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 31 

ABSTRACT 32 

 33 

Current procedures for inferring population history generally assume complete neutrality - that 34 

is, they neglect both direct selection and the effects of selection on linked sites. We here examine 35 

how the presence of direct purifying selection and background selection may bias demographic 36 

inference by evaluating two commonly-used methods (MSMC and fastsimcoal2), specifically 37 

studying how the underlying shape of the distribution of fitness effects (DFE) and the fraction of 38 

directly selected sites interact with demographic parameter estimation. The results show that, 39 

even after masking functional genomic regions, background selection may cause the mis-40 

inference of population growth under models of both constant population size and decline. This 41 

effect is amplified as the strength of purifying selection and the density of directly selected sites 42 

increases, as indicated by the distortion of the site frequency spectrum and levels of nucleotide 43 

diversity at linked neutral sites. We also show how simulated changes in background selection 44 

effects caused by population size changes can be predicted analytically. We propose a potential 45 

method for correcting for the mis-inference of population growth caused by selection. By 46 

treating the DFE as a nuisance parameter and averaging across all potential realizations, we 47 

demonstrate that even directly selected sites can be used to infer demographic histories with 48 

reasonable accuracy.  49 

 50 

Keywords: demographic inference, background selection, distribution of fitness effects, MSMC, 51 

fastsimcoal2, approximate Bayesian computation (ABC) 52 

 53 

Running title: Demographic inference with selection  54 
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 62 

INTRODUCTION 63 

 64 

The characterization of past population size change is a central goal of population genomic 65 

analysis, with applications ranging from anthropological to agricultural to clinical (see review by 66 

Beichman et al. 2018). Furthermore, use of an appropriate demographic model provides a 67 

necessary null model for assessing the impact of selection across the genome (e.g., Teshima et 68 

al. 2006; Thornton and Jensen 2007; Jensen et al. 2019). Multiple strategies have been proposed 69 

for performing demographic inference, utilizing expectations related to levels of variation, the 70 

site frequency spectrum, linkage disequilibrium, and within- and between-population divergence 71 

(e.g., Gutenkunst et al. 2009; Li and Durbin 2011; Lukic and Hey 2012; Excoffier et al. 2013; 72 

Harris and Nielsen 2013; Bhaskar et al. 2015; Boitard et al. 2016; Sheehan and Song 2016; 73 

Ragsdale and Gutenkunst 2017; Kelleher et al. 2019; Speidel et al. 2019; Steinrücken et al. 74 

2019). 75 

 Although many methods perform well when evaluated under the standard assumption of 76 

neutrality, it is difficult in practice to assure that the nucleotide sites used in empirical analyses 77 

experience neither direct selection nor the effects of selection at linked sites. For example, 78 

inference is often performed using intergenic, 4-fold degenerate, or intronic sites. While there is 79 

evidence for weak direct selection on all of these categories in multiple organisms (e.g., Haddrill 80 

et al. 2005; Chamary and Hurst 2005; Andolfatto 2005; Lynch 2007; Zeng and Charlesworth 81 

2010; Choi and Aquadro 2016; Jackson et al. 2017), it is also clear that such sites near or in 82 

coding regions will also experience background selection (BGS; Charlesworth et al. 1993; 83 

Charlesworth 2013), and may periodically be affected by selective sweeps as well (Messer and 84 

Petrov 2013; Schrider et al. 2016). These effects are known to affect the local underlying 85 

effective population size, and alter both the levels and patterns of variation and linkage 86 

disequilibrium (Charlesworth et al. 1993; Kaiser and Charlesworth 2009; O’Fallon et al. 2010; 87 

Charlesworth 2013; Nicolaisen and Desai 2013; Ewing and Jensen 2016; Johri et al. 2020).  88 

 However, commonly-used approaches for performing demographic inference that assume 89 

complete neutrality, including fastsimcoal2 (Excoffier et al. 2013) and MSMC/PSMC (Li and 90 

Durbin 2011; Schiffels and Durbin 2014), have yet to be thoroughly evaluated in the light of this 91 

assumption, which is likely to be violated in practice. There are, however, some exceptions, as 92 
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well as subsequent suggestions on how best to choose the least-affected genomic data for 93 

analysis (Pouyet et al. 2018). Rather than investigating existing software, Ewing and Jensen 94 

(2016) implemented an approximate Bayesian (ABC) approach quantifying the impact of BGS 95 

effects, demonstrating that weak purifying selection can generate a skew towards rare alleles that 96 

would be mis-interpreted as population growth. Under certain scenarios, this resulted in a many-97 

fold mis-inference of population size change. However, the effects of the density of directly 98 

selected sites and the shape of the distribution of fitness effects (DFE), which are probably of 99 

great importance, have yet to be fully considered. Spanning the range of these potential 100 

parameter values is important for understanding the implications for empirical applications. For 101 

example, the proportion of the genome experiencing direct purifying selection can vary greatly 102 

between species, with estimates ranging from ~3-8% in humans, ~12% in rice, 37-53% in D. 103 

melanogaster, and 47-68% in S. cerevisiae (Siepel et al. 2005; Liang et al. 2018). Furthermore, 104 

many organisms have highly compact genomes, with ~88% of the E. coli genome (Blattner et al. 105 

1997), and effectively all of many virus genomes, being functional (e.g., >95% of the SARS-106 

CoV-2 genome, Wu et al. 2020).  107 

 While such estimates allow us to approximate the effects of BGS in some model 108 

organisms, in which recombination and mutation rates are well known, it is difficult to predict 109 

these effects in the vast majority of study systems. Moreover, while the genome-wide mean of B, 110 

a widely-used measure of BGS effects that measures the level of variability relative to neutral 111 

expectation, can range from ~0.45 in D. melanogaster to ~0.94 in humans (Charlesworth 2013; 112 

but see Pouyet et al. 2018), existing demographic inference approaches are usually applied 113 

across organisms without considering this important source of differences in levels of bias. Here, 114 

we examine the effects of the DFE shape and functional density on two common demographic 115 

inference approaches - the multiple sequentially Markovian coalescent (MSMC) and 116 

fastsimcoal2.  Finally, we propose an extension within the approximate Bayesian computation 117 

(ABC) framework to address this issue, treating the DFE as a nuisance parameter and 118 

demonstrating greatly improved demographic inference even when using directly selected sites 119 

alone. 120 

 121 

 122 

 123 
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 124 

RESULTS AND DISCUSSION 125 

 126 

Effects of SNP numbers, density and genome size on inference under neutral equilibrium 127 

The accuracy and performance of demographic inference was evaluated using two popular 128 

methods, MSMC (Schiffels and Durbin 2014) and fastsimcoal2 (Excoffier et al. 2013). In order 129 

to assess performance, it was first necessary to determine how much genomic information is 130 

required to make accurate inference when the assumptions of neutrality are met. Chromosomal 131 

segments of varying sizes (1 Mb, 10 Mb, 50 Mb, 200 Mb, and 1 Gb) were simulated under 132 

neutrality and demographic equilibrium (i.e., a constant population size of 5000 diploid 133 

individuals) with 100 independent replicates each. For each replicate this amounted to the mean 134 

[SD] number of segregating sites for each diploid individual being 1,944 [283], 9,996 [418], 135 

40,046 [957] and 200,245 [1887]; for 50 diploid individuals, these values were 10,354 [225], 136 

51,863 [567], 207,118 [1139] and 1,035,393 [2476] for 10 Mb, 50 Mb, 200 Mb and 1 Gb, 137 

respectively. Use of MSMC resulted in incorrect inferences for all segments smaller than 1 Gb 138 

(Supp Figures 1, 2). Specifically, very strong recent growth was inferred instead of demographic 139 

equilibrium, although ancestral population sizes were correctly estimated. In addition, when two 140 

or four diploid genomes were used for inference, MSMC again inferred a recent many-fold 141 

growth for all segment sizes even when the true model was equilibrium, but performed well 142 

when using 1 diploid genome with large segments (Supp Figures 1, 2). These results suggest 143 

caution when performing inference with MSMC on smaller regions or genomes, specifically 144 

when the number of SNPs is less than ~200,000 per single diploid individual. Extra caution 145 

should be used when interpreting population size changes inferred by MSMC when using more 146 

than 1 diploid individual. 147 

 When using fastsimcoal2 to perform demographic inference, parameters were accurately 148 

estimated for all chromosomal segment sizes when the correct model (i.e., equilibrium) was 149 

specified (Supp Table 1). However, when model selection was performed using a choice of four 150 

models (equilibrium, instantaneous size change, exponential size change, and instantaneous 151 

bottleneck), the correct model was chosen more often (~30% of replicates) when the simulated 152 

chromosome sizes were small (1 and 10 Mb), while an alternative model of either instantaneous 153 

size change or instant bottleneck was increasingly preferred for larger regions (Supp Tables 2, 3), 154 
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although the estimates of ancestral sizes were correct. This finding suggests that the non-155 

independence of SNPs may result in model mis-identification. Indeed, since the model choice 156 

procedure assumes that SNPs are independent, the true number of independent SNPs is 157 

overestimated, which results in an overestimation in the confidence of the model choice with 158 

increasing amount of data. However, it is interesting to note that the parameter values underlying 159 

the non-constant size preferred model were often pointing towards a constant-population size 160 

(see below). When model selection was performed using sparser SNP densities (i.e., 1 SNP per 5 161 

kb, 50 kb or 100 kb), the correct model was recovered for longer chromosomes up to 200 Mb 162 

(Supp Tables 2, 3; Supp Figures 3, 4), although model selection was slightly less accurate for 163 

smaller chromosomes due to the decrease in the total amount of data. As suspected, the biases 164 

introduced by the non-independence of SNPs were found to be concordant with the level of 165 

linkage disequilibrium amongst SNPs used for the analysis (for 10 SNP windows, in which SNPs 166 

were separated by 50 kb (100 kb), mean 𝑟! = 0.027 (0.020), compared to the all-SNP mean 𝑟! of 167 

0.118, and to the completely unlinked SNPs mean 𝑟! of 0.010; Supp Table 4). Additionally, AIC 168 

performed on partially linked SNPs may impose an insufficient penalty on larger number of 169 

parameters, resulting in an undesirable preference for parameter-rich models. We found that 170 

implementing a more severe penalty improved inference considerably, even for 1 Gb 171 

chromosome sizes (Supp Table 5, 6). This model selection performance, the potential corrections 172 

related to increased penalties, as well as the total number of SNPs and SNP thinning, should be 173 

investigated on a case-by-case basis in empirical applications, owing to the contribution of 174 

multiple underlying parameters (e.g., chromosome length, recombination rates, and SNP 175 

densities). 176 

 In the light of this performance assessment, all further analyses were restricted to 177 

characterizing demographic inference on data that far exceeded 1 Gb and roughly matched the 178 

structure and size of the human genome - for every diploid individual, 22 chromosomes 179 

(autosomes) of size 150 Mb each were simulated, which amounted to roughly 3 Gb of total 180 

sequence. Ten independent replicates of each parameter combination were performed 181 

throughout, and inference utilized one and fifty diploid individuals for MSMC and fastsimcoal2, 182 

respectively.  183 

 184 

 185 
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Effect of the strength of purifying selection on demographic inference 186 

