stage model working in an end-to-end manner. 

.3. Evaluation on the X-ray dataset 

We use five-fold cross-validation to validate the CMT-CNN on 

he X-ray dataset. Table 2 summarizes the results. For both the bi- 

ary and ternary classification across all the considered metrics, 

esNet-50 outperforms VGG-19, and EfficientNet outperforms both 

GG-19 and ResNet-50 in terms of the mean value consistently. 

We use the symbol ‘ + ’ to indicate statistical significant im- 

rovement ( p < 0 . 05 evaluated by paired t-test ) of EfficientNet 

ith respect to VGG-19, and the symbol ‘ ∗’ to indicate statistical 

ignificant improvement ( p < 0 . 05 evaluated by paired t-test ) of 

fficientNet with respect to ResNet-50. We find that EfficientNet 

as significant advantage over VGG-19 across tasks and metrics, 

nd significantly better than ResNet-50 under most of the met- 

ics except for specificity (for binary classification) and accuracy 

for ternary classification). Generally, EfficientNet has better per- 

ormance and fewer parameters. For the binary classification, we 

https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/andrewmvd/convid19-x-rays
https://github.com/JPLi1109/CMT-CNN-for-COVID-19-diagnosis
https://data.mendeley.com/
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Table 3 

Ablation test results (%) of CMT-CNN with classification task. 

Binary Cls Ternary Cls 

Model Accuracy Sensitivity Specificity AUC Accuracy 

CT VGG-19- L cls 83.12 ↓ 78.66 ↓ 78.79 ↓ 78.15 ↓ 81.24 ↓ 
ResNet-50- L cls 85.67 ↓ 82.42 ↓ 82.43 ↓ 90.45 ↓ 83.87 ↓ 
EfficientNet- L cls 87.21 ↓ 84.12 ↓ 85.21 ↓ 84.87 ↓ 85.96 ↓ 

X-ray VGG-19- L cls 91.16 ↓ 89.45 88.74 86.17 ↓ 90.21 

ResNet-50- L cls 93.79 90.24 90.87 89.23 91.10 ↓ 
EfficientNet- L cls 94.81 ↓ 92.16 91.01 91.47 92.53 

Table 4 

Ablation test results (%) of CMT-CNN with contrastive learning task. 

Binary Cls Ternary Cls 

Model Accuracy Sensitivity Specificity AUC Accuracy 

CT VGG-19- L cst 82.53 ↓ 76.55 ↓ 76.34 ↓ 77.73 ↓ 80.56 ↓ 
ResNet-50- L cst 84.76 ↓ 81.43 ↓ 79.67 79.54 ↓ 80.25 ↓ 
EfficientNet- L cst 86.46 ↓ 84.21 ↓ 84.19 ↓ 82.42 ↓ 84.19 ↓ 

X-ray VGG-19- L cst 87.24 ↓ 84.31 ↓ 85.88 ↓ 83.24 ↓ 88.24 ↓ 
ResNet-50- L cst 89.88 ↓ 87.32 ↓ 86.76 ↓ 86.33 ↓ 89.31 ↓ 
EfficientNet- L cst 91.72 ↓ 88.77 ↓ 90.17 ↓ 89.97 ↓ 90.47 ↓ 
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chieve an AUC of 92.13% with a sensitivity of 92.97% and a speci- 

city of 91.91%. For the ternary classification, we achieved an accu- 

acy of 93.49%, which is the same as the best report in the existing 

iterature (93.48%) [13] . 

.4. Ablation experiments 

We conduct ablation experiments to evaluate the contribution 

f different parts of CMT-CNN’s cost function to the results. First, 

e only use the typical supervised learning cost function to train 

he model. Then, we only perform SSL on the model based on con- 

rastive learning. Note that when a change is applied to the algo- 

ithm, the remaining experimental settings and variables remain 

nchanged. 

.4.1. CMT-CNN with classification task 

Five-fold cross-validation is used to validate the model when 

nly classification loss is applied, and the results (both CT and X- 

ay) are summarized in Table 3 . For both the imaging modalities 

nd both the binary and ternary classifications across all the con- 

idered metrics, EfficientNet outperforms ResNet-50 and VGG-19 in 

erms of mean value. Therefore, the EfficientNet is not only suit- 

ble for the multi-task scenario, but also shows advantage in the 

ingle-task scenario. 

