Abstract
目的
探讨生育晚期宫颈病变患者宫颈微生态特征,寻找阻断宫颈病变的新途径。
方法
根据入组及排除标准,纳入健康女性25例,高危型人乳头瘤病毒感染者24例,低级别宫颈上皮内瘤变(LSIL)27例,高级别宫颈上皮内瘤变(HSIL)36例,宫颈癌35例,合计147例。通过对所取的宫颈分泌物进行核酸提取,针对16S rRNA的V3+V4区域进行PCR扩增及测序。样本稀释曲线及物种箱型图证明本研究测序深度充分,样本合格。对有效数据进行OTUs分析,了解物种表达情况,并以此为基础进行α和β多样性分析。α多样性分析主要采用Chao1、Simpson和Shannon指数。β多样性分析主要采用T检验条形图、基于Weighted Unifrac Beta多样性的箱形图以及MetaStat分析。
结果
5组受试者OTUs分析显示,宫颈菌落属水平丰度均以乳酸杆菌、加德纳菌、普氏菌为主,随着病变的加重乳酸杆菌丰度降低,加德纳菌属和普氏菌属丰度增高。Chao1、Simpson和Shannon指数差异均无统计学意义(P > 0.05)。T检验条形图中,与健康组相比,其余各组中差异具有统计学意义的菌属为9~15个。除LSIL组外,差异菌种丰度最高的3个菌属为乳酸杆菌属(P1-2=0.025,P1-3=0.025,P1-4 < 0.001)、加德纳菌属(P1-2=0.01,P1-3=0.001,P1-4 < 0.001)和普氏菌属(P1-2=0.047,P1-3=0.023,P1-4=0.048)。LSIL组与健康人群比较差异菌属丰度最高的3个菌属分别为加德纳菌属(P1-3= 0.021)、依格纳季氏菌属(P1-3=0.015)、链球菌属(P1-3=0.041)。MetaStat综合分析5组数据,其中差异具有统计学意义的菌属中丰度最高的为乳酸杆菌属(P1-4=0.025)、加德纳菌属(P1-2=0.004、P1-4=0.002、P1-5=0.001)及普氏菌属(P3-5=0.005)。
结论
宫颈群落属水平表达均以乳酸杆菌、加德纳菌属、普氏菌属为主,并随疾病进展而变化; α多样性分析无明显差异,证实除病理因素外,生理因素也可导致α多样性的差别。LSIL组是所有病变中与健康人群最为相近的一组,这符合其疾病预后,进一步证实宫颈菌群表达与疾病预后相关,有望成为良好预后的生物学评估指标。
Keywords: 宫颈菌群, 宫颈病变, 微生物组学, 16S rRNA测序
Abstract
Objective
To analyze the characteristics of cervical microecology in late reproductive-age women with cervical lesions and explore new methods for preventing cervical lesions.
Methods
Cervical smears were obtained from a total of 147 women of late reproductive age, including 24 with high-risk HPV infection (HR-HPV), 27 with low-grade squamous intra-epithelial lesions (LSIL), 36 with high-grade squamous intra-epithelial lesions (HSIL), 35 with cervical cancer (CC) and 25 healthy women. llumina MiSeq sequencing of V3-V4 region of the 16S rRNA gene amplicons was used to characterize the vaginal microbiota of the women. OTUs analysis of the valid data was performed, and the α-diversity (Chao1, Simpson's Index and Shannon Index) and β-diversity (T-test, weighted UniFrac β diversity, and MetaStat analysis) were evaluated.
Results
Dilution curve and species accumulation boxplot validated the quality of the samples. OTUs analysis of the 5 groups demonstrated that cervical bacterial genus consisted primarily of Lactobacillus, Garrotella and Prussiella. With the aggravation of the lesions, the expression abundance of Lactobacillus was decreased, and Gardnerella and Prussiella were increased. The Chao1, Simpson and Shannon indexex showed no significant difference. T test indicated that 9 to 15 genera from 4 groups showed significant difference from the healthy control group. In all but the LSIL group, Lactobacillus (P1-2=0.025, P1-3=0.025, P1-4 < 0.001), Gardiner (P1-2=0.01, P1-3=0.001, P1-4 < 0.001), and Pruella (P1-2=0.047, P1-3=0.023, P1-4=0.048) showed the highest abundance in the cervical smears. The abundance of Gardiner (P1-3=0.021), Ignatius (P1-3=0.015) and Streptococcus (P1-3=0.041) was the highest in women with LSIL as compared with healthy women. In all the 5 groups, MetaStat analysis showed that lactobacillus (P1-4=0.025), gardnella (P1-2=0.004, P1-4=0.002, P1-5=0.001) and proctella (P3-5=0.005) had the highest abundance in the cervical flora.
Conclusion
The abundance of Lactobacillus, Gardnella and Proctella is the highest in cervical bacteria at the genus level and may vary with disease progression. The α-diversity does not differ significantly, suggesting that apart from pathological factors, physiological factors also contribute to the difference in α-diversity. Women with LSIL have the most similar cervical flora to healthy women, which is consistent with the prognosis of the disease and confirms that the expression of cervical microecology is related to disease prognosis and may serve as a biological indicator for favoralble prognosis.
