Table 8.
Performance evaluation metrics for all proposed AI methods
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | ||
---|---|---|---|---|---|---|---|---|---|---|
Sp | Se | Precision | Recall | Acc (%) | F1-Score | DOR | AUC* | Kappa | ||
R1 | VGG16 | 0.630 | 0.802 | 0.69 | 0.80 | 71.87 | 0.741 | 6.93 | 0.714 | 0.434 |
R2 | DenseNet169 | 0.810 | 0.895 | 0.86 | 0.89 | 85.93 | 0.877 | 36.85 | 0.852 | 0.711 |
R3 | ANN | 0.815 | 0.914 | 0.86 | 0.914 | 87.058 | 0.88 | 47.60 | 0.861 | 0.736 |
R4 | DenseNet201 | 0.835 | 0.907 | 0.88 | 0.90 | 87.49 | 0.893 | 49.70 | 0.871 | 0.747 |
R5 | MobileNet | 0.864 | 0.937 | 0.9 | 0.93 | 90.93 | 0.918 | 96.00 | 0.893 | 0.807 |
R6 | DenseNet121 | 0.888 | 0.938 | 0.92 | 0.93 | 91.56 | 0.929 | 122.67 | 0.913 | 0.831 |
R7 | DT | 0.943 | 0.969 | 0.96 | 0.969 | 95.882 | 0.964 | 536 | 0.948 | 0.915 |
R8 | RF | 0.985 | 0.99 | 0.99 | 0.99 | 99.41 | 0.99 | 6831 | 0.988 | 0.976 |
R9 | CNN | 0.985 | 0.99 | 0.99 | 0.99 | 99.41 | 0.99 | 6831 | 0.991 | 0.976 |
*all p values <0.0001