For all the results, the single-task CNN using classification loss 

nly is inferior to the proposed CMT-CNN in terms of the mean 

alue. We use the symbol ‘ ↓ ’ to indicate statistical significant de- 

line ( p < 0 . 05 evaluated by paired t-test ) of the classification-only

NN with respect to the CMT-CNN. For CT, the best-performing 

fficientNet encounters a significant decline on accuracy (6.25%), 

ensitivity (6.45%), specificity (5.63%) and AUC (3.45%) for binary 

lassification, as well as a significant decline on accuracy (5.49%) 

or the ternary classification. For X-ray, the EfficientNet encounters 

 significant decline on accuracy (2.42%) for the binary classifica- 

ion. These observations indicate that CT is more sensitive to the 

uxiliary task. 

.4.2. CMT-CNN with contrastive learning task 

Table 4 summarizes the results when only contrastive loss is 

pplied under five-fold cross-validation. The model learns embed- 

ing through SSL in an unsupervised manner. We use the sym- 

ol ‘ ↓ ’ to indicate statistical significant decline ( p < 0 . 05 evaluated
8 
y paired t-test ) of the SSL-only CNN with respect to the CMT- 

NN. For both CT and X-ray, both the binary and ternary classi- 

cation tasks and all the metrics, the performance declines signif- 

cantly. For CT, the binary-classification accuracy, sensitivity, speci- 

city, AUC and ternary-classification accuracy of EfficientNet drop 

y 7.00%, 6.36%, 6.65%, 6.80% and 7.26%, respectively. For X-ray, 

he binary-classification accuracy, sensitivity, specificity, AUC and 

ernary-classification accuracy of EfficientNet drop by 5.51%, 4.20%, 

.74%, 2.16% and 3.02%, respectively. Despite of the significant dif- 

erences, we argue that SSL is able to yield reasonable predictions 

ven without disease labels. In particular, the accuracy achieved 

y SSL in the ternary classification of X-ray images reached 90.47%, 

emonstrating the potential of the unsupervised learning in learn- 

ng discriminative representations. 

.4.3. The influence of transformations on the results 

To quantitatively measure the contribution of each transforma- 

ion, we summarize the accuracy improvements of CMT-CNN with 

espect to the baseline CNN in Fig. 4 . We use the EfficientNet B4 

or evaluation. The transformations are applied individually or in 

equential pairs, which is similar to the protocol in SimCLR [16] . 

or each matrix, the last column shows the averaged accuracy over 

ach row. According to the results, the top-3 effective transforma- 

ions for both CT and X-ray are the same: Hounsfield transforma- 

ion, out-painting and flip . Coincidentally, they belong to the dis- 

ortion methods, painting methods and perspective methods , respec- 

ively. By changing substantial pixels, Hounsfield transformation 

an focus the model on the lesion shape and intensity distribution . 

ut-painting makes the model learn global geometry and lesion lay- 

ut . Flip endows the model with the awareness of lesion location , 

specially when we consider that the two lung lobes have a certain 

ymmetry. The above features are important features for diagnos- 

ng the pneumonia. 

. Discussions 

The acquisition of medical images is expensive, and the scales 

f well-annotated datasets are difficult to reach the scales of com- 

uter vision datasets. Specifically, in the face of emerging epi- 

emics such as COVID-19, the number of samples is even more 

imited. This inspired us whether we can improve the generaliza- 

ion ability of the model on unseen samples under the condition 

f relatively limited training samples through SSL in addition to 
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Fig. 4. Accuracy improvement of CMT-CNN over the baseline under individual or composition of data transformations. The first matrix is for CT and the second matrix is for 

X-ray. For both the two matrices, the diagonal elements are for the single transformation, and the off-diagonal elements are for the composition of two sequentially-applied 

transformations. The last column shows the averaged accuracy improvement over each row. 
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he typical supervised learning. SSL is used as an auxiliary task 

o encourage well-aggregated embedding characteristics based on 

ontrastive learning. We have demonstrated theoretically that the 

uxiliary task can bring improvement to the automatic diagnosis 

f COVID-19. Empirical results have validated the assumption, and 

he accuracies we achieved are comparable to the best records us- 

ng the same CT and X-ray datasets. In Fig. 5 , we visualize the at-

ention maps of the typical CNN and the CMT-CNN based on the 

fficientNet B4 model for further explanation. A Channel Average 

ooling placed after the last feature map (with a size of 16 × 16 ×
048) generates the feature map with a size of 16 × 16 × 1 and 

wo successive up-sampling operators (deconvolution with a scale 

f 2) generate the new feature map with a size of 64 × 64 × 1. 

