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a b s t r a c t 

It is well-known that the classical SIR model is unable to make accurate predictions on the course of 

illnesses such as COVID-19. In this paper, we show that the official data released by the authorities of 

several countries (Italy, Spain and The USA) regarding the expansion of COVID-19 are compatible with a 

non-autonomous SIR type model with vital dynamics and non-constant population, calibrated according 

to exponentially decaying infection and death rates. Using this calibration we construct a model whose 

outcomes for most relevant epidemiological paramenters, such as the number of active cases, cumulative 

deaths, daily new deaths and daily new cases (among others) fit available real data about the first and 

successive waves of COVID-19. In addition to this, we also provide predictions on the evolution of this 

pandemic in Italy and the USA in several plausible scenarios. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The problem of infectious diseases and their control has been 

he focus of attention in the scientific world throughout history 

nd, more specifically, in the last decades. The problem with ill- 

esses such as Gonorrhea Transmission [1] or the HIV epidemics 

riven by late disease-stage transmission [2] were the focus of at- 

ention for mathematicians and physicists looking for some sort of 

athematical modeling in order to predict the evolution of these 

ndesirable infectious illnesses (see, also, [3] ). More recently, re- 

earchers were also interested in the mathematical modeling of the 

preading of the virus called Ebola [4] . Research works working on 

trategies on how to mitigate an influenza pandemic were carried 

ut in the last decades [5] . Some references devoted completely or 

n part to mathematical epidemiology are [6–13] . 

The so-called SIR models are among the simplest compartmen- 

al models. The birth of these compartmental models dates back 

o 1927, with the seminal work of Kermack and McKendrick [14] . 

he simplest SIR model is the one without the so-called vital dy- 

amics (which includes birth and death and some demographical 

ata) and is described by means of 3 ordinary differential equa- 

ions whose variables are S, the susceptible population, I, the in- 
✩ Dedicated to all healthcare professionals who devoted their lives to fight the 

oronavirus. 
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ected population, and R, the recovered population: 
 

S ′ = −βSI, 
I ′ = βSI − γ I, 

R 

′ = γ I, 
(1.1) 

here β is the transmission rate, and γ the recuperation rate. Al- 

hough this model is nonlinear, it can be analytically solved [15] . 

Observe that in the classical SIR model (1.2) the total population 

 = S + I + R is assumed to be constant since N 

′ = S ′ + I ′ + R ′ = 0 .

his is just one of a number of facts that make model (1.2) unre-

listic. In addition, it does not consider neither births nor deaths, 

ot even those produced by the infection under study. Also, the 

act that β and γ are constant, does not reflect the impact of real- 

stic measures such as social distancing or scientific breakthroughs. 

ig. 1 shows how far the classical SIR model is from modeling cor- 

ectly the course of COVID-19 in a specific territory. 

What we propose below is a mathematical model that pre- 

erves, to some extent, the simplicity of the classical SIR model, 

ut at the same time predicts with a considerable accuracy the 

volution of COVID-19 under certain reasonable assumptions. The 

odel is tested with the official data regarding the course of 

OVID-19 in Italy, Spain and The US. 

The COVID-19 pandemic, also known as the Coronavirus pan- 

emic , is a serious illness caused by severe acute respiratory syn- 

rome coronavirus 2 (SARS-CoV-2). It seems that the birth of this 

nfectious illness took place in Wuhan (capital of Hubei in China) 

t the end of 2019 [16] . The infectious index of this pandemic is 

ery high and, therefore, the consequences of the spreading have 

een very hard for the entire World. Several works based on the 

https://doi.org/10.1016/j.chaos.2021.110682
http://www.ScienceDirect.com
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Fig. 1. In these graphs we have depicted in red the evolution of active cases of COVID-19 in Italy between the 20th of march 2020 (zero in the horizontal axis) and the 

29th of April 2020 (tick 39 in the horizontal axis). In blue we have depicted the evolution predicted by the classical SIR model calibrated with the data released by the 

Italian authorities on the 20th of march 2020. It can be clearly seen that the classical SIR model is not an adequate tool to model this pandemic. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Representation of βe (t) and β(t) for Italy during the calibration period. 