In order to test the accuracy of demographic inference in the presence of BGS, all 22 187 

chromosomes were simulated with exons of size 350 bp each, with varying sizes of introns and 188 

intergenic regions (see Methods) in order to vary the fraction (5%, 10% and 20%) of the genome 189 

under selection. Because the strength of selection acting on deleterious mutations affects the 190 

distance over which the effects of BGS extend, demographic inference was evaluated for various 191 

DFEs (Table 1). The DFE was modelled as a discrete distribution with four fixed classes: 0 ≤192 

2𝑁"#$𝑠 < 1, 1 ≤ 2𝑁"#$𝑠 < 10, 10 ≤ 2𝑁"#$𝑠 < 100 and 100 < 2𝑁"#$𝑠 < 2𝑁"#$ ,	where 𝑁"#$ 193 

is the ancestral effective population size and 𝑠 is the reduction in the fitness of the homozygous 194 

mutant relative to wildtype. The fitness effects of mutations were uniformly distributed within 195 

each bin, and assumed to be semi-dominant, following a multiplicative fitness model for multiple 196 

loci; the DFE shape was altered by varying the proportion of mutations belonging to each class, 197 

given by f0,	f1,	f2, and f3, respectively (see Methods). Three DFEs highly skewed towards a 198 

particular class were initially used to assess the impact of the strength of selection on 199 

demographic inference (with the remaining mutations equally distributed amongst the other three 200 

classes): DFE1: a DFE in which 70% of mutations have weakly deleterious fitness effects (i.e., f1	201 

=	0.7); DFE2: a DFE in which 70% of mutations have moderately deleterious fitness effects 202 

(i.e., f2	=	0.7); and DFE3: a DFE in which 70% of mutations have strongly deleterious fitness 203 

effects (i.e., f3	=	0.7). A DFE with equal proportions of all deleterious classes (i.e., DFE4: 𝑓% =204 

𝑓& = 𝑓! = 𝑓' = 0.25) was also simulated to evaluate the combined effect of different selective 205 

strengths. In addition, two bimodal DFEs consisting of only the neutral and the strongly 206 

deleterious class of mutations were simulated to characterize the role of strongly deleterious 207 

mutations (DFE5: a DFE in which 50% of mutations have strongly deleterious effects (i.e., f3	=	208 

0.5)	with the remaining being neutral; and DFE6: a DFE in which 30% of mutations were 209 

strongly deleterious (i.e., f3	=	0.3)	with the remaining being neutral). 210 

In order to understand the effects of BGS, exonic sites were masked, and only linked 211 

neutral intergenic and intronic sites were used for demographic inference by both MSMC and 212 

fastsimcoal2 (although comparisons are presented under certain models to analyses based on 213 

non-masked datasets). The three demographic models examined were (1) demographic 214 

equilibrium, (2) a 30-fold exponential growth, mimicking the recent growth experienced by 215 

European human populations, and (3) ~6-fold instantaneous decline, mimicking the out-of-216 
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Africa bottleneck in human populations (Figure 1a). Although these models were parameterized 217 

using previous estimates of human demographic history (Supp Table 7; Gutenkunst et al. 2009), 218 

these basic demographic scenarios are applicable to many organisms, although the magnitudes of 219 

population size changes in this case may represent an extreme. Under neutrality, inference of 220 

parameters of all three simulated demographic models was highly accurate with both MSMC and 221 

fastsimcoal2 (Figure 1a; Supp Table 8). However, when inferring parameters using fastsimcoal2, 222 

the time of change in case of the population decline model was consistently over-estimated when 223 

SNPs separated by 5 kb were used, while the time was accurately inferred when using all SNPs 224 

(Supp Table 8). We therefore present our results using all SNPs throughout (with comparisons to 225 

1 SNP per 5 kb and 1 SNP per 100 kb thinning, under certain models), and recommend caution 226 

when implementing thinning procedures. 227 

 Under demographic equilibrium, when 20% of the genome experiences direct selection 228 

(with masking of the directly selected sites), we found the true population size to be 229 

underestimated as expected, and recent population growth mis-inferred (Figure 1, Supp Figure 230 

5), even when only 1 SNP per 100kb was used and a higher AIC penalty was employed (Supp 231 

Figure 6). Conversely, when the true demographic model was characterized by a recent 30-fold 232 

growth, demographic inference was accurate and performed equally well for both MSMC and 233 

fastsimcoal2, with the exception of a slight underestimation of the ancestral population size for 234 

all DFE types. When the true model was population decline, weakly deleterious mutations alone 235 

did not affect inference drastically with either method, and it was possible to recover the true 236 

model (i.e., decline vs growth) by fastsimcoal2 in all replicates (Supp Figure 7). However, 237 

moderately and strongly deleterious mutations resulted in an underestimation of population size 238 

and the inference of an instantaneous bottleneck and strong recent growth respectively, to the 239 

extent that population decline was misinterpreted as a bottleneck/growth in all replicates (Supp 240 

Figures 5,7). Strong recent growth was inferred (in the presence of moderately and strongly 241 

deleterious mutations) even when SNPs separated by 100 kb were used, and an increased penalty 242 

was employed against parameter-rich models (Supp Figure 6). We further tested the effect of 243 

BGS on demographic inference when changes in population size were less severe, namely, when 244 

population growth and decline were only 2-fold, with qualitatively similar results (Supp Figure 245 

8).  246 
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 Finally, given the strong evidence that most organisms have a bi-modal DFE with a 247 

significant proportion of strongly deleterious or lethal mutations (Sanjuán 2010; Jacquier et al. 248 

2013; Kousathanas and Keightley 2013; Bank et al. 2014; Charlesworth 2015; Galtier and 249 

Rousselle 2020), we investigated the effect of this strongly deleterious class further. Thus, for 250 

comparison with the above, we simulated a rather extreme case in which 30% or 50% of exonic 251 

mutations were strongly deleterious with fitness effects uniformly sampled between 100	£	252 

2Nancs	£	2Nanc, with the remaining mutations being neutral (i.e., DFE5 and DFE6; see Table 1). 253 

As with the above results, both equilibrium and decline models were falsely inferred as growth, 254 

with an order of magnitude underestimation of the true population size (Figure 2). 255 

 In sum, neglecting BGS frequently results in the inference of population growth, almost 256 

regardless of the true underlying demographic model. 257 

 258 

Effects of density and inclusion/exclusion of directly selected sites on inference 259 

Although we have shown that the presence of purifying selection biases demographic inference, 260 

the extent of mis-inference necessarily depends on the fraction of the genome experiencing direct 261 

selection. We therefore compared models in which 5%, 10% or 20% of the genome was 262 

functional. For this comparison, equal proportions of mutations in each DFE bin were assumed 263 

corresponding to DFE4 (Table 1). As before, when the true model was growth, inference was 264 

unbiased, with a slight underestimation of ancestral population size when 20% of the genome 265 

experienced selection (Figure 3). Population decline was inferred reasonably well if less than 266 

10% of the genome experienced direct selection, but could be mis-inferred as growth with 267 

greater functional density, as shown in Figure 3. Similarly, the extent to which population size 268 

was under-estimated at demographic equilibrium increased with the fraction of the genome under 269 

selection. Finally, it is noteworthy that many changes in population size that were falsely inferred 270 

were greater than 2-fold in size, suggesting the need for great caution when inferring such 271 

changes from real data.  272 

 Importantly, the results presented do not significantly differ between inference performed 273 

while including directly selected sites (i.e., no masking of functional regions; Supp Figure 9) 274 

versus inference performed using linked neutral sites (i.e., masking functional regions; Figures 1-275 

3). These results suggest that the exclusion of exonic sites, which is often assumed to provide a 276 

sufficiently neutral dataset to enable accurate demographic inference, is not necessarily a 277 
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satisfactory solution unless gene density is low. For example, demographic inference would 278 

naturally be expected to be less biased by BGS for human-like genomes with a relatively low 279 

functional density, and more biased in genomes with higher functional density like D. 280 

melanogaster. 281 

 282 

Effect of BGS on model selection and inferred time of size change using fastsimcoal2 283 

In order to quantify the effects of BGS on model selection, four competing models were used for 284 

inference: equilibrium, instantaneous size change (growth/decline), exponential size change 285 

(growth/decline), and an instantaneous bottleneck. Although demographic equilibrium was 286 

almost always inferred as an instantaneous size change (70-100% of replicates), the fitted 287 

parameters of the size change model were nearly indistinguishable from the correct model 288 

(Figure 1a). In other words, the inferred size change was so inconsequential so as to be nearly a 289 

constant-size model, suggesting that parameter estimation is usually more reliable than model 290 

selection. When there was a substantial proportion of highly deleterious mutations (DFE3 and 291 

DFE5), exponential growth was generally inferred. However, when there was a true size change, 292 

fastsimcoal2 performed well in distinguishing between exponential vs. instantaneous change 293 

models even in the presence of BGS (Supp Figures 5, 6), provided that the magnitude of size 294 

change was large. When size changes were on the order of 2-fold, exponential growth was 295 

consistently inferred to be instantaneous.  296 

 With respect to model choice between growth and decline in the presence of BGS 297 

(irrespective of instantaneous vs. exponential change), as the density of selected sites and 298 

strength of purifying selection increased, both equilibrium and decline models were more likely 299 

to be inferred as growth and occasionally as instantaneous bottlenecks (Supp Figure 7), while 300 

true growth models were generally chosen correctly. It should be added that with such large 301 

chromosome sizes (3 Gb of total sequence data), model selection was not observed to vary 302 

between replicates using fastsimcoal2 for any given parameter combination. Thus, in the 303 

presence of BGS, high-confidence calls of an incorrect underlying demographic model appear 304 

likely.   305 

 With regard to the time of inferred size change, when the true model was exponential 306 

growth, the model was always correctly identified and inference of the time of change was 307 

slightly under-estimated in the presence of BGS (Supp Figures 10, 11), consistent with the fact 308 
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that BGS will further skew the site frequency spectrum towards rare alleles. When the true model 309 

was decline, and the model was correctly identified as such, the time of change was modestly 310 

over-estimated (Supp Figures 12, 13) – up to ~2-fold for 6× growth and 2.5-fold for 2× growth 311 

(when 20% of the genome was exonic).  312 

 313 

Effect of heterogeneity in recombination rates, mutation rates, and repeat masking 314 

Variation in recombination and mutation rates, as well as the masking of repeat regions, may 315 

also affect demographic inference procedures. We evaluated this issue by simulating 316 

heterogeneity in both mutation and recombination rates (based on estimated human genome 317 

maps, as described in the Methods section), and masking 10% of each simulated segment 318 

drawing from the empirical distribution of repeat lengths in the human genome (Supp Figure 14). 319 

In general, inferences under neutrality (Supp Figures 15-17) as well as under BGS (Supp Figures 320 