Keywords: cervical microecology, cervical lesions, microbiome, 16S rRNA sequencing analysis
女性生殖道寄居众多微生物,其与宿主、环境之间构成了彼此制约、相互协调的动态平衡,个体间及随时间推移可具有显著差异[1]。健康微生物最重要的作用是调控阴道感染[2],促其恢复正常。研究提示,健康的阴道微生态可促进宫颈癌致病因素HPV的清除[3],已成为宫颈病变[4-5]及宫颈癌预防性治疗新的突破口,并引起国内外学者的关注[6]。已有针对宫颈病变的微生态检测研究中[7],未考虑患者生理因素对菌群的影响; 或取材以阴道为主,少有关注宫颈局部改变。为精准评估不同生理因素下宫颈病变局部微生态,本研究通过病例对照方法分析宫颈病变不同阶段菌群的变化,为研究提供理论依据,并为治疗策略制定和预后评估标准奠定基础。
1. 资料和方法
1.1. 一般资料
经解放军总医院伦理委员会同意,受试者签署知情同意书,入组2019年1~6月我院门诊就诊的健康受试者26例,首次进行阴道镜检查并根据病理确诊的单纯高危型人乳头瘤病毒(HR-HPV)感染25例,低级别宫颈上皮内瘤变(LSIL)28例,高级别宫颈上皮内瘤变(HSIL)36例,宫颈癌35例,总计150例。
纳入标准:年龄30~55岁,月经规律且未绝经; 3 d内无性生活,无阴道上药史; 1周内无口服或静脉抗炎治疗; BMI为18.5~24。排除标准:阴道镜检查前已明确诊断的中晚期宫颈癌患者; 取材前已行阴道消毒; 妊娠或哺乳期间; 明确外阴瘙痒且阴道分泌物异常增多者; 口服性激素治疗者; 根据TCT结果排除无症状滴虫、霉菌、疱疹感染者,根据HPV检测结果排除低危型HPV6,11感染者。
宫颈分泌物核酸提取失败3例(健康组、HPV感染组、LSIL组各1例),最终入组147例。对各组受试者的年龄及BMI进行正态分布验证,显示为偏态分布,采用Kruskal-Wallis检验进行多组间比较,受试者基础信息之间的差异无统计学意义(表 1),具有可比性。
1.
各组受试者基础信息比较
Analysis of basic information in each group
| Group | Number of cases (Total number) | Age (Mean±SD) | BMI (Mean±SD) |
| Group1: Healthy women; Group2: High-risk HPV infection; Group3: Low-grade squamous intraepithelial lesion; Group4: High-grade squa- mous intraepithelial lesion; Group5: Cervical cancer. | |||
| Group1 | 25 (26) | 40.24±5.22 | 23.20±3.57 |
| Group2 | 24 (25) | 42.33±5.47 | 22.04±2.31 |
| Group3 | 27 (28) | 40.81±4.96 | 22.32±3.17 |
| Group4 | 36 (36) | 41.03±6.25 | 22.40±1.82 |
| Group5 | 35 (35) | 42.54±5.47 | 23.02±2.24 |
| K-W test (H) | 5.085 | 7.150 | |
| K-W test (P) | 0.279 | 0.128 | |
1.2. 样本采集及处理
无菌棉拭子在妇科检查时留取宫颈分泌物,置于细菌稳定剂(欣言生物50 030)内-80 ℃保存。待临床结果回报后进行分组。根据Swab Genomic DNA kit试剂盒(康为世纪)说明书进行拭子DNA提取,利用1%琼脂糖凝胶电泳检测DNA提取质量。
用341F (5'-CCTAYGGGRBGCASCAG-3')和806R(5'-GGACTCNNGGGTATCTAAT-3')引物对V3+V4可变区进行PCR扩增。根据PCR产物浓度进行等量混样,充分混匀后使用1×TAE浓度2%的琼脂糖胶电泳纯化PCR产物,剪切回收目标条带。使用GeneJET胶回收试剂盒(Thermo Scientific)回收产物。
使用Ion Plus Fragment Library Kit 48 rxns建库试剂盒(Thermofisher)进行文库构建,构建好的文库经过Qubit定量和文库检测合格后,使用Ion S5TMXL(Thermofisher)进行上机测序。
1.3. 数据处理
为使信息分析结果准确、可靠,首先对原始数据进行拼接、过滤后,得到有效数据。通过对Reads剪切过滤,平均每样品测得72 403.9条reads,经过质控平均得到76 913.4条有效数据,质控有效率达94.16%。然后基于有效数据进行OTUs聚类和物种分类分析,得到对应的物种信息和基于物种的丰度分布情况。以97%的一致性将序列聚类成为OTUs,共得到7653个OTUs,然后对OTUs序列与Silva132数据库进行物种注释。注释结果中,共有2737个(35.76%)OTU注释到属水平。根据物种注释情况,进一步计算α多样性与β多样性,以及进行组间差异的比较。
利用稀释曲线反映测序数据量的合理性,间接反映样本中物种的丰富程度。用物种累积箱形图估计样本量是否充分以及物种丰富度。本研究显示,当增加样本量及测序深度时,稀释曲线及物种累积箱型图均趋向平坦(图 1),增加数据量或测序深度不产生新物种,说明样本量及测序深度合理。
1.