Fig. 3. Representation of μ′ 
e (t) and μ′ (t) for Italy during the calibration period. 
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ata from China have been carried out in the last months explain- 

ng this pandemic from several points of view [17–19] . One of the 

ost recent works on the modeling of this pandemic has been car- 

ied out by Ivorra et al. [20] . Unfortunately, this virus has been 

xtending in all Continents, not only in China, and the whole sci- 

ntific community is currently working and putting all effort in an 

ttempt to control this pandemic in their corresponding countries. 

 very recent work studied the growth of the cumulative number 

f confirmed of infected cases of the COVID-19 in countries belong- 

ng to Asia, Europe, USA and South America, finding a power-law 

rowing in 4 continents [21] . 

SIR models in which the population shows an exponential in- 

rease or decrease in absence of the disease have been analyzed 

or time-independent incidence and per capita-disease mortality- 

ate in [22–24] and the references therein. The evolution of COVID- 

9 in its country of origin has been studied in several publica- 

ions (see for instance [25] ). In the present work we use a non-

utonomous SIR type model with vital dynamics, non-constant 

opulation and exponentially decaying infection and death rates 

o model the expansion of the COVID-19 in several countries, fo- 

using on 3 of the most affected by this pandemic: USA, Italy and 

pain. The model, when applied to each of the three countries un- 

er study (Italy, Spain and The US), is calibrated according to the 

ata gathered in a period of time that includes at least 30 days, 

eginning at least 10 days after the declaration of either partial or 

otal lockdown. 

The model we propose here is based on two sets of assump- 

ions. The principles of the first set outline the equations of the 

odel. We essentially consider a SIR model with vital dinamics 

ith the following features: 

1. Neither the transmission rate β nor the death rate μ′ due to 

COVID-19 are constant in our model. The available official data 

in the territories under study suggest that in the fist stages of 

the pandemic in territories with strict control on social distanc- 

ing, both β and μ′ decay exponentially (see for instance Figs. 2 

and 3 ) to their baseline values β0 and μ′ 
0 respectively. This is 

probably due to the fact that the evolution of the variables is 

still a transient and therefore some time is required until the 

parameters achieve their asymptotic values. 

2. We consider a recuperation rate γ which is not necessarily con- 

stant either. Although the observed values of γ are somehow 

stable in the three countries under study, the monthly varia- 

tions of γ produce significant changes in the main epidemio- 

logical parameters. The way we chose the values of γ is ex- 

plained in the set of principles that provide the calibration of 

the model. 

3. We consider the existence of a constant birth rate λ > 0 which 

is the same for each of the three categories S, I and R . We also

assume that all the descendants are born free of the infection, 

but without immunity. 
2 
4. Finally we consider the existence of a constant death rate μ > 0 

due to death causes other than COVID-19. 

The above assumptions produce the following relationship 

mong the variables S, I, R : 
 

S ′ = (λ − μ) S + λ(I + R ) − βSI, 
I ′ = βSI − γ I − μ′ I − μI, 

R 

′ = γ I − μR. 

The second set of hypotheses define the way the model must 

e calibrated, or in other words, how the parameters β, μ′ , γ , λ
nd μ are to be chosen: 

1. The values of λ and μ are provided in Table 1 . 

2. As mentioned above, although the observed monthly mean val- 

ues of the recuperation rate γ are quite stable in all the ter- 

ritories under study it should not be taken for granted that γ
is necessarily constant. In principle, recuperation (or death) de- 

pends on human biological reaction to the virus. However, in a 

transient state variations on rates can be expected until asymp- 
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Table 1 

Normalized birth and death rates, λ and μ respectively, of Italy, Spain 

and the USA measured in normalized births and deaths per day. All 

the data, including the total population N, correspond to the year 

2018. 