18-20) were not affected to a great extent, suggesting such heterogeneity to have a comparatively 321 

minor role for the parameter space considered in this study. Thus, serious mis-inference is more 322 

likely to be caused by selection. These observations also suggest that simulations performed with 323 

mean rates of recombination and mutation, as in this study, are sufficient to evaluate biases 324 

caused by BGS.   325 

 326 

Effects of BGS on diversity and the SFS under various demographic models: theoretical 327 

expectations versus simulation results 328 

To better understand how BGS can lead to different biases in the inference of population history, 329 

we investigated the extent of BGS effects under all three demographic models, with respect to 330 

both the expected diversity in the presence of BGS relative to neutrality (B), as well as the shape 331 

of the SFS at linked neutral sites. First, we found that B differed among demographic scenarios, 332 

with much lower values in the case of equilibrium and decline, concordant with stronger 333 

demographic mis-inference (Figure 4). After a population decline, B was lower than that before 334 

the size change; while after population expansion, B increased relative to that in the ancestral 335 

population, sometimes approaching 1 (Figure 4). This may seem paradoxical, given that the 336 

magnitude of the scaled selection coefficient (2Nes) decreases with decreasing Ne (i.e., the 337 

efficacy of purifying selection decreases, and could thus be expected to result in larger values of 338 

B under population decline). Conversely, with increasing Ne, B should be expected to reduce.   339 
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 However, these expectations apply only once a population has maintained a given Ne for 340 

sufficient time such that mutation-drift-equilibrium has been approached. During the initial 341 

stages of population size change, and shortly afterwards, the dynamics of B tend to show a trend 342 

opposing these long-term expectations (see also Figure 5 of Torres et al. 2020). This is because 343 

differences in Ne caused by different initial levels of BGS cause differences in the rates of 344 

response to changes in population size –  a small value of Ne  (corresponding to low B) results in 345 

a faster response compared with a high value (Fay and Wu 1999; Hey and Harris 1999; Pool and 346 

Nielsen 2007; Pool and Nielsen 2009; Campos et al. 2014; Torres et al. 2020). In other words, 347 

diversity in a growing population will increase more rapidly in regions experiencing stronger 348 

BGS than in completely neutral regions, while diversity in a declining population will decrease 349 

at a faster rate in regions with BGS relative to those with neutrality, resulting in temporarily 350 

higher and lower B, respectively. The relative diversity values observed with different initial 351 

equilibrium B	values after a short period of population size change may thus be very different 352 

from both the initial and final equilibrium values. The overall effect is that there is an apparent 353 

increase in B immediately following a population decline, and a decrease immediately following 354 

an expansion. Analytical models describing these effects are presented in the Appendix. These 355 

models used the simulated values of B at equilibrium before the population size changes to 356 

predict the apparent B values at the ends of the periods of size change (see the Methods and 357 

Appendix). It can be seen from Figure 4 that there is good agreement between these predictions 358 

and the simulation results.  359 

Because several demographic estimation methods are based on fitting a demographic 360 

model to the SFS, it is also of interest to determine whether BGS can skew the SFS to different 361 

extents under different demographic models. Although it is well known that BGS causes a skew 362 

of the SFS towards rare variants under equilibrium models (Charlesworth et al. 1995; Nicolaisen 363 

and Desai 2013), the effect of BGS on the SFS with population size change has not been much 364 

explored (but see Johri et al. 2020; Torres et al. 2020). As shown in Figure 5, with a population 365 

size decline, the SFS of derived alleles is more skewed towards rare variants when BGS is 366 

operating, especially when B is initially small, since the effects of BGS work in opposition to the 367 

effects of the population size reduction. This difference in the left skew of the SFS with and 368 

without BGS is much less noticeable in the case of population expansion, since here the effects 369 

of BGS and the expansion act in a similar direction.  370 
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As with the estimates of the apparent B values discussed above, analytical predictions of 371 

the expected SFS after an instantaneous / exponential change in population size can be made, 372 

using the values of B and the SFS at equilibrium in the ancestral population before the population 373 

size change using the formulae of Polanski and Kimmel (2003) and Polanski et al. (2003) for the 374 

purely neutral case, as described in the Methods section. Importantly, the use of the B parameter 375 

does not in itself cause a skew in the SFS, it merely affects overall diversity values. Figure 5 376 

shows that the overall shape of the SFS is predicted reasonably well by the analytical results, 377 

although deviations are to be expected for the rare allele classes, which are the most sensitive to 378 

demographic change and selection. Overall, the results imply that BGS is more likely to bias 379 

demographic inference post-decline compared with post-expansion, consistent with the 380 

performance of the methods described above. Although it is notable that the SFS can be 381 

reasonably well predicted by correcting for the re-scaling effects of BGS if the effects of BGS in 382 

the ancestral population are accurately known, the exact allele frequency patterns observed will 383 

depend on the timing of population size changes relative to the time of sampling, as well as the 384 

value of B prior to the size change. The patterns described here thus represent only a small subset 385 

of the possibilities.  386 

 387 

A potential solution: averaging across all possible DFEs 388 

As shown above, demographic inference can be strongly affected by BGS effects that have not 389 

been taken into account, as well as by direct purifying selection. A potential solution is thus to 390 

correct for these effects when performing inferences of population history. A widely-used 391 

approach to estimating direct selection effects, DFE-alpha, takes a stepwise approach to inferring 392 

demography, by using a presumed neutral class (synonymous sites); conditional on that 393 

demography, it then estimates the parameters of the DFE (Keightley and Eyre-Walker 2007; 394 

Eyre-Walker and Keightley 2009; Schneider et al. 2011; Kousathanas and Keightley 2013). 395 

However, this approach does not include the possibility of effects of selection at linked sites, 396 

which can result an over-estimate of population growth, and while the DFE may not be mis-397 

inferred strongly (Kim et al. 2017), there is substantial mis-inference of the DFE if synonymous 398 

sites experience direct selection (Johri et al. 2020).  399 

 Building on this idea, Johri et al. (2020) recently proposed an approach that includes both 400 

direct and background effects of purifying selection, and simultaneously infers the deleterious 401 
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DFE and demography. By utilizing the decay of BGS effects around functional regions, they 402 

demonstrated high accuracy under the simple demographic models examined. Moreover, the 403 

method makes no assumptions about the neutrality of synonymous sites, and can thus be used to 404 

estimate selection acting on these sites, as well as in non-coding functional elements. However, 405 

this computationally-intensive approach is specifically concerned with jointly inferring the DFE 406 

and demographic parameters. As such, if an unbiased characterization of the population history 407 

is the sole aim, this procedure may be needlessly involved. We thus here examine the possibility 408 

of instead treating the DFE as an unknown nuisance parameter, averaging across all possible 409 

DFE shapes, in order to assess whether demographic inference may be improved simply by 410 

correcting for these selection effects without inferring their underlying parameter values. This 411 

approach utilizes functional (i.e., directly selected) regions, a potential advantage in populations 412 

for which only coding data may be available (e.g., exome-capture data; see Jones and Good 413 

2016), or more generally in organisms with largely functional genomes. 414 

In order to illustrate this approach, a functional genomic element was simulated under 415 

demographic equilibrium, 2-fold exponential population growth and 2-fold exponential 416 

population decline with four different DFE shapes (as described previously, and shown in Figure 417 

6).  A number of summary statistics were calculated (see Methods) for the entire functional 418 

region. Inference was first performed assuming strict neutrality, and inferring a one-epoch size 419 

change (thus estimating the ancestral (Nanc) and current population sizes (Ncur)). As was found 420 

with the other inference approaches examined, population sizes were underestimated and a false 421 

inference of population growth was observed in almost all cases when selective effects are 422 

ignored (Figure 6).  423 

Next, the assumption of neutrality was relaxed, and mutations were simulated with fitness 424 

effects characterized by a discrete DFE, with the fitness classes used above (f0,	f1,	f2,	f3). Values 425 

for fi	were drawn from a uniform prior between 0 and 1, such that ∑fi	=	1. Note that no 426 

assumptions were made about which sites in the genomic region were functionally important, or 427 

regarding the presence/absence of a neutral class. These directly selected sites were then used to 428 

infer demographic parameters. We found that, by varying the shape of the DFE, averaging across 429 

all realizations, and only estimating parameters related to population history, highly accurate 430 

inference of modern and ancestral population sizes is possible (Figure 6). These results 431 

demonstrate that, even if the true DFE of a population is unknown (as will always be the case in 432 
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reality), it is possible to infer demographic history with reasonable accuracy by approximately 433 

correcting for these selective effects.  434 

This proposed method is most applicable to organisms in which recombination rates are 435 

reasonably well known. If the assumed recombination rate is 2-fold lower than the true rate, the 436 

ABC approach infers growth by over-estimating the current population size; correspondingly, if 437 

the assumed recombination rate is higher than the true rate, the current population size is under-438 

estimated (Supp Figure 21). Interestingly, in both cases the ancestral population sizes are 439 

correctly inferred, consistent with previous results (Johri et al. 2020). 440 

 441 

 442 

CONCLUSIONS 443 

 444 

While commonly used approaches for inferring demography assume neutrality and independence 445 

among segregating sites, these assumptions are likely to be violated in practice.  In addition, 446 

there is considerable evidence for wide-spread effects of selection at linked sites in many 447 

commonly studied organisms (Hernandez et al. 2011; Cutter and Payseur 2013; Williamson et al. 448 

2014; Elyashiv et al. 2016; Campos et al. 2017; Booker and Keightley 2018; Pouyet et al. 2018; 449 

Ragsdale et al. 2018; Torres et al. 2018; Castellano et al. 2020). Accordingly, we have explored 450 

how violations of the assumption of neutrality may affect demographic inference, particularly 451 

with regard to the underlying strength of purifying selection and the genomic density of directly 452 

selected sites.  Generally speaking, the neglect of these effects (i.e., background selection) results 453 

in an inference of population growth, with the severity of the growth model roughly scaling with 454 

selection strength and density, as well as the inference of historical bottlenecks with some 455 

frequency. Thus, when the true underlying model is in fact growth, demographic mis-inference is 456 

not particularly severe; when the true underlying model is constant size or decline, the mis-457 

inference can be extreme, with a many-fold underestimation of population size.  458 

 However, given that BGS will lead to the false inference of recent growth nearly 459 

regardless of the true history, it would be difficult in practice to determine the accuracy of this 460 

model without independent information on any given empirical application. Moreover, as the 461 

two very different methods investigated here result in highly similar mis-inference, we propose 462 

that this performance is unlikely to be a feature of these specific approaches, but rather a 463 
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quantification of the fact that the underlying genealogies are distorted in the presence of BGS. 464 