宫颈菌群稀释曲线及物种累积箱型图
Rarefaction curve and species accumulation boxplot.
2.

各水平Top10优势菌物种相对丰度柱状图
Histogram of relative abundance of dominant bacterial species at each level. Group1: Healthy women; Group2: High-risk HPV infection; Group3: Low-grade squamous intraepithelial lesion; Group4: High-grade squamous intraepithelial lesion; Group5: Cervical cancer
1.4. 统计学分析
用SPSS 25.0进行统计分析,计量资料采用均数±标准差表示,用Kruskal-Wallis检验,入组受试者是否来自同一人群。使用RStudio,STAMP(v.2.1.3)软件对于数据进行可视化,微生物含量的统计学计算使用单因素方差分析,P < 0.05为差异有统计学意义。
2. 结果
2.1. 组间优势菌属展示
选取各水平微生物相对丰度前10位的细菌进行展示,菌属丰度变化一致。其中最具优势物种为乳酸杆菌、加德纳菌属、普氏菌属。丰度柱状图上显示,与健康对照组相比,各组乳酸杆菌丰度均有降低,而加德纳菌及普氏菌丰度增加。HR-HPV感染组加德纳菌及普氏菌属丰度增加较LSIL和HSIL组更为明显。而与对照组相比,宫颈病变各组加德纳菌及普氏菌属丰度亦增加,且与病变程度呈依赖性改变,其中加德纳菌增加明显。
2.2. 微生物组α多样性分析
通过alpha组间差异分析,初步判断各组间微生物群落结构的组成的相似性,根据样本所属生态类别进行分析。健康人群组物种丰富度的平均值较其他各组高,但差异无统计学意义,3个指数的组间比较差异均无统计学意义(表 2,图 3)。
2.
α多样性各指数组间差异性比较
Comparison of analysis diversity indicators between groups
| Group | Chao1 index (P) | Shannon index (P) | Simpson index (P) |
| Group1-Group2 | 0.140 | 0.260 | 0.174 |
| Group1-Group3 | 0.628 | 0.709 | 0.980 |
| Group1-Group4 | 0.778 | 0.751 | 0.763 |
| Group1-Group5 | 0.401 | 0.965 | 0.999 |
| Group2-Group3 | 0.859 | 0.929 | 0.427 |
| Group2-Group4 | 0.633 | 0.851 | 0.718 |
| Group2-Group5 | 0.937 | 0.544 | 0.153 |
| Group3-Group4 | 0.997 | 0.999 | 0.976 |
| Group3-Group5 | 0.999 | 0.955 | 0.988 |
| Group4-Group5 | 0.961 | 0.976 | 0.771 |
3.

各组间宫颈菌群α多样性指数
Alpha diversity index of cervical microflora in the 5 groups. Group1: Healthy women; Group2: High-risk HPV infection; Group3: Low-grade squamous intraepithelial lesion; Group4: High-grade squamous intraepithelial lesion; Group5: Cervical cancer.
2.3. 微生物组β多样性分析
健康人群和HR-HPV感染组比较差异有统计学意义(P < 0.05)的菌属有15个,其中丰度最高的3个菌属分别为乳酸杆菌属、加德纳菌属和普氏菌属,乳酸杆菌在健康人群中丰度更高(P=0.025),加德纳菌属(P=0.01)和普氏菌属(P=0.047)在HR-HPV感染组丰度较高。
健康人群LSIL组比较有显著差异的菌属有13个,其中丰度最高的3个菌属分别为加德纳菌属、依格纳季氏菌属和链球菌属,乳酸杆菌在健康人群中丰度更高(P=0.041),加德纳菌属(P=0.021)和依格纳季氏菌属(P=0.015)在LSIL组丰度较高。健康人群和HSIL组比较差异显著的菌属有9个,其中丰度最高的3个菌属分别为乳酸杆菌属、加德纳菌属和普氏菌属,乳酸杆菌在健康人群中丰度更高(P=0.012),加德纳菌属(P=0.001)和普氏菌属(P=0.023)在HSIL组丰度较高。健康人群和宫颈癌组比较差异显著的菌属有10个,其中丰度最高的3个菌属分别为乳酸杆菌属、加德纳菌属和普氏菌属,乳酸杆菌在健康人群中丰度更高(P < 0.001),加德纳菌属(P < 0.001)和普氏菌属(P=0.048)在宫颈癌组丰度较高(图 4)。
4.

与健康组相比各组菌群丰度差异性比较(属水平)
Bacterial abundance in each group in comparison with the healthy group (genus level).
2.4. Beta多样性的箱形图
健康人与HR-HPV的差异具有统计学意义(P1-2= 0.019),与HSIL及宫颈癌组的差异性有统计学意义(P1-4=0.019、P1-5 < 0.01);LSIL与HR-HPV感染(P2-3=0.002)、HSIL(P3-4 < 0.01)及宫颈癌(P3-5 < 0.01)差异有统计学意义; HR-HPV感染与HSIL及宫颈癌组差异无统计学意义(P2-3=0.159、P2-5=0.853),健康人与LSIL组差异无统计学意义(P1-3=0.988,图 5)。
5.