Country Birth rate λ Death rate μ Population N

Italy 1 . 992528 × 10 −5 2 . 866523 × 10 −5 6 . 05 × 10 7 

Spain 2 . 174293 × 10 −5 2 . 4 94 899 × 10 −5 4 . 7 × 10 7 

USA 3 . 178082 × 10 −5 2 . 356164 × 10 −5 3 . 282 × 10 8 
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totic values are attained. This is precisely what seems to hap- 

pend when one examines the data of Italy and the USA in con- 

nection with mortality and recuperation. We do assume, how- 

ever, that γ is constant along every calendar month or along 

the calibration period of every country. The values assigned to 

γ are based on the average monthly observed values of γ . Nor- 

mally the values of γ are very uniform with quite a few ex- 

ceptions, like the months of May and June in Italy, with values 

that are twice as big as in the rest of the months under study. 

The reasons that could explain this anomaly are far beyond the 

scope of this paper. 

3. As for the determination of β and μ′ , we have observed a sig- 

nificant decay in the infection and death rate within the offi- 

cial data released by the authorities of the three countries un- 

der study. The functions β and μ′ are defined using exponen- 

tial regression on the official data. It must be said that accord- 

ing to real data, mortality approaches its asymptotic value in a 

relatively short period of time. This is compatible with the as- 

sumption that relevant changes, like new control policies or a 

sudden change in sociological behavior, may create a transient 

state where the parameters of the model may change until they 

approach their baseline values. 

It is important to mention that we have run this model using 

he normalized variables: 

S N (t) = S(t) /N, 

I N (t) = I(t) /N, 

 N (t) = R (t) /N, 

here N = S + I + R is the total population. In this new variables

he model would be 
 

S ′ N = (λ − μ) S N + λ(I N + R N ) − βS N I N , 
I ′ N = βS N I N − γ I N − μ′ I N − μI N , 

R 

′ 
N = γ I N − μR N , 

(1.2) 

here the parameters λ, μ, β, μ′ and γ are all normalized. 

Once S n (t) , I N (t) and R N (t) are are obtained by numerical inte-

ration of (1.2) , to recover the actual number of infected (active 

ases) I(t) and the total number of recoveries R (t) , we have to 

ultiply I N (t) and R N (t) by the total country’s population N, i.e., 

I(t) = N(t) · I N (t) , 

 (t) = N(t) · R N (t) . 

e assume that the initial population of the countries under study 

s the population they had in 2018. These data are shown in 

able 1 . 

When the model is properly calibrated, its outcome for the vari- 

bles I and R produce excellent approximations of the number of 

he reported number of active cases and people with immunity re- 

pectively. Additionally, other relevant parameters can also be ac- 

urately approximated. If we define 

d(t) = 

∫ t 

t−1 

μ′ (ξ ) · I(ξ ) dξ , 

 (t) = 

∫ t 

μ′ (ξ ) · I(ξ ) dξ , 

0 

3 
r(t) = 

∫ t 

t−1 

γ (ξ ) · I(ξ ) dξ , 

i (t) = 

∫ t 

t−1 

β(ξ ) · S(ξ ) · I(ξ ) dξ , 

hen d(t) , D (t) , i (t) and r(t) are very sharp approximations of, re-

pectively, the daily number of deaths, the aggregated number of 

eaths, the daily number of new infections and the daily number 

f recoveries on day t . 