Thus, these problems are likely to be common to all demographic inference based on 465 

polymorphism data. 466 

 It is important to note that BGS effects extend over genomic distances in a way that is 467 

positively related to the strength of purifying selection. For instance, strongly and moderately 468 

deleterious mutations affect patterns of diversity at large genomic distances, whereas mildly 469 

deleterious mutations primarily skew allele frequencies at adjacent sites. Thus, if intergenic 470 

regions further away from exons are used to perform demographic inference, it is predominantly 471 

moderately deleterious mutations that are likely to bias inferences; if these are relatively rare, 472 

they may not cause significant problems. In contrast, if synonymous sites are used to infer 473 

demographic history, mildly deleterious mutations arising in the coding sequences to which they 474 

belong may have significant effects. As we have focused here on relatively sparsely-coding 475 

genomes (with human-like gene densities) and used intergenic sites for inference, moderately 476 

deleterious mutations resulted in more severe mis-inference. The effect of the decay with 477 

distance of BGS due to mildly deleterious mutations depends on multiple parameters. For 478 

instance, with an exon of length 500 bp and Drosophila-like parameters (e.g., Ne	=	106; 479 

recombination rate = mutation rate = 10-8 / site / generation), B increases from 0.53 (at 10 bases 480 

from the end of the exon) to 0.94 at a distance of 1000 bases. On the other hand, with human-like 481 

parameters (Ne	=	104; recombination rate = mutation rate = 10-8 / site / generation) the 482 

corresponding change in B is only from 0.981 to 0.982 (Supp Table 9).  483 

Thus, mildly deleterious mutations have drastically different effects, depending on the 484 

underlying population parameters. While these results certainly suggest that demographic 485 

inference ought to be less biased by BGS in neutral regions very distant from functional elements 486 

(for species with sufficiently high recombination / functionally sparse genomes), it is noteworthy 487 

that purifying selection on moderately and strongly deleterious mutations can have long-range 488 

effects, and that the complex interaction of population history with purifying / background 489 

selection necessitates a consideration of this topic in any given empirical application.  490 

Comparing the two inference methods investigated here, it appears that fastsimcoal2 is 491 

less prone to inferring false fluctuations in population size.  However, both methods falsely infer 492 

growth in the presence of BGS, with increasing severity as the density of coding regions 493 

increases. The times of population growth inferred by both methods appear to be affected in 494 
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unpredictable ways when the inferred model is incorrect. When the general model is correctly 495 

identified, BGS leads to inference of more recent growth, and more ancient decline, than the 496 

reality. In addition, although variation in mutation and recombination rates across the genome 497 

alone did not strongly affect demographic inference, our evaluations in the current study are 498 

restricted to a specific parameter space resembling those of human populations. The effects of 499 

this variation on organisms with more extreme rate fluctuations remain in need of investigation. 500 

It is noteworthy that, even when all sites are strictly neutral or only 5% of the genome 501 

experiences direct selection, demographic equilibrium is mis-estimated by MSMC as a series of 502 

size changes. The pattern of these erroneous size changes lend a characteristic shape to the 503 

MSMC curve (i.e., ancient decline and recent growth) which appears to resemble the 504 

demographic history previously inferred for the Yoruban population (Schiffels and Durbin 505 

2014), including the time at which changes in population size occurred (Supp Figure 22). 506 

Previous work has demonstrated that the resulting demographic model does not in fact fit the 507 

observed SFS in the Yoruban population (Beichman et al. 2017; Lapierre et al. 2017). A similar 508 

shape has also been inferred in the vervet subspecies (Warren et al. 2015; Figure 4), in passenger 509 

pigeons (Hung et al. 2014; Figure 2), in elephants (Palkopoulou et al. 2018; Figure 4), in 510 

Arabidopsis (Fulgione et al. 2018; Figure 3), and in grapevines (Zhou et al. 2017; Figure 2A). 511 

Although the inferred population size fluctuations under simulated neutrality are only 512 

~1.2-fold, in most empirical applications the fluctuations are of a somewhat larger magnitude (~ 513 

2-fold in pigeons, Arabidopsis, and grapevines).  Nonetheless, this performance of MSMC under 514 

neutral demographic equilibrium is concerning, and adds to the other previously published 515 

cautions concerning the interpretation of MSMC results. For example, Mazet et al. (2016) and 516 

Chikhi et al. (2018) demonstrated that, under constant population size with hidden structure, 517 

MSMC may suggest false size changes (see also Orozco-terWengel 2016). In addition, MSMC 518 

has been reported to falsely infer growth prior to instantaneous bottlenecks (Bunnefeld et al. 519 

2015). In addition, we observed that, if insufficient genomic data are used, or more than one 520 

diploid genome is used to perform inference, MSMC falsely infers recent growth of varying 521 

magnitudes, the latter having been previously observed by Beichman et al. (2017) and Adrion et 522 

al. (2020).  523 

In sum, we find that the effects of purifying and background selection result in similar 524 

demographic mis-inference across approaches, and that masking functional sites does not yield 525 
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accurate parameter estimates. In order to side-step many of these difficulties, our proposed 526 

approach of inferring demography by averaging selection effects across all possible DFE shapes 527 

within an ABC framework appears to be promising. Utilizing only functional regions, we found 528 

a great improvement in accuracy, without making any assumptions regarding the true underlying 529 

shape of the DFE or the neutrality of particular classes of sites. As such, this approach represents 530 

a more computationally efficient avenue if only demographic parameters are of interest, and 531 

ought to be particularly useful in the great majority of organisms in which independent neutral 532 

sites either do not exist, or are difficult to identify and verify. 533 

 534 

 535 

 536 

METHODS 537 

 538 

Simulations of chromosomal segments under neutral equilibrium: When assessing the amount 539 

of genomic information required for accurate demographic inference, chromosomal segments of 540 

varying sizes (1 Mb, 10 Mb, 50 Mb, 200 Mb and 1 Gb) were simulated under neutral 541 

equilibrium. In all cases, the effective population size (𝑁() simulated was 5000, and mutation 542 

and recombination rates were both 1	 ×	10)* per site per generation. Simulations were 543 

performed with both SLiM 3.1 (Haller and Messer 2019) for a 10𝑁( generation burn-in, and with 544 

msprime 0.7.3 (Kelleher et al. 2016). In all cases 100 replicates were simulated, with the 545 

exception of 1 Gb chromosomes simulated by SLiM, in which only 10 replicates were obtained. 546 

 547 

Simulations of human-like chromosomes (with and without selection): Simulations were 548 

performed using SLiM 3.1 (Haller and Messer 2019) for a burn-in of 10𝑁"#$ generations, with 549 

10 replicates per evolutionary scenario. For every replicate, 22 chromosomes of 150Mb each 550 

were simulated, totaling ~3 Gb of information per individual genome (similar to the amount of 551 

information in a human genome). Within each chromosome, 3 different types of regions were 552 

simulated, representing non-coding intergenic, intronic, and exonic regions. Based on the NCBI 553 

RefSeq human genome annotation, downloaded from the UCSC genome browser for hg19 554 

(http://genome.ucsc.edu/; Kent et al. 2002), mean values of exon sizes and intron numbers per 555 

gene were calculated. To represent mean values for the human genome (Lander et al. 2001), each 556 
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gene comprised 8 exons and 7 introns, and exon lengths were fixed at 350 bp. By varying the 557 

lengths of the intergenic and intronic regions, three different genomic configurations with 558 

varying densities of functional elements were simulated and compared - with 5%, 10% and 20% 559 

of the genome being under direct selection - hereafter referred to as genome5, genome10, and 560 

genome20, respectively. Genome5 was comprised of introns of 3000 bp and intergenic sequence 561 

of 31000 bp, genome10 of introns of 1500 bp and intergenic sequence of 15750 bp, while 562 

genome20 was comprised of introns of 600 bp and intergenic sequence of 6300 bp. The total 563 

chromosome sizes of these genomes were approximately 150 Mb (150,018,599 bp, 150,029,949 564 

bp, and 150,003,699 bp) with 2737, 5164, and 11278 genes per chromosome in genome5, 565 

genome10, and genome20, respectively. In order to be conservative with respect to the 566 

performance of existing demographic estimators, intronic and intergenic regions were assumed 567 

to be neutral. 568 

 Recombination and mutation rates were assumed to be equal to 1	x	10-8 /site / generation. 569 

Neither crossover interference nor gene conversion were modeled (see the discussion in Campos 570 

and Charlesworth 2019). Exonic regions in the genomes experienced direct purifying selection 571 

given by a discrete DFE comprised of 4 fixed classes (Johri et al. 2020), whose frequencies are 572 

denoted by fi: f0, with 0	£	2Nes	<	1 (i.e., effectively neutral mutations), f1,	with 1	£	2Nes	<	10 573 

(i.e., weakly deleterious mutations), f2, with 10	£	2Nes	<	100 (i.e., moderately deleterious 574 

mutations), and f3, with 100	£	2Nes	<	2Ne (i.e., strongly deleterious mutations), where Ne	is the 575 

effective population size and s is the reduction in fitness of the mutant homozygote relative to 576 

wild-type. Within each bin, the distribution of s was assumed to be uniform. All mutations were 577 

assumed to be semi-dominant. In all cases, the Ne	corresponding to the DFE refers to the 578 

ancestral effective population size.  579 

 Six different types of DFE were simulated, described by the parameters provided in Table 580 

1. Three different demographic models were tested for each of these DFEs (Supp Table 7): 1) 581 

demographic equilibrium, 2) recent exponential 30-fold growth, resembling that estimated for 582 

the human CEU population (Gutenkunst et al. 2009), and 3) ~6-fold instantaneous decline, 583 

resembling the out-of-Africa bottleneck in humans (Gutenkunst et al. 2009). For simulations of 584 

demographic equilibrium and decline, population sizes and time of change were scaled down by 585 

a factor of 10 (with corresponding scaling of the recombination rate, mutation rate, and selection 586 

coefficients), while simulations of growth were not scaled.  587 
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 588 

Running MSMC: In order to quantify the effect of purifying selection on demographic 589 

inference, we used entire chromosomes generated by SLiM to generate input files for MSMC. 590 

For comparison, and in order to quantify the effect of BGS alone on demographic inference, we 591 

masked the exonic regions to generate input files. For all parameters, MSMC was performed on 592 

a single diploid genome, as the results for this case were the most accurate (Supp Figure 1, 2). 593 

Input files were made using the script ms2multihetsep.py provided in the msmc-tools-Repository 594 

downloaded from https://github.com/stschiff/msmc-tools. MSMC1 and 2 were run as follows: 595 

msmc_1.1.0_linux64bit -t 5 -r 1.0 -o output_genomeID input_chr1.tab input_chr2.tab … 596 

input_chr22.tab. Population sizes obtained from MSMC were plotted up to the maximum 597 

number of generations obtained from MSMC, and the final value of the ancestral population size 598 

was extended indefinitely as a dashed line. 599 

 600 

Running fastsimcoal2: Inference was performed by masking all exonic SNPs and using all 601 

intronic and intergenic SNPs in order to obtain the most accurate estimates. In order to minimize 602 

the effects of linkage disequilibrium (LD), SNPs separated by 5 kb or 100 kb were also used for 603 

inference in some cases to assess the impact of violating the assumption of independence. When 604 

choosing SNPs separated by a particular distance, the first SNP from each chromosome was 605 

chosen and if the distance to the next consecutive SNP was greater than or equal to 5 kb/100 kb, 606 

that SNP was included, otherwise the next downstream SNP was evaluated. Site frequency 607 

spectra (SFS) were obtained for all sets of SNPs for all 10 replicates of every combination of 608 

demographic history and DFE. SNPs from all 22 chromosomes were pooled together to calculate 609 

the SFS. In the case of SNPs separated by 5 kb/100 kb, the “0” class of the SFS was scaled down 610 

by the same extent as the decrease in the total number of SNPs. Fastsimcoal2 was used to fit 611 

each SFS to 4 distinct models: (a) equilibrium, which estimates only a single population size 612 

parameter (𝑁); (b) instantaneous size change (decline/growth), which fits 3 parameters - 613 

ancestral population size (𝑁"#$), current population size (𝑁$+,), and time of change (𝑇); (c) 614 

exponential size change (decline/growth), which also estimates 3 parameters - 𝑁"#$, 𝑁$+, 	and 𝑇; 615 

and (d) an instantaneous bottleneck model with 3 parameters – 𝑁"#$, intensity, and time of 616 

bottleneck. The parameter search ranges for both ancestral and current population sizes in all 617 

cases were specified to be uniformly distributed between 100-500000 individuals, while the 618 
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parameter range for time of change was specified to be uniform between 100-10000 generations 619 

in all models. The intensity of the bottleneck was sampled from a log-uniform distribution 620 

between 10)- and 2. The following command line was used to run fastsimcoal2: 621 

fsc26 -t demographic_model.tpl -n 150000 -d -e demographic_model.est -M -L 50 -q, 622 