Beta多样性的箱形图
Box plot based on weighted UniFrac Beta diversity. Group1: Healthy women; Group2: High-risk HPV infection; Group3: Low-grade squamous intraepithelial lesion; Group4: High-grade squamous intraepithelial lesion; Group5: Cervical cancer. *P=0.01-0.05; **P < 0.01.
2.5. MetaStat
经MetaStat分析后有对具有统计学差异的物种表达进行筛选,并取丰度最高的12个菌属形成图 6,显示出丰度高且具有差异性的物种主要为:乳酸杆菌属在各组间均为高表达,其在健康人群中表达丰度最高且稳定,与宫颈癌组差异具有统计学意义(P1-5=0.025)。加德纳菌属在健康人群及LSIL组表达量低,其中健康人群与HR-HPV感染组(P1-2=0.004)、HSIL组(P1-4=0.002)及宫颈癌组(P1-5=0.001)比较差异具有统计学意义。普氏菌属在HR-HPV与宫颈癌组表达丰度较高,其中LSIL组与宫颈癌组比较差异具有统计学意义(P3-5=0.005)。
6.

Beta多样性的箱形图MetaStat分析
MetaStat analysis of Beta diversity in box charts. Group1: Healthy women; Group2: High-risk HPV infection; Group3: Low-grade squamous intraepithelial lesion; Group4: High-grade squamous intraepithelial lesion; Group5: Cervical cancer. *P= 0.01-0.05; **P < 0.01.
2.6. LEfSe及线性判别分析(LDA)
利用LEfSe分析对不同分组中丰度差异大的物种进行检验,再通过线性判别分析(LDA)对数据进行降维并评分,评估显著差异物种的影响力。LSIL组既是最轻病变组,又最为接近对照组,因此将现有5组分为健康-HR-HPV-LSIL组及LSIL-HSIL-CC组两部分进行分析(图 7)。健康-HR-HPV-LSIL部分lefse分析共检测到8个不同水平的菌属LDA>4的,其中健康组2个菌属分别为:纲、目水平的梭杆菌。HR-HPV组3个菌属分别为:属水平的支原体和种、属水平的羊膜链球菌。LSIL组3个菌属分别为:目、科水平的心杆菌,属水平的伊纳茨氏菌。
7.

LEfSe及线性判别分析
LEfSe and LDA analysis. Group1: Healthy women; Group2: High-risk HPV infection; Group3: Low-grade squamous intraepithelial lesion; Group4: High-grade squamous intraepithelial lesion; Group5: Cervical cancer.
LSIL-HSIL-CC部分lefse分析共检测到20个不同水平的菌属LDA>4的,其中LSIL组5个菌属分别为:门水平的后壁菌,目、科、属水平的乳酸杆菌,纲水平的杆菌,并且评分都在5分以上。HSIL组3个菌属分别为:科、属水平的侏囊菌属,科水平的疣微菌)。CC组12个菌属分别为:纲水平的硬毛菌,目水平的月形单胞菌属,科、属水平的普氏菌属,门、纲、目水平的拟杆菌,属水平的加德纳菌属,目、科水平的双歧杆菌,门水平的放线菌。
3. 讨论
人体寄存大量微生物,其分布及丰度与人体健康息关,研究表明,不同的细菌种类优先栖息于肿瘤部位。阴道微生物组成是以乳酸杆菌为主[8],其它也包括了细菌、病毒、滴虫、支原体、衣原体等多种微生物的综合环境。该环境根据人体的激素波动[9]、常驻微生物量的改变[10],阴道操作的情况变化,同时阴道自身具有自洁功能。目前多数相关研究仅以疾病为分组,未考虑生理因素对微生态的影响[11],常以阴道微生态为主[12],少有更具针对性的宫颈微生态。为排除各项生理、病理、阴道操作等影响,本研究规范了入组及排除标准。并根据受试者的年龄及BMI做了均质化分析,结果无统计学意义,说明各组人群间存在可比性。根据样本稀疏曲线及物种累计箱型图说明本研究样本测序深度充分,样本合格,结果较为全面。
宫颈癌是世界范围内妇女的第4大常见癌症,目前全球已达成共识认为其是一种可以预防的疾病[13]。HR-HPV感染是宫颈癌变的必要条件,而感染的转归与宿主和病毒的自身因素及阴道微环境相关[14]。已有研究提示,在宫颈上皮及阴道粘膜发生组织学变化的时候,阴道微生物组成改变,乳酸杆菌量减少[15],促进HPV感染[16]及宫颈病变发生[17-18]。阴道微生态和HPV感染的持久性[19]及感染量相关[20],更与宫颈上皮内瘤变的进展密切相关[14, 21],宫颈阴道微生态对宫颈癌前病变及宫颈浸润癌的发展起到重要作用,可以作为宫颈癌患者的生物指标应用于临床[22]。对比宫颈及阴道分泌物检测,发现宫颈部位生物多样性高于阴道[11],更有利于后期局部微环境调控。本研究采用生物信息分析,对不同级别宫颈病变患者及健康人群的宫颈分泌物进行对比,尝试寻找宫颈微生态监测的重点及微生态调节的突破点,为预防宫颈癌变提供理论依据。