o train these two up-sampling operators, we utilize two down- 

ampling operators (mean pooling with a scale of 2) to reduce the 

ize of generated feature maps (from 64 × 64 × 1 to 16 × 16 ×
) and embed it into the original feature map with the element- 

ise product operation for all the channels. After obtaining the 

utput of two upsampling operations, we utilize bilinear interpo- 

ation to resize it to 512 × 512 × 1, and a Sigmoid operation is 

sed to reflect the focused areas in images. Then we embed the 

ttention map into the original input images via the element-wise 

roduct operation to show where our model focused. We randomly 

elect eight X-ray images for illustration. The CNN is trained on 

he typical classification loss, and the CMT-CNN is trained on the 

ulti-task loss. There are two interesting phenomena. First, CMT- 

NN can better distinguish between lung parenchyma and non- 

ulmonary tissues. Second, within the lung parenchyma, CMT-CNN 

an better focus on the lesions. Therefore, the auxiliary task de- 

igned to improve the embedding quality makes the model pay at- 

ention to lesions on the images. Upon these, the diagnostic perfor- 

ance on unseen data is enhanced. Similar phenomenon has been 

bserved and reported by Gidaris et al. [17] , where rotation-based 
9 
SL can help the model focus on the object. It is worth noting that 

he attention maps generated by deeper representations show bet- 

er lesion-concentrating effects than the early layers do. Since the 

eeper layers of CNN learn semantic information, SSL improves the 

emantic learning ability remarkably. 

To further illustrate the semantic learning ability of SSL, Fig. 6 

hows an example of the contrastive losses between X-rays with 

ifferent semantic labels. For a given COVID-19 X-ray, its con- 

rastive losses with respect to other COVID-19 X-rays are small 

e.g., 0.2), its contrastive losses with respect to other pneumonia 

re larger (e.g., 1.03), and its contrastive losses with respect to 

ormal controls are the largest (e.g., 1.52). These proves that the 

ontrastive loss enables discrimination to semantic labels. Fig. 6 is 

nly for an intuitive illustration. Considering the purpose of this 

aper, we did not evaluate the semantic classification performance 

y adding a simple classifier upon the representations. More in- 

epth analysis can be found elsewhere [16,21] . 

Among the considered CNN structures, EfficientNet significantly 

utperforms the commonly-used VGG-19 and ResNet-50 for both 

he binary and ternary classifications for both CT and X-ray diag- 

osis of COVID-19. It is notable that the parameter amount of the 

fficientNet B4 is 19 million, fewer than that of the VGG-19 (143 

illion) and the ResNet-50 (24 million). EfficientNet leverages the 

odel depth, model width and input resolution to yield optimized 

odel architectures. We have shown that this model is a feasible 

ackbone for our task. 

The data used in different studies are different, the experimen- 

al setups are different, and the evaluation protocols are also dif- 

erent. According to the literatures [4,10,12,13,25] , the binary and 

ernary classification accuracies on CT are mainly between 90% 

nd 96%, and the accuracies on X-ray are between 89% and 98%. 

able 5 shows the comparison between CMT-CNN and the state- 

f-the-arts. In CT diagnosis, the metrics obtained by CMT-CNN are 
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Fig. 5. Attention maps generated by the CMT-CNN and the baseline CNN based on the EfficientNet. We show eight X-ray images of COVID-19 patients for illustration. To 

restore the attention maps to the resolution of the input images, we use a decoder with two upsampling layers after the latent embedding to generate the attention maps. 

To train the decoder, we encoder the attention map and fuse it into the original feature map via an element-wise sum operator and then to feed them into the later layers. 

This method can locate the areas that the network pays attention to. For each X-ray image, we show the attention maps of the CNN using classification loss only (green 

rectangle) and the CMT-CNN model with classification loss together with contrastive loss (red rectangle). Compared with a typical CNN, the CMT-CNN can better focus on 

the lesion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Contrastive losses computed between a given COVID-19 X-ray and other X-rays from the dataset. We split the dataset into a training set and a test set. An EfficientNet 

is trained using contrastive loss only. Then, we randomly pick up a COVID-19 X-ray from the test set and contrast it with every X-ray in the test set. We use different colors 

to represent different semantic labels. The lines represent the connections between X-ray pairs. The smaller the contrastive loss, the bolder the line and the higher the 

similarity between the pair. SSL implemented with contrastive loss shows excellent ability to distinguish semantic labels. 

Table 5 

Performance Comparison of CMT-CNN with State-of-the-arts. 