Model selection was performed as recommended by Excoffier et al. (2013). For each 623 

demographic model, the maximum of maximum likelihoods from all replicates was used to 624 

calculate the Akaike Information Criterion (AIC) = 2 × number of parameters – 2 × 625 

ln(likelihood) = 2 × number of parameters – 2 × ln(10) × 𝐿&%, where 𝐿&% is the logarithm (with 626 

respect to base 10) of the best likelihood provided by fastsimcoal2. For model choice 627 

comparison, we also implemented a stricter penalty of 25× (see Supp Table 5, 6), in which case 628 

AIC = 25 × number of parameters – 2 × ln(likelihood). The relative likelihoods (Akaike’s weight 629 

of evidence) in favor of the ith	model were then calculated as:  630 

𝑤(𝑖) =
𝑒)%.-∆!

∑ 𝑒)%.-∆"0
12&

	 631 

 where ∆3 	= 𝐴𝐼𝐶3 − 𝐴𝐼𝐶43#. The model with the highest relative likelihood was selected as the 632 

best model, and the parameters estimated using that model were used to plot the final inferred 633 

demography.  634 

 635 

Simulations of variable recombination and mutation rates, and repeat masking: In order to 636 

simulate variation in recombination and mutation rates, all 22 chromosomes were simulated by 637 

mimicking chromosome 6 (~171Mb) of the human genome. Recombination rates (HapMap) 638 

obtained from Yoruban populations (McVean et al. 2004; Myers et al. 2005) were obtained from 639 

the UCSC genome browser, while the mutation rate map 640 

(https://molgenis26.target.rug.nl/downloads/gonl_public/mutation_rate_map/release2/) was 641 

assumed to correspond to estimates obtained from de novo mutations (Francioli et al. 2015), as in 642 

Castellano et al. (2020). Absolute values of mutation rates were normalized in order to maintain 643 

the mean mutation rate across the genome at ~ 1.0	×	10-8 per site per generation. Recombination 644 

and mutation rate estimates were taken from positions of approximately 10 Mb to 160 Mb, with 645 

the recombination map starting at 10010063 bp and the mutation map starting at 10010001 bp. 646 

Regions with missing data for either of the two estimates were simulated with rates 647 

corresponding to the previous window, except for the case of centromeres in which no 648 
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recombination was assumed. In order to understand the effect of excluding centromeric regions 649 

in empirical studies, the 4Mb region corresponding to the centromere was masked, 650 

corresponding to 48.5 to 52.5 Mb of the simulated 150Mb chromosomes. In order to evaluate the 651 

effect of masking repeat regions, random segments comprising 10% of each chromosome were 652 

masked. The lengths of these segments were drawn from the lengths of repeat regions found in 653 

the human genome (Supp Figure 14), as obtained from the repeat regions in the hg19 assembly 654 

of the human genome from the UCSC genome browser. 655 

 656 

Performing inference by approximate Bayesian computation (ABC): ABC was performed 657 

using the R package “abc” (Csilléry et al. 2010), and non-linear regression aided by a neural net 658 

(used with default parameters as provided by the package) was used to correct for the 659 

relationship between parameters and statistics (Johri et al. 2020). To infer posterior estimates, a 660 

tolerance of 0.1 was applied (i.e., 10% of the total number of simulations were accepted by ABC 661 

in order to estimate the posterior probability of each parameter). The weighted medians of the 662 

posterior estimates for each parameter were used as point estimates. ABC inference was 663 

performed under two conditions: (1) complete neutrality, or (2) the presence of direct purifying 664 

selection. In both cases only 2 parameters were inferred - ancestral (Nanc) and current (Ncur) 665 

population sizes. However, in scenario 2, the shape of the DFE was also varied. Specifically, the 666 

parameters f0,	f1,	f2, and f3	were treated as nuisance parameters and were sampled such that 0	£	fi	667 

£	1, and Si	fi	=	1, for i = 0 to 3. In addition, in order to limit the computational complexity 668 

involved in the ABC framework, values of fi	were	restricted	to multiples of 0.05 (i.e., fi	ϵ {0.0, 669 

0.05, 0.10, …, 0.95, 1.0} ∀ i), which allowed us to sample 1,771 different DFE realizations. 670 

Simulations were performed with functional genomic regions, and the demographic model was 671 

characterized by 1-epoch changes in which the population either grows or declines exponentially 672 

from ancestral to current size, beginning at a fixed time in the past.  673 

 For the purpose of illustration, and for a contrast with the human-like parameter set 674 

above, parameters for ABC testing were selected to resemble those of D. melanogaster African 675 

populations. Priors on ancestral and current population sizes were drawn from a uniform 676 

distribution between 105-107 diploid individuals, while the time of change was fixed at 106 677 

(~𝑁() generations. In order to simulate functional regions, 94 single-exon genes, as described in 678 

Johri et al. (2020) and provided in 679 
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https://github.com/paruljohri/BGS_Demography_DFE/blob/master/DPGP3_data.zip, were 680 

simulated with recombination rates specific to those exons (https://petrov.stanford.edu/cgi-681 

bin/recombination-rates_updateR5.pl) (Fiston-Lavier et al. 2010; Comeron et al. 2012). Mutation 682 

rates were assumed to be fixed at 3	×	10-9 per site per generation (Keightley et al. 2009; 683 

Keightley et al. 2014).  684 

 All parameters were scaled by the factor 320 in order to decrease computational time, 685 

using the principle first described by Hill and Robertson (1966), and subsequently employed by 686 

others (Comeron and Kreitman 2002; Hoggart et al. 2007; Kaiser and Charlesworth 2009; Kim 687 

and Wiehe 2009; Uricchio and Hernandez 2014; Campos and Charlesworth 2019). The scaled 688 

population sizes thus ranged between ~300–30000 and were reported as scaled values in the 689 

main text. One thousand replicate simulations were performed for every parameter combination 690 

(Nanc,	Ncur,	f0,	f1,	f2,	f3); for performing ABC inference, 50 diploid genomes were randomly 691 

sampled without replacement, and summary statistics were calculated using pylibseq 0.2.3 692 

(Thornton 2003). The following summary statistics were calculated across the entire exonic 693 

region for every exon: nucleotide site diversity (p), Watterson’s q, Tajima’s D, Fay and Wu’s H 694 

(both absolute and normalized), number of singletons, haplotype diversity, LD-based statistics 695 

(r2,	D,	D´), and divergence (i.e., number of fixed mutations per site per generation after the burn-696 

in period). Means and variances (between exons) of all of the above (a total of 22) were used as 697 

final summary statistics to perform ABC. As opposed to the above examples, in this inference 698 

scheme only exonic data (i.e., directly selected sites) were utilized. Test datasets were generated 699 

in exactly the same fashion as described above. 700 

 701 

Analytical expectations for the relative site frequencies: To compute the expected relative 702 

frequencies of site frequency classes, the approach of Polanski and Kimmel (2003) was 703 

followed. They describe a method for computing the “probability that a SNP has b mutant 704 

bases”, which is equivalent to the expected site frequency spectrum (SFS) of derived variants. 705 

This method (their equations 3-10) allows for the specification of arbitrary population size 706 

histories and sample sizes. For reasons of computational precision, a sample size of 10 diploid 707 

genomes was chosen. The demographic scenarios were implemented as piecewise functions of 708 

the effective population size (counting haploid genomes), and the effect of BGS was included by 709 

scaling these functions by values of B before population size change as obtained from the 710 
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forwards-in-time simulations described above. A Mathematica notebook detailing these results is 711 

available online (see data availability statement). In addition, analytical expressions can be 712 

obtained for pairwise diversity values when there are step changes or exponential growth in 713 

population size, as described in the Appendix and in an example program that calculates 714 

diversity values after exponential growth. 715 

 716 

Data availability: The following data are publicly available: (1) The general workflow for 717 

simulating and performing demographic inference; (2) Scripts used for performing simulations, 718 

masking genomes, calculating the SFS, performing model selection and plotting the final results; 719 

(3) Input files used to run fastsimcoal2, including for the calculated SFS; (4) Output files of 720 

MSMC and fastsimcoal2 for all simulated scenarios; (5) A Mathematica (version 12.1) notebook 721 

detailing the calculations of analytical expectations for the relative SFS; (6) An example program 722 

(Fortran script) demonstrating how to obtain analytical expressions for values of B after 723 

exponential growth. All supplemental files, scripts, command lines, and descriptions may be 724 

found at: https://github.com/paruljohri/demographic_inference_with_selection 725 

 726 

 727 

 728 
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APPENDIX 739 

There are two scenarios of population size change for which simple explicit expressions for the 740 

expected pairwise coalescent time or diversity can be obtained, without using the methodology of 741 

Polanski and Kimmel (2003) and Polanski et al. (2003) – a step change in N or an exponential growth 742 

in N. First consider the coalescent process for a step change, where the current and initial effective 743 

population sizes are denoted by Ne1 and Ne0, respectively. Let B be the background selection parameter 744 

at the start of the process of change, corresponding to effective size Ne0. For convenience, time is 745 

scaled in units of 2Ne1 generations, and the time of the change in population size on this scale is 746 

denoted byT0, counting back from the present time, T	=	0. T0 is assumed to be sufficiently small that B 747 

remains approximately constant during the period since the change in size. Denote the ratio Ne0/Ne1 by 748 

R. The derivation for the case of a step change in population size is similar to that given by Pool and 749 

Nielsen (2009) for the purpose of comparing X chromosomes and autosomes. 750 

 Between times T andT0, coalescence occurs at a rate B–1 on the chosen timescale, so that the 751 

contribution from	this	period	to the net coalescent time for a pair of alleles sampled at T	=	0	is: 752 

 753 

		𝐵)&W 𝑇exp(−𝐵)&𝑇)	d𝑇 = 𝐵 − 𝐵exp(−𝐵)&𝑇%) − 𝑇%exp(−𝐵)&𝑇%)
5#

%
				 754 

 755 

 There is a probability of exp(–B–1T0) that there is no coalescence when T lies between 0 and T0, 756 

after which coalescence occurs at a rate 1/BR, giving a net contribution to the coalescence time of:  757 