. Calibrating the functions β(t) , μ′ (t) and γ(t) during the 

rst surge 

First we describe the precise methodology used to find reason- 

bly good approximations of the functions β(t) and μ′ (t) for each 

f the territories considered in this paper. The approximation of 

hese functions is done in two steps: 

1. Firstly we calculate the daily infection and death rates using 

official data. If βe and μ′ 
e are the empirical infection and death 

rates due to COVID-19, βe and μ′ 
e are calculated using the fol- 

lowing formulas: 

βe (t + 1) = 

i e (t + 1) 

I e (t) 
, 

μ′ 
e (t + 1) = 

d e (t + 1) 

I e (t) 
, 

where i e (t) is the number of new reported infections on day t, 

d e (t) is the number of new deaths reported on day t and I e (t)

is the number of reported active cases on day t . The aggregated 

number of deaths observed until day t may be referred to later 

on as D e (t) . 

2. Secondly, once the empirical βe (t) and μ′ 
e (t) are obtained, we 

have realized that βe and μ′ 
e can be approximated fairly well 

by functions of the form: 

β(t) = β0 + e a β+ b β t , 

μ′ (t) = μ′ 
0 + e a μ′ + b μ′ t , 

with b β , b μ′ < 0 . Therefore we are assuming that the parame-

ters β(t) and μ′ (t) decay exponentially to their baseline values 

β0 and μ′ 
0 

respectively. The values of a β and b β are calculated 

by using a linear regression scheme applied to the points 

(t, log | βe (t) − β0 | ) . 
Similarly, in order to obtain a μ′ and b μ′ we apply linear regres- 

sion to the points 

(t, log | μe (t) − μ′ 
0 | ) . 

As for the determination of γ , we first calculate the daily re- 

overy observed rates γe (t) , defined as 

e (t + 1) = 

r e (t + 1) 

I e (t) 
, 

here r e (t) represents the number of recoveries observed on day 

. In order to calibrate the model in each of the countries under 

tudy we will assume that γ is constant in every calendar month 

r along the calibration period of the functions β(t) and μ′ (t) . The 

alues of γ will be chosen in accordance with the mean values of 

he γe (t) ’s. 

.1. Calibration of the model for the Italian case 

The lockdown order was approved by the Italian Government 

n the 10 th of March 2020. Our simulations for Italy start 10 days 

fter the beginning of the lockdown, on the 20 th of March. This 

ay is day zero in all the graphs devoted to study the Italian case. 
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Table 2 

Calibration of γ for Italy. We consider the average 

values of the γe (t) ’s in each period. 

Period Value considered for γ

Calibration period 0.0191 

May 0.0375 

June 0.0405 

July 0.0233 

From August onwards 0.0160 
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Fig. 4. Representation of the daily number of active cases in Italy I e (t) compared 

with the model’s outcome for I(t) during the calibration period, from 20 / 03 / 2020 

to 29 / 04 / 2020 . 

Fig. 5. Representation of the daily number of reported active cases in Spain I e (t) 

compared with the model’s outcome I(t) . 
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e fist determine the infection and death rates on day t, β(t) and 

′ (t) respectively, using the daily number of reported new cases 

n day t , i e (t ) , reported recoveries on day t , r e (t ) , and reported

eaths on day t, d e (t) . Recall that I e (t) is the reported amount of

ctive cases at a given time t . Also, R e (t ) and D e (t ) represent, re-

pectively, the total amount of reported recoveries and deaths until 

ay t . As mentioned in Section 2 , β(t) is given by 

(t) = β0 + e a β+ b β t , 

here, for a given choice of β0 , a β and b β are calculated by linear

egression applied to the points 

t, log | βe (t) − β0 | ) . 
he values of βe (t) considered to calculate a β and b β have been 

mported from the internet using Excel and are based on the daily 

ulletins on the expansion of COVID-19 in Italy published by Pro- 

ezione Civile [26] . The reader can find in Fig. 2 how β(t) is com-

ared to βe (t) for the choice β0 = 0 . 009 . 