本研究α多样性分析结果提示,各病变组患者的细菌类别与健康人群无显著性差异。既往多数文献中宫颈病变组[7]及HPV感染组[8, 23-25]多样性高于健康人群。分析可能与以下原因相关:本研究取宫颈局部分泌物做检测,根据目前文献学习,宫颈微生态多样性较高,每个物种相对丰度降低,组间比较时差异性会减低; 本研究严格限制入组患者年龄及BMI,排除生理因素对菌群的影响,生理因素中女性激素水平波动对菌群的影响较大,目前已知绝经后女性阴道内乳酸杆菌丰度降低[26],易于发生感染,增加阴道微生物多样性,同时阴道加德纳菌属和奇异菌属与绝经后阴道萎缩症状相关[27],这些影响均可体现在多样性分析中。而现有研究少有将此项因素纳入考虑的设计,比如Audirac-Chalifour A的研究[7]入组受试者年龄22~61岁,年龄跨度大,不同年龄段体内激素水平会发生相应的改变,尤其是有部分受试者已经绝经,激素水平明显降低,菌群也会发生相应的调整;本研究纳入样本量不足,本研究目的为宫颈微生态的初步探寻,因入组及排除标准严格,半年内共纳入150例受试者,与其他相关研究[28]比较,总体样本量较少;本研究对疾病的分组更加严格,对宫颈病变的各个级别均设计分组,并在标准中排除了较高期别的宫颈癌患者。也有研究将宫颈上皮内瘤变两组合并,或将正常组与低级别病变合并[29],并在入组时仅提示宫颈癌。中晚期宫颈癌临床症状以出血为主,易合并感染伴有恶臭,这些症状均会导致阴道菌群多样性增加。本研究在设计时就已考虑到这些影响,入组时排除了中晚期宫颈癌患者,更能说明入组人群的菌群特点。本研究入组时排除了已知的病理因素影响,如中晚期宫颈癌、各类阴道炎,更加精准的关注了疾病本身与局部微生态的相关性。目前研究中,多表示炎症与疾病进展相关,少有将阴道感染性疾病排除的研究。已知阴道炎症性疾病,尤其是细菌性阴道炎[25, 30]、沙眼衣原体感染[10],支原体感染[31]对HPV感染[32]及促进宫颈病变均有影响。现实研究中,无法将已知影响因素全部剔除后进行单一或无一感染者的研究,故以感染主要症状及排除常见感染为标准进行针对性研究。
β多样性分析中,属水平组间差异性比较的t检验条形图与Top10优势菌属水平物种相对丰度描述相符,各疾病组与健康人群比分别有9~15个菌属具有差异性改变。HR-HPV感染组差异性菌属最多,为15个,阴道微环境紊乱明显,这与前期报道相符[12]。本研究提示丰度较高的菌属主要有乳酸杆菌属、加德纳菌属、普氏菌属及链球菌属。其中乳酸杆菌及链球菌丰度降低,其余菌属丰度升高。这种差异性改变与前期报道相符[33],宫颈上皮内瘤变的韩国女性阴道菌群中,阴道梭菌和异位菌也占主导地位[34]。
基于Weighted Unifrac Beta多样性的箱形图看出,健康人群和LSIL人群与HR-HPV感染组具有差异性,与HSIL及宫颈癌组有差异性,而健康人群和LSIL组间无差异。临床处置中LSIL组有60%的患者可自愈,转归良好。针对本研究发现的问题,考虑LSIL组良好的预后转归与菌群组成及免疫调节相关。HPV感染致病后局部免疫因子改变,促进菌群丰度改变,协力清除HPV感染,促进LSIL患者自然转归。目前研究已考虑宫颈病变与局部免疫的相关性[15],随宫颈病变进展局部免疫因子IL-2/IL-10逐渐减低,机体出现免疫抑制状态。而在此变化中,单一免疫因子的改变并非与病变成依赖性关系,考虑为疾病进展过程中机体免疫清除的相关作用。本研究提示的菌群表达的改变是局部免疫调节的结果,还是微生态自行调节的作用,与全身免疫的相关性等还需后续实验进一步明确。
LEfSe及线性判别分析中本研究将5组数据分为两个部分进行比较,宫颈病变各组间差异菌属较多,其中LSIL组5个不同水平的菌属评分都在5分以上,差异明显,差异菌主要为乳酸杆菌。结合疾病临床预后,乳酸杆菌在疾病的转归中可能起到正向作用,这与部分细胞研究[35]结论相符。本研究除健康对照组外,其余各组均有HR-HPV感染。根据文献报道,宫颈组织学改变的过程中HR-HPV及微生态起到了促进的作用,HR-HPV感染后加德纳菌丰度明显升高,这与本文所得结果一致,这种微环境更易发生细菌性阴道炎。在这个环境下发生介导细胞免疫的Th1型细胞向Th2型细胞飘移的现象[36],发生免疫逃逸,使病毒感染持续存在,促进疾病进展。
综上所述,本研究在严格把控入组标准,排除影响性生理、病理因素后,针对宫颈局部微生态进行精准研究,结果提示:①在性成熟晚期,自HR-HPV感染开始到宫颈各级别病变,宫颈细菌群落表达均以乳酸杆菌、加德纳菌属、普氏菌属为主,随病变进展,差异增多并呈病变依赖性改变。②入组人群一致的情况下,α多样性分析未显示明显差异,与前期研究相比,这些差异可能来自人群本身。③LSIL组与健康人群的微生物表达更为相近,这是文献未曾报道的。同时此结果与疾病的临床预后相符,进一步证实宫颈菌群表达与疾病预后相关,并可能成为良好预后的生物学评估指标。本研究为通过宫颈菌群调节阻断HR-HPV感染、预防宫颈癌提供参考数据,并在后期扩大样本量后进一步明确组间具有差异性但丰度较低菌属是否能起到关键作用。
Biography
翟青枝,主治医师,E-mail: zhaiqingzhi@163.com
Funding Statement
解放军总医院军事转化项目(ZH19018)
Contributor Information
翟 青枝 (Qingzhi ZHAI), Email: zhaiqingzhi@163.com.