 758 

                                    (𝐵𝑅 + 𝑇%)exp	(−𝐵)&𝑇%) 759 

   760 

  761 

The net coalescence time for the stepwise change with BGS is given by the sum of these 762 

two expressions: 763 

 764 

                           B[1 + (𝑅 − 1) exp(−𝐵)&𝑇%)]                          (1a) 765 

 766 
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If this expression is compared to the corresponding equation with B = 1, the apparent value of B 767 

at the time of sampling of the pair of alleles is given by: 768 

 769 

                            𝐵! =	
"[$%('($) *+,(("89-:)]

[$%('($) *+,(–-:)]
                  (1b) 770 

 771 

 Next, consider a process of exponential change in population size, starting at an initial effective 772 

size of Ne0 at t0	generations in the past and ending at size Ne1, such that the instantaneous growth rate r 773 

per generation is r = ln(Ne1/Ne0)/t0.	The effective population size at time t	in the past is Ne(t) = 774 

Ne1exp(–rt);	with BGS, the rate of coalescence at time t is 1/BNe(t).	As before, the BGS parameter is 775 

assumed to remain constant over the period of population size change. It follows that the probability of 776 

no coalescence by generation t in the past is: 777 

 778 

         𝑃#$(𝑡) = exp	[−∫ (2𝐵𝑁(&))& exp(𝑟𝑡) d𝑡
6
% ] = exp[𝑐)&(1 − 𝑒,6)]           (2) 779 

  780 

where c	=	2BNe1r.	781 

 The pre-growth period with t	> t0	contributes an expected coalescent time of 782 

(2𝐵𝑁(%+	𝑡%)𝑃#$(𝑡%), on the scale of generations.  783 

 Following Slatkin and Hudson (1991), to obtain the contribution from the period with t	 > 784 

t0, it is convenient to measure time as t = rt. The probability of coalescence between t and t +	785 

dt is then given by: 786 

 787 

 																																					𝑃$(𝜏) = 𝑐)&𝑒7 exp[𝑐)&(1 − 𝑒7)] d𝜏                      (3) 788 

   789 

 The contribution from this period to the expected coalescent time is given by the integral 790 

of t Pc(t) between 0 and t	0. Following Slatkin and Hudson (1991), by transforming to u	=	791 

exp(t), this contribution can be expressed as the following integral: 792 

 793 

         𝜏&̅ = 𝑐)&𝑒$$% 	∫ ln	(𝑢)𝑒)+$$%𝑑u+#
&                              (4)        794 

 795 
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 This integral can easily be evaluated numerically. The corresponding mean coalescent 796 

time on the scale of generations is obtained by division by r,	and the result can be added	to	797 

(2𝐵𝑁(%+	𝑡%)𝑃#$(𝑡%), yielding the net expected coalescent time. By dividing the resulting 798 

expression by the corresponding expression with B	=	1, the apparent BGS effect at the time of 799 

sampling can be obtained, in the same way as for the step change model. 800 

 801 

 802 

 803 

 804 

 805 

 806 

 807 

 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 
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FIGURES AND TABLES 827 

 828 

Table 1: Proportion (𝑓3) of mutations in each class of the discrete distribution of fitness effects 829 

(DFE) simulated in this study. 830 

 𝒇𝟎 𝒇𝟏 𝒇𝟐 𝒇𝟑 

DFE1 0.1 0.7 0.1 0.1 

DFE2 0.1 0.1 0.7 0.1 

DFE3 0.1 0.1 0.1 0.7 

DFE4 0.25 0.25 0.25 0.25 

DFE5 0.5 0.0 0.0 0.5 

DFE6 0.7 0.0 0.0 0.3 

 831 
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 832 
Figure 1: Inference of demography by MSMC (red lines; 10 replicates) and fastsimcoal2 (blue 833 
lines; 10 replicates) with and without BGS, under demographic equilibrium (left column), 30-834 
fold exponential growth (middle column), and ~6-fold instantaneous decline (right column). The 835 
true demographic models are depicted as black lines, with the x-axis origin representing the 836 
present day. (a) All genomic sites are strictly neutral. Exonic sites experience purifying selection 837 
specified by (b) DFE1, (c) DFE2, and (d) DFE3 (see Table 1). Exons represent 20% of the 838 
genome, and exonic sites were masked/excluded when performing demographic inference, 839 
quantifying the effects of BGS alone. The dashed lines represent indefinite extensions of the 840 
ancestral population sizes. Detailed methods including command lines can be found at: 841 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/842 
Figure1.txt 843 
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 844 
Figure 2: Inference of demography by MSMC (red lines; 10 replicates) and fastsimcoal2 (blue 845 
lines; 10 replicates) in the presence of BGS generated by strongly deleterious mutations. Directly 846 
selected sites comprised 20% of the genome and were masked when performing demographic 847 
inference. Exons experience purifying selection specified by (a) DFE6 and (b) DFE5 (see Table 848 
1).  The true demographic models are given as black lines, with the x-axis origin representing the 849 
present day. The dashed lines represent indefinite extensions of the ancestral population sizes. 850 
Detailed methods including command lines can be found at: 851 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/852 
Figure2.txt 853 
 854 
 855 

 856 
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 857 
Figure 3: Inference of demography by MSMC (red lines; 10 replicates) and fastsimcoal2 (blue 858 
lines; 10 replicates) in the presence of BGS with varying proportions of the genome under 859 
selection, for demographic equilibrium (left column), exponential growth (middle column), and 860 
instantaneous decline (right column). Exonic sites were simulated with purifying selection with 861 
all fi	values equal to 0.25 (DFE4; see Table 1), and were masked when performing inference. 862 
Directly selected sites comprise (a) 20% of the simulated genome, (b) 10% of the simulated 863 
genome, and (c) 5% of the simulated genome. The true demographic models are given by the 864 
black lines, with the x-axis origin representing the present day. The dashed lines represent 865 
indefinite extensions of the ancestral population sizes. Detailed methods including command 866 
lines can be found at: 867 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/868 
Figure3.txt 869 
 870 

 871 

 872 

 873 
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 874 
Figure 4: Nucleotide site diversity with BGS (B) relative to its purely neutral expectation (p0) 875 
for varying DFEs (specified in Table 1) and demographic scenarios. The results are shown for (a) 876 
demographic equilibrium, (b) population growth, and (c) population decline. All cases refer to 877 
size changes forward in time, the ancestral B (i.e., B pre-change in population size) is shown in 878 
white bars, B post-change in population size is shown in solid gray bars, and the analytical 879 
expectations for the post-size change B is shown as red bars. Exonic sites comprised ~10% of the 880 
genome, roughly mimicking the density of the human genome. Detailed methods including 881 
command lines can be found at: 882 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/883 
Figure4.txt 884 
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 885 
Figure 5: The site frequency spectrum (SFS) of derived allele frequencies at neutral sites from 886 
10 diploid genomes under (a) demographic equilibrium, (b) population growth, and (c) 887 
population decline, under the same DFEs as shown in Figure 4. The x-axis indicates the number 888 
of sample alleles (out of 20) carrying the derived variant. Exonic sites comprised ~10% of the 889 
genome, roughly mimicking the density of the human genome. The red solid circles give the 890 
values predicted analytically with a purely neutral model, but correcting for BGS by using the B 891 
values of the ancestral population (i.e., pre-change in population size) obtained from simulations, 892 
in order to quantify the effective population size. Detailed methods including command lines can 893 
be found at: 894 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/895 
Figure5.txt 896 
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 897 
Figure 6: Comparison of estimates of ancestral (Nanc) and current (Ncur) population sizes when 898 
assuming neutrality vs when varying the DFE shape as a nuisance parameter, using an ABC 899 
framework. Inference is shown for demographic equilibrium (left column), 2-fold exponential 900 
growth (middle column), and 2-fold population decline (right column), for five separate DFE 901 
shapes that define the extent of direct purifying selection acting on the genomic segment for 902 
which demographic inference is performed: (a) neutrality, (b) DFE1, (c) DFE2, (d) DFE3, and 903 
(e) DFE4 (see Table 1). In each case, the horizontal lines give the true values (black for Nanc; and 904 
gray for Ncur) and the box-plots give the estimated values. Black and gray boxes represent 905 
estimates when assuming neutrality, while red boxes represent estimates when the DFE is treated 906 
as a nuisance parameter. Detailed methods including command lines can be found at: 907 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/908 
Figure6.txt 909 
 910 
 911 
 912 
 913 
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Supplementary Information 

Supp Table 1: Performance of fastsimcoal2 under neutrality and demographic equilibrium with 
varying chromosome sizes, when the correct model was specified. Inference was performed 
using 50 diploid individuals and all SNPs, and a comparison is given between simulations 
performed in SLiM (3.1) as well as msprime (0.7.3). The number of replicates for each 
chromosome size was set to 100, except for 1Gb chromosomes simulated in SLiM for which we 
report 10 replicates. Detailed methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppTable1.txt. 
 
 
Simulated in SLiM 3.1 

Chromosome size True population size Inferred population size 
  Mean SD 
1 Mb 5000              5010                320 
10 Mb 5000              5005                118 
50 Mb 5000              4995                 65 
200 Mb 5000              4992                 30 
1 Gb 5000              4988                 18 
Simulated in msprime 0.7.3 
1 Mb 5000              5043                345 
10 Mb 5000              5004                109 
50 Mb 5000              5015                 57 
200 Mb 5000              5003                 29 
1 Gb 5000              5000                 17 
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Supp Table 2: Model selection in fastsimcoal2 for 100 replicates, in which the true model was 
neutral equilibrium and selection was performed with 4 models: equilibrium, instantaneous size 
change, exponential size change, and instantaneous bottleneck. Varying densities of SNPs (all 
SNPs, 1 per 5 kb, 1 per 50 kb and 1 per 100 kb) were used to perform inference. Simulations 
were performed using SLiM (3.1) for 10N generations. Detailed methods including command 
lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure3_SuppTable2_5.txt. 
 
 

Density of 
SNPs 

Genome 
length Equilibrium 

Exponential 
change 

Instantaneous 
change 

Instantaneous 
Bottleneck 

Total 
number of 
replicates 

all 1Mb 33 11 18 38 100 

 10Mb 32 17 27 24 100 

 50Mb 16 25 29 30 100 

 200Mb 5 10 41 44 100 

 1Gb 0 4 3 3 10 
1 per 5 kb 1Mb 69 7 9 15 100 

 10Mb 49 8 18 25 100 

 50Mb 10 4 35 51 100 

 200Mb 0 0 48 52 100 

 1Gb 0 0 5 5 10 
1 per 50 kb 1Mb 83 7 4 6 100 

 10Mb 83 5 4 8 100 

 50Mb 59 10 10 21 100 

 200Mb 20 6 40 34 100 

 1Gb 0 0 4 6 10 
1 per 100 kb 1Mb 86 4 3 7 100 

 10Mb 78 5 7 10 100 

 50Mb 64 6 14 16 100 

 200Mb 43 6 30 21 100 

 1Gb 0 1 5 4 10 
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Supp Table 3: Model selection in fastsimcoal2 for 100 replicates, in which the true model was 
neutral equilibrium and selection was performed with 4 models: equilibrium, instantaneous size 
change, exponential size change, and instantaneous bottleneck. Varying densities of SNPs (all 
SNPs, 1 per 5 kb, 1 per 50 kb and 1 per 100 kb) were used to perform inference. Simulations 
were performed using msprime (0.7.3). Detailed methods including command lines can be found 
here:  
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure4_SuppTable3_6.txt. 