As for the calculation of μ′ (t) , we have seen in Section 2 that
′ (t) is given by 

′ (t) = μ′ 
0 + e a μ′ + b μ′ t , 

here, for a given choice of μ′ 
0 
, the values of a μ′ and b μ′ are cal-

ulated by linear regression applied to the points 

t, log | μ′ 
e (t) − μ′ 

0 | ) . 
he values of μ′ 

e (t) considered to calculate a μ′ and b μ′ have been 

aken from [26] as well. The reader can find in Fig. 3 how μ′ (t)

s compared to μ′ 
e (t) for the choice μ′ 

0 
= 0 . 0 0 08 . The choice of

0 and μ′ 
0 

mentioned above, namely β0 = 0 . 015 and μ′ 
0 

= 0 . 0 0 08 ,

inimizes the distance between βe and β on the one hand, and 

etween μ′ 
e and μ′ on the other. Alternative choices of β0 and μ′ 

0 
roduce predictions increasingly different from the reported data. 

We know already how to obtain the functions β(t) and μ′ (t) , 

ut in order to be able to run the model (1.2) we also need to

now the parameters γ , λ and μ. The values of λ and μ and the 

otal country’s population N are taken from Table 1 . 

To finish the calibration of the model in the Italian case we just 

eed to determine γ . It turns out that the monthly average values 

f γe (t) have stabilized since the end of July around 0.0160. How- 

ver, during the first months of the pandemic in Italy the values of 

he γe (t) ’s were bigger in general. We have considered the average 

alues of the γe (t) ’s in each of the periods pointed out in Table 2 . 

In order to asses the precision of the model, we have compared 

he reported active cases I e (t) and the model’s outcome for I(t) 

uring the 40-day calibration period in Fig. 4 . 

.2. Calibration of the model for the Spanish case 

The lockdown law was passed in the Spanish parliament on 

he 14 th of March. The calibration period for Spain, as in the case 

f Italy, starts 10 days after the beginning of the lockdown, on 

he 24 th of March. This day is day zero in all our graphs for the

imulations about Spain. We fist approximate the infection and 

eath rates β(t) and μ′ (t) respectively using the daily number of 
4 
eported new cases, i e (t) , reported recoveries r e (t) and reported 

eaths d e (t) . 

Recall that β(t) and μ′ (t) are given by 

β(t) = β0 + e a β+ b β t and 

′ (t) = μ′ 
0 + e a μ′ + b μ′ t 

espectively. For an appropriate choice of β0 and μ′ 
0 , the coeffi- 

ients a β , b β , a μ′ and b μ′ are calculated by linear regression ap-

lied to the points 

t, log | βe (t) − β0 | ) and (t, log | μ′ 
e (t) − μ′ 

0 | ) . 
he values of βe (t) used to calculate the coefficients have been 

mported from the internet using Excel, and are based on the data 

ublished by the Instituto de Salud Carlos III (ISCIII, Madrid, Spain) , 

27] , and the University Johns Hopkins [28] . The optimal choice of 

0 and μ′ 
0 is β0 = 0 . 015 and μ′ 

0 = 0 . 0 0 055 . 

On the other hand, the value we have assigned to γ is the av- 

rage of the γe (t) ’s since the 24th of March until the 18th of May.

t is important to mention that Spain does not publish the number 

f daily recoveries since the 18th of May 2020, for which reason 

ight now we cannot have an idea about how many active cases 

here are in the country. 

Once we have β(t) and μ′ (t) for Spain for a given choice of β0 

nd μ′ 
0 
, we perform a 37 day simulation of the model and com- 

are the outcome with the reported data. The calibration is com- 

lete by putting γ = 0 . 0357 , which is the average of γe (t) over the

7 days of the calibration period. The reader can asses the accu- 

acy of the model with the calibration mentioned above by taking 

 look at Figs. 5 and 6 , where the outcome of the calibrated model

or I(t) and D (t) appear in the same picture as the reported data 

f active cases, I e (t) and cumulative deaths, D e (t) , respectively. Ob- 

erve that here cumulative deaths are counted since the 24th of 

arch, and not since the beginning of the pandemic. 
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Fig. 6. Representation of the deaths by COVID-19 in Spain from March 24th until 

May 17th, 2020. Here D e (t) appears in blue whereas D (t) is shown in red. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Table 3 

Calibration of γ for the USA. 