孟 元光 (Yuanguang MENG), Email: meng6512@vip.sina.com.
References
- 1.Martin DH, Marrazzo JM. The vaginal microbiome: current understanding and future directions. J Infect Dis. 2016;214(Suppl 1):S36–41. doi: 10.1093/infdis/jiw184. [Martin DH, Marrazzo JM. The vaginal microbiome: current understanding and future directions[J]. J Infect Dis, 2016, 214 (Suppl 1): S36-41.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Green KA, Zarek SM, Catherino WH. Gynecologic health and disease in relation to the microbiome of the female reproductive tract. Fertil Steril. 2015;104(6):1351–7. doi: 10.1016/j.fertnstert.2015.10.010. [Green KA, Zarek SM, Catherino WH. Gynecologic health and disease in relation to the microbiome of the female reproductive tract[J]. Fertil Steril, 2015, 104(6): 1351-7.] [DOI] [PubMed] [Google Scholar]
- 3.Brotman RM, Shardell MD, Gajer P, et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J Infect Dis. 2014;210(11):1723–33. doi: 10.1093/infdis/jiu330. [Brotman RM, Shardell MD, Gajer P, et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection[J]. J Infect Dis, 2014, 210(11): 1723-33.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Zhang H, Lu J, Lu Y, et al. Cervical microbiome is altered in cervical intraepithelial neoplasia after loop electrosurgical excision procedure in china. Sci Rep. 2018;8(1):4923–9. doi: 10.1038/s41598-018-23389-0. [Zhang H, Lu J, Lu Y, et al. Cervical microbiome is altered in cervical intraepithelial neoplasia after loop electrosurgical excision procedure in china[J]. Sci Rep, 2018, 8(1): 4923-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Wiik J, Sengpiel V, Kyrgiou M, et al. Cervical microbiota in women with cervical intra-epithelial neoplasia, prior to and after local excisional treatment, a Norwegian cohort study. BMC Women's Heal. 2019;19(3):30–8. doi: 10.1186/s12905-019-0727-0. [Wiik J, Sengpiel V, Kyrgiou M, et al. Cervical microbiota in women with cervical intra-epithelial neoplasia, prior to and after local excisional treatment, a Norwegian cohort study[J]. BMC Women's Heal, 2019, 19(3): 30-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Romero-Morelos P, Bandala C, Jiménez-Tenorio J, et al. Vaginosis-associated bacteria and its association with HPV infection. Med Clin (Barc) 2019;152(1):1–5. doi: 10.1016/j.medcli.2018.01.027. [Romero-Morelos P, Bandala C, Jiménez-Tenorio J, et al. Vaginosis-associated bacteria and its association with HPV infection[J]. Med Clin (Barc), 2019, 152(1): 1-5.] [DOI] [PubMed] [Google Scholar]
- 7.Audirac-Chalifour A, Torres-Poveda K, Bahena-Román M, et al. Cervical microbiome and cytokine profile at various stages of cervical cancer: a pilot study. PLoS One. 2016;11(4):e015327–824. doi: 10.1371/journal.pone.0153274. [Audirac-Chalifour A, Torres-Poveda K, Bahena-Román M, et al. Cervical microbiome and cytokine profile at various stages of cervical cancer: a pilot study[J]. PLoS One, 2016, 11(4): e015327-824.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Salas-Jara M, Ilabaca A, Vega M, et al. Biofilm forming lactobacillus: new challenges for the development of probiotics. Microorganisms. 2016;4(3):35–41. doi: 10.3390/microorganisms4030035. [Salas-Jara M, Ilabaca A, Vega M, et al. Biofilm forming lactobacillus: new challenges for the development of probiotics[J]. Microorganisms, 2016, 4(3): 35-41.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.谭 雪梅, 汤 艳. 微生态制剂可改善胎膜早破孕妇阴道微生态环境. 分子影像学杂志. 2020;4(2):356–9. [谭雪梅, 汤艳.微生态制剂可改善胎膜早破孕妇阴道微生态环境[J].分子影像学杂志, 2020, 4(2): 356-9.] [Google Scholar]
- 10.Silva J, Cerqueira F, Medeiros R. Chlamydia trachomatis infection: implications for HPV status and cervical cancer. Arch Gynecol Obstet. 2014;289(4):715–23. doi: 10.1007/s00404-013-3122-3. [Silva J, Cerqueira F, Medeiros R. Chlamydia trachomatis infection: implications for HPV status and cervical cancer[J]. Arch Gynecol Obstet, 2014, 289(4): 715-23.] [DOI] [PubMed] [Google Scholar]
- 11.Zhang Z, Zhang D, Xiao BB, et al. Primary study on the relationship between high-risk HPV infection and vaginal cervical microbiota] Chin J Obstetr Gynecol. 2018;53(7):471–80. doi: 10.3760/cma.j.issn.0529-567x.2018.07.006. [Zhang Z, Zhang D, Xiao BB, et al. Primary study on the relationship between high-risk HPV infection and vaginal cervical microbiota][J]. Chin J Obstetr Gynecol, 2018, 53(7): 471-80.] [DOI] [PubMed] [Google Scholar]
- 12.韩 华, 陈 闻月. 阴道菌群与CIN、宫颈癌伴HPV感染相关性的研究. 浙江医学. 2018;40(7):745–6, 755. [韩华, 陈闻月.阴道菌群与CIN、宫颈癌伴HPV感染相关性的研究[J].浙江医学, 2018, 40(7): 745-6, 755.] [Google Scholar]