Density of 
SNPs 

Genome 
length Equilibrium 

Exponential 
change 

Instantaneous 
change 

Instantaneous 
Bottleneck 

Total 
number of 
replicates 

all 1Mb 29 16 18 37 100 
 10Mb 22 12 31 35 100 
 50Mb 13 18 38 31 100 
 200Mb 11 8 31 40 100 
 1Gb 5 12 26 57 100 
1 per 5 kb 1Mb 63 3 12 22 100 
 10Mb 42 10 19 29 100 
 50Mb 4 7 42 47 100 
 200Mb 1 2 55 42 100 
 1Gb 0 1 66 33 100 
1 per 50 kb 1Mb 83 4 6 7 100 
 10Mb 80 4 6 10 100 
 50Mb 61 9 12 18 100 
 200Mb 19 6 29 46 100 
 1Gb 0 2 48 50 100 
1 per 100 kb 1Mb 89 3 3 5 100 
 10Mb 86 4 4 6 100 
 50Mb 70 3 11 16 100 
 200Mb 47 5 20 28 100 
 1Gb 0 3 47 50 100 
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Supp Table 4: Linkage disequilibrium (𝑟!) summarized in varying chromosomal sizes, and 
sampled in different densities, calculated using Pylibseq 0.2.3 in non-overlapping sliding 
windows across chromosomes with ~10 SNPs per window. SNPs from separate chromosomes 
represent completely unlinked SNPs – 1 SNP was randomly sampled from each of 100 separate 
replicate chromosomes simulated, and this random sampling was performed 100 times. Detailed 
methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppTable4.txt. 
 
  Number of SNPs per 

window 
𝒓𝟐 

Chromosome 
size SNP density mean SD mean SD 
10Mb all 10.7 3.6 0.1181 0.0885 
  1 per 5 kb 8.3 0.7 0.0731 0.0504 
  1 per 50 kb 9.8 0.4 0.0271 0.0141 
  1 per 100 kb 10.0 0.2 0.0203 0.0101 

  
separate 
chromosomes 10.5 0.5 0.0103 0.0047 

1 Mb all 10.7 3.6 0.1174 0.0889 
  1 per 5 kb 8.4 0.7 0.0725 0.0503 
  1 per 50 kb 10.0 0.0 0.0252 0.0108 
  1 per 100 kb 10.0 0.0 0.0193 0.0080 

  
separate 
chromosomes 10.5 0.5 0.0102 0.0047 

50Mb all 10.7 3.6 0.1181 0.0888 
  1 per 5 kb 8.3 0.7 0.0729 0.0502 
  1 per 50 kb 9.8 0.4 0.0269 0.0136 
  1 per 100 kb 9.9 0.3 0.0203 0.0099 

  
separate 
chromosomes 10.5 0.5 0.0101 0.0046 

200 Mb all 10.6 3.6 0.1180 0.0888 
  1 per 5 kb 8.3 0.7 0.0728 0.0499 
  1 per 50 kb 9.8 0.4 0.0269 0.0137 
  1 per 100 kb 9.9 0.3 0.0202 0.0098 

  
separate 
chromosomes 10.5 0.5 0.0101 0.0046 

1 Gb all 10.6 3.6 0.1181 0.0891 
 1 per 5 kb 8.4 0.7 0.0727 0.0495 
 1 per 50 kb 9.8 0.4 0.0269 0.0134 
 1 per 100 kb 9.9 0.3 0.0204 0.0102 

 
separate 
chromosomes 6.5 0.5 0.0092 0.0046 
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Supp Table 5: Model selection with a higher AIC penalty (=25×the number of parameters) in 
which the true model was neutral equilibrium, and model selection was performed with 4 
models: equilibrium, instantaneous size change, exponential size change, and instantaneous 
bottleneck. Varying densities of SNPs (all SNPs, 1 per 5 kb, 1 per 50 kb and 1 per 100 kb) were 
used to perform inference. Simulations were performed in SLiM (3.1) for 10N generations. 
Detailed methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure3_SuppTable2_5.txt. 

Density of SNPs 
Genome 
length Equilibrium 

Exponential 
change 

Instantaneous 
change 

Instantaneous 
Bottleneck 

Total 
number of 
replicates 

all 1Mb 98 2 0 0 100 
 10Mb 100 0 0 0 100 
 50Mb 98 0 2 0 100 
 200Mb 99 0 0 1 100 
 1Gb 5 2 2 1 10 
1 per 5 kb 1Mb 100 0 0 0 100 
 10Mb 100 0 0 0 100 
 50Mb 99 0 1 0 100 
 200Mb 46 0 27 27 100 
 1Gb 0 0 5 5 10 
1 per 50 kb 1Mb 100 0 0 0 100 
 10Mb 100 0 0 0 100 
 50Mb 100 0 0 0 100 
 200Mb 100 0 0 0 100 
 1Gb 9 0 0 1 10 
1 per 100 kb 1Mb 100 0 0 0 100 
 10Mb 100 0 0 0 100 
 50Mb 100 0 0 0 100 
 200Mb 100 0 0 0 100 
 1Gb 10 0 0 0 10 
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Supp Table 6: Model selection with a higher AIC penalty (=25×the number of parameters) in 
which the true model was neutral equilibrium, and model selection was performed with 4 
models: equilibrium, instantaneous size change, exponential size change, and instantaneous 
bottleneck. Varying densities of SNPs (all SNPs, 1 per 5 kb, 1 per 50 kb and 1 per 100 kb) were 
used to perform inference. Simulations were performed using msprime (0.7.3). Detailed methods 
including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure4_SuppTable3_6.txt. 

 

Density of 
SNPs 

Genome 
length Equilibrium 

Exponential 
change 

Instantaneous 
change 

Instantaneous 
Bottleneck 

Total 
number of 
replicates 

all 1Mb 100 0 0 0 100 
 10Mb 100 0 0 0 100 
 50Mb 97 0 2 1 100 
 200Mb 96 0 4 0 100 
 1Gb 93 1 3 3 100 
1 per 5 kb 1Mb 100 0 0 0 100 
 10Mb 100 0 0 0 100 
 50Mb 97 1 0 2 100 
 200Mb 45 1 30 24 100 
 1Gb 0 1 66 33 100 
1 per 50 kb 1Mb 100 0 0 0 100 
 10Mb 100 0 0 0 100 
 50Mb 100 0 0 0 100 
 200Mb 100 0 0 0 100 
 1Gb 89 1 4 6 100 
1 per 100 kb 1Mb 100 0 0 0 100 
 10Mb 100 0 0 0 100 
 50Mb 100 0 0 0 100 
 200Mb 100 0 0 0 100 
 1Gb 100 0 0 0 100 
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Supp Table 7: Parameters underlying the human-like demographic models considered. 
 
 Demographic 

models 
Ancestral 
population size 

(𝑵𝒂𝒏𝒄) 

Current 
population size 

(𝑵𝒄𝒖𝒓) 

Time of change 
in generations 

1 Equilibrium 10,000 10,000 NA 
2 Exponential 

growth 
1000 30,000 850 

3 Instantaneous 
decline 

12,300 2,100 4,750 

 
 
 
 
 
Supp Table 8: Comparison of inference of parameters using fastsimcoal2 under neutrality when 
inference is performed using all SNPs vs. using sparser SNP sampling (1 per 5 kb). In this 
example, 20% of the genome is exonic, and these exonic regions were masked when performing 
inference.  
 
Demographic 
model 

Parameter True value Inferred value 
using all SNPs 
(Mean±SD) 

Inferred value 
using 1 SNP 
per 5 kb 
(Mean±SD) 

Equilibrium 𝑁()* 10,000 9,781 ± 23 9,378 ± 567 
Exponential 
growth 

𝑁()* 1000 977 ± 3 963 ± 4 

 𝑁*+, 30,000 25,489 ± 123 25,641 ± 184 
 Time of change 850 808 ± 3 816 ± 4 
Instantaneous 
decline 

𝑁()* 12,300 11,978 ± 463 11,513 ± 894 

 𝑁*+, 2,100 2,097 ± 15 2,681 ± 12 
 Time of change 4,750 4,703 ± 246 7,458 ± 596 
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Supp Table 9: Nucleotide diversity in the presence of BGS relative to that under neutrality (B), 
calculated for a neutral site distance y bases from the end of a gene/exon of length 500 bp. The 
exon experiences purifying selection with strength 2Nes=10, where Ne is the effective population 
size and s is the reduction in fitness. Shown below is t=hs where h is the dominance coefficient 
(assumed to be 0.5 here), r is the recombination rate per site per generation, and u is the mutation 
rate per site per generation. B was calculated using Equation 2 of Johri et al. (2020). 
 

Ne	
t	(2Nes	
=10)	 r	 u	 B	(y=1)	 B	(y=10)	

B	
(y=1000)	

104	 0.00025	 1.00	×	10-8	 1.00	×	10-8	 0.9805	 0.9806	 0.9820	
	 	 1.00	×	10-6	 1.00	×	10-6	 0.5152	 0.5312	 0.9444	

