Skip to main content
. 2021 Jan 12;11:551522. doi: 10.3389/fphar.2020.551522

TABLE 2.

Knowledge of AMR among healthcare professionals at UTH, lusaka, Zambia.

Knowledge questions Total n = 304 (%) Nurses n = 100 (%) Physicians n = 65 (%) Pharmacists n = 58 (%) Biomedical personnel n = 80 (%) p-value
1. Widespread or over use of antibiotics promotes antimicrobial resistance 141 (46.5) 39 (39) 33 (22.7) 32 (22.7) 37 (26.2) 0.21
2. Inappropriate empiric choices promote antimicrobial resistance 117 (38.9) 29 (29) 24 (20.5) 33 (28.3) 31 (26.5) 0.01
3. Inappropriate duration of antibiotics course promotes antimicrobial resistance 139 (45.8) 40 (40) 33 (23.7) 33 (23.7) 33 (23.7) 0.14
4. Poor access to local antibiograms data promotes antimicrobial resistance 95 (31.5) 33 (34.7) 19 (20.0) 21 (22.1) 22 (23.2) 0.71
5. Microbe mutations cause antimicrobial resistance 121 (40.3) 16 (13.2) 19 (15.7) 36 (29.8) 50 (41.3) <0.001
6. Patient demands and expectations promote antimicrobial resistance 59 (19.9) 32 (54.2) 6 (10.2) 7 (11.9) 14 (23.7) <0.001
7. Prescribers' poor awareness promotes antimicrobial resistance 120 (39.9) 36 (30.0) 26 (21.7) 23 (19.2) 35 (29.2) 0.82
8. Self-medication by patients promotes antimicrobial resistance 168 (55.8) 51 (51) 37 (55.8) 35 (60.3) 45 (56.3) 0.78
9. Poor infection control in hospitals spread antimicrobial resistance 94 (31.3) 28 (28.6) 16 (25.0) 22 (37.9) 28 (35.0) 0.36
10. Patient poor adherence promotes antimicrobial resistance 170 (56.7) 50 (51.0) 40 (62.5) 37 (63.8) 43 (53.8) 0.30
11. Sub-standard quality of antibiotics promotes antimicrobial resistance 122 (41.1) 31 (32.3) 29 (45.3) 26 (44.8) 36 (45.6) 0.21
Overall score (mean ± SD) a 6.64 ± 1.36 5.57 ± 1.23 5.83 ± 1.41 7.67 ± 1.52 6.55 ± 1.71 0.01

aAll values are means with their respective Standard Deviations (SD), and p-value from One Way Analysis of Variance (ANOVA). Otherwise, chi-square tests were used.