- 13.Borgdorff H, Tsivtsivadze E, Verhelst R, et al. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/ STI prevalence and genital HIV viral load in African women. ISME J. 2014;8(9):1781–93. doi: 10.1038/ismej.2014.26. [Borgdorff H, Tsivtsivadze E, Verhelst R, et al. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/ STI prevalence and genital HIV viral load in African women[J]. ISME J, 2014, 8(9): 1781-93.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Mitra A, MacIntyre DA, Lee YS, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep. 2015;5:16865–73. doi: 10.1038/srep16865. [Mitra A, MacIntyre DA, Lee YS, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity[J]. Sci Rep, 2015, 5: 16865-73.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Zheng JJ, Song JH, Yu CX, et al. Difference in vaginal microecology, local immunity and HPV infection among childbearing-age women with different degrees of cervical lesions in Inner Mongolia. BMC Women's Heal. 2019;19(7):109–15. doi: 10.1186/s12905-019-0806-2. [Zheng JJ, Song JH, Yu CX, et al. Difference in vaginal microecology, local immunity and HPV infection among childbearing-age women with different degrees of cervical lesions in Inner Mongolia[J]. BMC Women's Heal, 2019, 19(7): 109-15.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.李 东燕, 郝 敏. 阴道微生态平衡与高危型HPV感染分析. 中国微生态学杂志. 2016;28(5):594–7. [李东燕, 郝敏.阴道微生态平衡与高危型HPV感染分析[J].中国微生态学杂志, 2016, 28(5): 594-7.] [Google Scholar]
- 17.Ahmadnia E, Kharaghani R, Maleki A, et al. Prevalence and associated factors of genital and sexually transmitted infections in married women of Iran. Oman Med J. 2016;31(6):439–45. doi: 10.5001/omj.2016.88. [Ahmadnia E, Kharaghani R, Maleki A, et al. Prevalence and associated factors of genital and sexually transmitted infections in married women of Iran[J]. Oman Med J, 2016, 31(6): 439-45.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Song D, Li H, Li HB, et al. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol Lett. 2015;10(2):600–6. doi: 10.3892/ol.2015.3295. [Song D, Li H, Li HB, et al. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer[J]. Oncol Lett, 2015, 10(2): 600-6.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Kwasniewski W, Wolun-Cholewa M, Kotarski J, et al. Microbiota dysbiosis is associated with HPV-induced cervical carcinogenesis. Oncol Lett. 2018;37(8):509–18. doi: 10.3892/ol.2018.9509. [Kwasniewski W, Wolun-Cholewa M, Kotarski J, et al. Microbiota dysbiosis is associated with HPV-induced cervical carcinogenesis[J]. Oncol Lett, 2018, 37(8): 509-18.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Mitra A, MacIntyre DA, Marchesi JR, et al. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next. Microbiome. 2016;4:58–66. doi: 10.1186/s40168-016-0203-0. [Mitra A, MacIntyre DA, Marchesi JR, et al. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next[J]. Microbiome, 2016, 4: 58-66.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Liang YJ, Chen MJ, Qin L, et al. Correction to: a meta-analysis of the relationship between vaginal microecology, human papillomavirus infection and cervical intraepithelial neoplasia. Infect Agents Cancer. 2019;14:47–56. doi: 10.1186/s13027-019-0258-1. [Liang YJ, Chen MJ, Qin L, et al. Correction to: a meta-analysis of the relationship between vaginal microecology, human papillomavirus infection and cervical intraepithelial neoplasia[J]. Infect Agents Cancer, 2019, 14: 47-56.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Łaniewski P, Cui HY, Roe DJ, et al. Features of the cervicovaginal microenvironment drive cancer biomarker signatures in patients across cervical carcinogenesis. Sci Rep. 2019;9:7333–42. doi: 10.1038/s41598-019-43849-5. [Łaniewski P, Cui HY, Roe DJ, et al. Features of the cervicovaginal microenvironment drive cancer biomarker signatures in patients across cervical carcinogenesis[J]. Sci Rep, 2019, 9: 7333-42.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.骆 菲, 朱 丽红, 韩 阳, et al. 高危型HPV感染与阴道微生物组关系. 中国微生态学杂志. 2019;31(6):715–9. [骆菲, 朱丽红, 韩阳, 等.高危型HPV感染与阴道微生物组关系[J].中国微生态学杂志, 2019, 31(6):715-9.] [Google Scholar]
- 24.邱 兴堤, 吴 安玥, 李 栋, et al. 阴道微生物多样性与高危型HPV感染的相关性研究. 现代妇产科进展. 2018;27(6):421–5. [邱兴堤, 吴安玥, 李栋, 等.阴道微生物多样性与高危型HPV感染的相关性研究[J].现代妇产科进展, 2018, 27(6): 421-5.] [Google Scholar]
- 25.Kyrgiou M, Mitra A, Moscicki AB. Does the vaginal microbiota play a role in the development of cervical cancer. Transl Res. 2017;179:168–82. doi: 10.1016/j.trsl.2016.07.004. [Kyrgiou M, Mitra A, Moscicki AB. Does the vaginal microbiota play a role in the development of cervical cancer[J]. Transl Res, 2017, 179: 168-82.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.马嘉阳.绝经后女性阴道微生态菌群及其与经阴道益生菌干预相关性研究[J]. 2019.
