Skip to main content
. 2021 Jan 26;45(3):28. doi: 10.1007/s10916-021-01707-w

Table 8.

Performance evaluation metrics for all proposed AI methods

C1 C2 C3 C4 C5 C6 C7 C8 C9
Sp Se Precision Recall Acc (%) F1-Score DOR AUC* Kappa
R1 VGG16 0.630 0.802 0.69 0.80 71.87 0.741 6.93 0.714 0.434
R2 DenseNet169 0.810 0.895 0.86 0.89 85.93 0.877 36.85 0.852 0.711
R3 ANN 0.815 0.914 0.86 0.914 87.058 0.88 47.60 0.861 0.736
R4 DenseNet201 0.835 0.907 0.88 0.90 87.49 0.893 49.70 0.871 0.747
R5 MobileNet 0.864 0.937 0.9 0.93 90.93 0.918 96.00 0.893 0.807
R6 DenseNet121 0.888 0.938 0.92 0.93 91.56 0.929 122.67 0.913 0.831
R7 DT 0.943 0.969 0.96 0.969 95.882 0.964 536 0.948 0.915
R8 RF 0.985 0.99 0.99 0.99 99.41 0.99 6831 0.988 0.976
R9 CNN 0.985 0.99 0.99 0.99 99.41 0.99 6831 0.991 0.976

*all p values <0.0001