106	 2.5	×	10-6	 1.00	×	10-8	 1.00	×	10-8	 0.5152	 0.5312	 0.9445	
	 	 1.00	×	10-6	 1.00	×	10-6	 0.4920	 0.8227	 0.9992	
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Supp Figure 1: Performance of MSMC under neutrality and demographic equilibrium when 
using 1, 2, and 4 diploid individuals for inference, for varying chromosome sizes: (a) 1Mb, (b) 
10 Mb, (c) 50 Mb, (d) 200 Mb, (e) 1 Gb. Simulations were performed using SLiM (3.1) for 10N 
generations with 100 replicates for panels (a-d) and 10 for panel (e). Detailed methods including 
command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure1.txt. 
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Supp Figure 2: Performance of MSMC under neutrality and demographic equilibrium when 
using 1, 2, and 4 diploid individuals for inference, for varying chromosome sizes: (a) 1 Mb, (b) 
10 Mb, (c) 50 Mb, (d) 200 Mb, (e) 1 Gb. Simulations were performed using msprime (0.7.3) 
with 100 replicates for each panel. MSMC runs with 4 diploid individuals at 1Gb could not be 
obtained due to the long computational times required. Detailed methods including command 
lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure2.txt. 
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Supp Figure 3: Performance of fastsimcoal2 under neutrality and demographic equilibrium 
when simulations were performed using SLiM (3.1) for varying chromosome sizes: (a) 1 Mb, (b) 
10 Mb, (c) 50 Mb, (d) 200 Mb, (e) 1 Gb. Model selection was performed with 4 models – 
equilibrium, instantaneous size change, exponential size change, and instantaneous bottleneck. 
Inference was performed using 50 diploid individuals using all SNPs (left column), 1 SNP per 50 
kb (middle column) and 1 SNP per 100 kb (right column). The inferred population size estimates 
of the best model are plotted (blue lines). The numbers of replicates for (a)-(d) were 100, while 
for (e) were 10. The true model is shown in black and indicated by the position of the arrow. 
Detailed methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure3_SuppTable2_5.txt. 
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Supp Figure 4: Performance of fastsimcoal2 under neutrality and demographic equilibrium 
when simulations were performed using msprime (0.7.3) for varying chromosome sizes: (a) 1 
Mb, (b) 10 Mb, (c) 50 Mb, (d) 200 Mb, (e) 1 Gb. Model selection was performed with 4 models 
– equilibrium, instantaneous size change, exponential size change, and instantaneous bottleneck. 
Inference was performed using 50 diploid individuals using all SNPs (left column), 1 SNP per 50 
kb (middle column) and 1 SNP per 100 kb (right column). The inferred population size estimates 
of the best model are plotted (blue lines), with 100 replicates for each panel. The true model is 
shown in black and indicated by the position of the arrow. Detailed methods including command 
lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure4_SuppTable3_6.txt. 
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Supp Figure 5: Model selection by fastsimcoal2 in the presence of BGS, when chosen from four 
possible models: equilibrium, instantaneous size change, exponential size change, and 
instantaneous bottleneck. The DFEs are specified in Table 1, and DFE0 refers to neutrality. 
Results are shown when all SNPs were used for inference, when 5%, 10% or 20% of the 
genomes were exonic (with exonic sites masked), and the standard AIC penalty was used. 
Detailed methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure5.txt. 
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Supp Figure 6: Model selection by fastsimcoal2 in the presence of BGS, when chosen from four 
possible models: equilibrium, instantaneous size change, exponential size change, and 
instantaneous bottleneck. The DFEs are specified in Table 1, and DFE0 refers to neutrality. 
Results are shown when SNPs used for inference were separated at a distance of 100 kb, 20% of 
the genomes were exonic, and the AIC penalty was 2× (standard) or 25× the number of 
parameters. Detailed methods including command lines can be found here:  
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure6.txt. 
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Supp Figure 7: Effects of BGS on inference of growth or decline by fastsimcoal2. The inferred 
model was classified as growth if 𝑁()* < 𝑁*+, and as decline if 𝑁()* > 𝑁*+,. The DFEs are 
specified in Table 1. Results are shown for all SNPs, when 5%, 10% and 20% of the genomes 
were exonic (with exonic sites masked), and a standard AIC penalty was used. Detailed methods 
including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure7.txt. 
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Supp Figure 8: Inferred demography from MSMC (red lines) and fastsimcoal2 (blue lines) in 
the presence of background selection, with the true DFE shown to the left of the panel, for 2-fold 
instantaneous decline (right column) and 2-fold exponential growth (left column). In this case, 
20% of the genome was exonic (and exonic sites were masked). The true demographic models 
are shown as black lines. Detailed methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure8.txt. 
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Supp Figure 9: Inference of demography by MSMC (red lines; 10 replicates) and fastsimcoal2 
(blue lines; 10 replicates) under demographic equilibrium (left column), 30-fold exponential 
growth (middle column), and ~6-fold instantaneous decline (right column) in the presence of 
direct purifying selection (i.e., directly selected sites are not masked). The true demographic 
model is depicted in black lines. Exonic sites experience purifying selection specified by the 
following DFEs (defined in Table 1): (a) DFE1,	(b) DFE2, (c) DFE3, (d) DFE4, (e) DFE5, (f) 
DFE6. In this case, 20% of the genome was exonic and all SNPs were used for inference, 
including exonic sites. Detailed methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure9.txt. 
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Supp Figure 10: Inference of the timing of 30-fold exponential growth by fastsimcoal2 in the 
presence of BGS compared to neutrality (DFE0). The DFEs are specified in Table 1. Results are 
shown for the case where (a) 5%, (b) 10%, and (c) 20% of the genome is exonic (with exonic 
sites masked), and all non-exonic SNPs are used for inference. The black horizontal line 
represents the true timing. 
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Supp Figure 11: Inference of the timing of 2-fold exponential growth by fastsimcoal2 in the 
presence of BGS compared to neutrality (DFE0). Results are shown for the case where (a) 5%, 
(b) 10%, and (c) 20% of the genome is exonic (with exonic sites masked), and all non-exonic 
SNPs are used for inference. The black horizontal line represents the true timing. 
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Supp Figure 12: Inference of the timing of 6-fold instantaneous decline by fastsimcoal2 in the 
presence of BGS compared to neutrality (DFE0). The DFEs are specified in Table 1. Results are 
shown for the case in which (a) 5%, (b) 10%, and (c) 20% of the genome is exonic (with exonic 
sites masked), and all non-exonic SNPs are used for inference. The black horizontal line 
represents the true timing. Boxplots are presented in green if decline was inferred, in yellow if 
growth was inferred, and in blue if a bottleneck was inferred. 
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Supp Figure 13: Inference of the timing of 2-fold instantaneous decline by fastsimcoal2 in the 
presence of BGS compared to neutrality (DFE0). The DFEs are specified in Table 1. Results are 
shown for the case where (a) 5%, (b) 10%, and (c) 20% of the genome is exonic (with exonic 
sites masked), and all non-exonic SNPs are used for inference.  The black horizontal line 
represents the true timing. Boxplots are presented in green if decline was inferred, in yellow if 
growth was inferred, and in blue if a bottleneck was inferred. 
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Supp Figure 14: Distribution of lengths of repeat regions in the human genomes (hg19). Shown 
above is the distribution of lengths up to 1000 bp, although lengths of repeat regions range 
between 6 to 160602 bp. Detailed methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure14.txt. 
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Supp Figure 15: Performance of demographic inference by MSMC (red lines) and fastsimcoal2 
(blue lines) under different scenarios of neutrality, when the true model is equilibrium: (a) there 
is variation in recombination and mutation rates, (b) there is variation in recombination and 
mutation rates and the centromeric region is masked, (c) there is variation in recombination and 
mutation rates, and short regions resembling repeats (comprising 10% of each chromosome) are 
randomly masked across the genome, and (d) there is variation in recombination and mutation 
rates, and the centromere as well as small-sized repeats are randomly masked across the genome. 
The maximum and minimum fold change detected in every scenario is indicated on the upper 
right corner. Detailed methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure15-20.txt. 
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Supp Figure 16 : Performance of demographic inference by MSMC (red lines) and fastsimcoal2 
(blue lines) under different scenarios of neutrality, when the true model is 30-fold exponential 
growth: (a) there is variation in recombination and mutation rates across the genome, (b) there is 
variation in recombination and mutation rates, and the centromeric region is masked, (c) there is 
variation in recombination and mutation rates, and short regions resembling repeats are randomly 
masked across the genome (comprising of 10% of each chromosome), and (d) there is variation 
in recombination and mutation rates, and the centromere as well as small-sized repeats are 
randomly masked across the genome. Detailed methods including command can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure15-20.txt. 
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Supp Figure 17: Performance of demographic inference by MSMC (red lines) and fastsimcoal2 
(blue lines) under different scenarios of neutrality, when the true model is 6-fold instantaneous 
decline: (a) there is variation in recombination and mutation rates across the genome, (b) there is 
variation in recombination and mutation rates, and the centromeric region is masked, (c) there is 
variation in recombination sand mutation rates, and short regions resembling repeats are 
randomly masked across the genome (comprising of 10% of each chromosome), and (d) there is 
variation in recombination and mutation rates, and the centromere as well as small-sized repeats 
are randomly masked across the genome. Detailed methods including command lines can be 
found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure15-20.txt. 
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Supp Figure 18: Performance of demographic inference by MSMC (red lines) and fastsimcoal2 
(blue lines) in the presence of background selection, under different scenarios when the true 
model is equilibrium: (a) there is variation in recombination and mutation rates, (b) there is 
variation in recombination and mutation rates and the centromeric region is masked, (c) there is 
variation in recombination and mutation rates, and short regions resembling repeats (comprising 
10% of each chromosome) are randomly masked across the genome, and (d) there is variation in 
recombination and mutation rates, and the centromere as well as small-sized repeats are 
randomly masked across the genome. Exons comprise of 20% of the genome, experience 
purifying selection given by DFE4 (f0 = f1 = f2 = f3 = 0.25), and are masked when performing 
inference. Detailed methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure15-20.txt. 
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Supp Figure 19: Performance of demographic inference by MSMC (red lines) and fastsimcoal2 
(blue lines) in the presence of background selection, under different scenarios when the true 
model is 30-fold exponential growth: (a) there is variation in recombination and mutation rates, 
(b) there is variation in recombination and mutation rates and the centromeric region is masked, 
(c) there is variation in recombination and mutation rates, and short regions resembling repeats 
(comprising 10% of each chromosome) are randomly masked across the genome, and (d) there is 
variation in recombination and mutation rates, and the centromere as well as small-sized repeats 
are randomly masked across the genome. Exons comprise of 20% of the genome, experience 
purifying selection given by DFE4 (f0 = f1 = f2 = f3 = 0.25), and are masked when performing 
inference. Detailed methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure15-20.txt. 
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Supp Figure 20: Performance of demographic inference by MSMC (red lines) and fastsimcoal2 
(blue lines) in the presence of background selection, under different scenarios when the true 
model is a 6-fold instantaneous decline: (a) there is variation in recombination and mutation 
rates, (b) there is variation in recombination and mutation rates and the centromeric region is 
masked, (c) there is variation in recombination and mutation rates, and short regions resembling 
repeats (comprising 10% of each chromosome) are randomly masked across the genome, and (d) 
there is variation in recombination and mutation rates, and the centromere as well as small-sized 
repeats are randomly masked across the genome. Exons comprise of 20% of the genome, 
experience purifying selection given by DFE4 (f0 = f1 = f2 = f3 = 0.25), and are masked when 
performing inference. Detailed methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure15-20.txt. 
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Supp Figure 21: Performance of the ABC method when recombination rate is mis-specified. (a) 
The true recombination rate is 2-fold higher than that assumed, and (b) the true recombination 
rate is 2-fold lower than that assumed. Boxplots in green show the posterior estimates when the 
recombination rate is higher or lower than assumed. For comparison, boxplots in red show the 
posterior inferred when the corresponding recombination rate is correctly specified. The black 
line displays the true ancestral population size (𝑁()*) and the gray line represents the true current 
population size (𝑁*+,). Detailed methods including command lines can be found here: 
https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
SuppFigure21.txt. 
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Supp Figure 22: Inference of demographic history by MSMC. Top panel / red line: simulations 
in which the true model is constant population size, and 50% of new mutations in exons are 
strongly deleterious with the remainder being neutral, where exons comprise 5% of the genome. 
Bottom panel / green line: the empirical estimate of population history of the YRI population 
inferred with MSMC by Schiffels and Durbin (2014). The x-axis is in years (assuming a 
generation time of 30 years). Note that the y-axes are on different scales, and the magnitude of 
change observed in the empirical data is considerably larger in the simulated data. Thus, this 
comparison is only meant to illustrate this common shape taken in MSMC plots (and see similar 
shapes in, for example, vervets (Warren et al. 2015; Figure 4) and passenger pigeons (Hung et al. 
2014; Figure 2)). 
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