- 27.葛 覃, 沈 健, 刘 延, et al. 萎缩性阴道炎患者的阴道菌群结构分析. 中华生殖与避孕杂志. 2018;38(6):464–71. [葛覃, 沈健, 刘延, 等.萎缩性阴道炎患者的阴道菌群结构分析[J].中华生殖与避孕杂志, 2018, 38(6): 464-71.] [Google Scholar]
- 28.Łaniewski P, Barnes D, Goulder A, et al. Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-Hispanic and Hispanic women. Sci Rep. 2018;8:7593–9. doi: 10.1038/s41598-018-25879-7. [Łaniewski P, Barnes D, Goulder A, et al. Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-Hispanic and Hispanic women[J]. Sci Rep, 2018, 8: 7593-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Zhang C, Liu Y, Gao W, et al. The direct and indirect association of cervical microbiota with the risk of cervical intraepithelial neoplasia. Cancer Med. 2018;7(5):2172–9. doi: 10.1002/cam4.1471. [Zhang C, Liu Y, Gao W, et al. The direct and indirect association of cervical microbiota with the risk of cervical intraepithelial neoplasia[J]. Cancer Med, 2018, 7(5): 2172-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.罗 菁, 邓 晶, 应 伊丽, et al. 乳杆菌活菌制剂联合甲硝唑治疗细菌性阴道炎临床效果分析. 中国性科学. 2017;26(10):60–2. [罗菁, 邓晶, 应伊丽, 等.乳杆菌活菌制剂联合甲硝唑治疗细菌性阴道炎临床效果分析[J].中国性科学, 2017, 26(10): 60-2.] [Google Scholar]
- 31.Klein C, Gonzalez D, Samwel K, et al. Relationship between the cervical microbiome, HIV status, and precancerous lesions. mBio. 2019;10(1):785–92. doi: 10.1128/mBio.02785-18. [Klein C, Gonzalez D, Samwel K, et al. Relationship between the cervical microbiome, HIV status, and precancerous lesions[J]. mBio, 2019, 10(1): 785-92.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.di Paola M, Sani C, Clemente AM, et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk Human Papillomavirus infection. Sci Rep. 2017;7:10200–9. doi: 10.1038/s41598-017-09842-6. [di Paola M, Sani C, Clemente AM, et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk Human Papillomavirus infection[J]. Sci Rep, 2017, 7: 10200-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.周 柯, 马 腾远, 邢 国征, et al. 妇女阴道微生物群落构成与宫颈癌前病变的关系. 中国肿瘤临床与康复. 2018;25(9):1046–50. [周柯, 马腾远, 邢国征, 等.妇女阴道微生物群落构成与宫颈癌前病变的关系[J].中国肿瘤临床与康复, 2018, 25(9): 1046-50.] [Google Scholar]
- 34.Oh HY, Kim BS, Seo SS, et al. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin Microbiol Infect. 2015;21(7):e1–9. doi: 10.1016/j.cmi.2015.02.026. [Oh HY, Kim BS, Seo SS, et al. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea[J]. Clin Microbiol Infect, 2015, 21(7): e1-9.] [DOI] [PubMed] [Google Scholar]
- 35.Wang KD, Xu DJ, Wang BY, et al. Inhibitory effect of vaginal Lactobacillus supernatants on cervical cancer cells. Probiotics & Antimicro Prot. 2018;10(2):236–42. doi: 10.1007/s12602-017-9339-x. [Wang KD, Xu DJ, Wang BY, et al. Inhibitory effect of vaginal Lactobacillus supernatants on cervical cancer cells[J]. Probiotics & Antimicro Prot, 2018, 10(2): 236-42.] [DOI] [PubMed] [Google Scholar]
- 36.Gillet E, Meys JF, Verstraelen H, et al. Association between bacterial vaginosis and cervical intraepithelial neoplasia: systematic review and meta-analysis. PLoS One. 2012;7(10):e45201–10. doi: 10.1371/journal.pone.0045201. [Gillet E, Meys JF, Verstraelen H, et al. Association between bacterial vaginosis and cervical intraepithelial neoplasia: systematic review and meta-analysis[J]. PLoS One, 2012, 7(10): e45201-10.] [DOI] [PMC free article] [PubMed] [Google Scholar]