Data Method Binary Cls Ternary Cls 

Accuracy Sensitivity Specificity AUC Accuracy 

CT Zhang et al. [4] 92.49 94.93 91.13 NP 92.49 

Ouyang et al. [10] 87.50 86.90 90.10 NP NP 

Kang et al. [12] 93.90 94.60 91.70 NP NP 

CMT-CNN 93.46 90.57 90.84 89.22 91.45 

X-ray Oh et al. [25] 88.90 NP NP NP NP 

Apostolopoulos et al. [13] 96.78 98.66 96.46 NP 94.72 

CMT-CNN 97.23 92.97 91.91 92.13 93.49 

Results shown in mean value (%). NP : Not provided. 

10 
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asically the same as those of Zhang et al. [4] , except that the sen-

itivity has decreased by 4%. One reason is that they segmented 

he lung parenchyma to make the model focus more on the le- 

ion. As a comparison, segmentation is not a precondition in CMT- 

NN, and we implement the diagnosis in an end-to-end manner. 

nder an end-to-end framework, Ouyang et al. [10] generated at- 

ention maps to help the model focus on the lesions, and exploited 

 dual-sampling algorithm to reduce the model bias. Although be- 

ng superior to CNN, their model is inferior to the CMT-CNN by 

arge margins. One reason is that the training data (2186 scans) are 

ess than what we used (3806 scans in each fold). The structured 

atent multi-view representation learning proposed by Kang et al. 

12] shows advantage on sensitivity by 4% over CMT-CNN by con- 

idering 93 radiomic features and 96 handcrafted features, where 

ubstantial feature engineering and annotations are needed. It is 

oteworthy that Ouyang et al. [10] and Kang et al. [12] only con- 

idered the binary classification, whereas the ternary classification 

esults were not presented. 

In X-ray diagnosis, Oh et al. [25] proposed a patch-based CNN 

o confront the shortage of annotated data in the binary classifi- 

ation. The accuracy (88.9%) is much lower than that of CMT-CNN 

97.23%) due to the lack of data. Apostolopoulos et al. [13] con- 

ucted both the binary and ternary classification on a relatively 

mall dataset (1427 images) using CNNs pre-trained on the Ima- 

eNet with superior sensitivity (98.66%) and specificity (96.46%), 

lthough the accuracies are basically the same as those of CMT- 

NN. 

Ablation results show that the gap between supervised learn- 

ng and unsupervised learning has largely been bridged. For CT 

EfficientNet), the gaps between supervised learning and unsuper- 

ised learning are 0.75% (binary accuracy), 2.39% (AUC) and 1.77% 

ternary accuracy). For X-ray, the gaps are 3.09% (binary accuracy), 

.50% (AUC) and 2.06% (ternary accuracy). These phenomena imply 

SL (unsupervised learning) has a bright future in (1) unsupervised 

emantic feature learning and (2) assisting supervised learning in 

 multi-task framework. 

. Conclusion 

We have proposed the CMT-CNN, an effective multi-task learn- 

ng framework for the automatic diagnosis of COVID-19. We have 

alidated that the contrastive learning module can be easily inte- 

rated into existing CNN models without constrains to bring solid 

mprovement to the performance. The module is based on self- 

upervisions and requires no additional human annotations. As a 

ore element of self-supervised learning, we for the first time cate- 

orize the transformations into distortion methods, painting methods 

nd perspective methods . These transformations have good inter- 

retability in the medical image analysis. Among all the transfor- 

ations, Hounsfield transformation, out-painting and flip have been 

dentified to be the top-3 effective transformations in both the 

T and the X-ray analysis. Experimental results on a CT dataset 

nd an X-ray dataset show that CMT-CNN significantly outperforms 

NNs in diagnosing COVID-19, and the results are comparable to 

he state-of-the-arts. CMT-CNN shows good generalization ability, 

hich can help doctors make more objective diagnostic decisions. 

his study has two insufficiencies. First, we validate the effective- 

ess of the CMT-CNN on the classification task, whereas not on 

he localization and segmentation tasks. We believe that CMT-CNN 

an also improve the performance in localization and segmenta- 

ion tasks since the contrastive loss can effectively focus the model 

n the lesions. With the completion of datasets with box-level and 

ixel-level annotations, we will evaluate our method in localiza- 

ion (under both the normal setting and weakly-supervised setting) 

nd segmentation tasks. Second, like existing studies, we put to- 

ether pneumonias such as MERS, SARS and ARDS collectively as 
11 
other pneumonia’ without further discrimination. One reason is 

hat there are few samples for each type of pneumonia and the 

amples are unevenly distributed. Developing effective algorithms 

o solve the long-tail dataset is a valuable research direction. The 

ain methods include, but are not limited to, more sophisticated 

ost-sensitive learning and sampling strategies for medical images. 
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