Period Value considered for γ

April 0.0090 

May 0.0160 

June 0.0165 

July 0.0185 

August 0.0165 

September 0.0160 

October 0.0190 

November 0.0200 
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.3. Calibration of the model for the USA 

As in the previous two cases we calculate the best fit for 

e (t) and μ′ 
e (t) by means of exponentials using a linear regres- 

ion scheme. The data we have used in this case range from the 

 nd of April to the 2nd of May. The reasons why we have started 

n April 2 nd are similar to the arguments that led us to the initial

ates for Italy and Spain, i.e., most of the states in the US began

heir stay-at-home policies about ten days before April 2. The data, 

s in the Italian and Spanish cases, were downloaded from tables 

n the internet using Excel and are based on the data provided by 

he Johns Hopkins University in its COVID-19 web page [28] . The 

ptimal choice for β0 and μ′ 
0 

is β0 = 0 . 0165 and μ′ 
0 

= 0 . 0 0 032 . As

or the calibration of γ , we have noticed that the average monthly 

alues of the γe (t) ’s are not as homogeneous as in Italy. The values

e have considered for γ can be seen in Table 3 . 

In order to check the accuracy of the calibration described 

bove, the reader is invited to take a look at Fig. 7 , where the

odel’s outcome for I(t) and the observed active cases I e (t) are 

hown in the same graph during the calibration period. 
ig. 7. Representation of the daily number of reported active cases in the USA I e (t) 

ompared with I(t) during the calibration period. 
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5 
. Behavior of the model during the first and successive surges 

f COVID-19 

In this section we examine the course of the pandemic of 

OVID-19 using the model defined and calibrated in the previous 

ections. In the absence of any significant change with respect to 

he conditions that held in calibration period, the course of COVID- 

9 would be controlled by the parameters β(t) , μ′ (t) and the con- 

tant value of γ determined during the calibration period. How- 

ver, several significant events took place at the end of the cali- 

ration period in each of the countries under study, including the 

elaxation or even the end of the lock down, that contributed to 

ncrease the number of contacts and the probability that a contact 

esults in an infection. In Spain, for instance, people were allowed 

o walk within 1.5 kilometers from their homes in May, bars and 

estaurants were allowed to reopen in many regions of the coun- 

ry along June, and in July, internal mobility was allowed with no 

estrictions, giving birth to a period called “new normality”. 

All the changes mentioned in the previous paragraph do not 

eem to have exerted any influence on mortality, but they did help 

o raise the transmission of the virus. For this reason, in order to 

odel the second (or third) surge we will need to adapt the trans- 

ission function β(t) at some stage. The rest of the parameters 

eeded to run the model remain as they have been defined al- 

eady. The new transmission function will be denoted by β∗(t) . 

It is arguable whether environmental conditions could exert a 

elevant influence on the course of COVID-19. The effects of tem- 

eratures and relative humidity on the coronavirus survival on 

urfaces and in the air has been studied in the past (see for in- 

tance [29] ). More recent studies predict a negative impact of hot 

eather, combined with a certain degree of humidity, in the abil- 

ty of the virus to spread and infect (see for instance [30] ). The

act that other diseases produced by a coronavirus, like the SARS 

f 2002 − 2003 , reached its peak in May and disappeared from the 

orthern Hemisphere during the Summer, should have not mis- 

uided our response to the virus along the months of June and 

uly, and in lesser level in August too (see for instance [31] ). Actu- 

lly, signs of a second surge of the pandemic of COVID-19 could be 

bserved in Europe and the USA already during the months of June 

nd July 2020, when the weather is quite hot in some countries, 

ike Italy and Spain, or in many areas of the USA. The reasons that 

xplain this second surge could be sociological, and are probably 

elated to a substantial increasement of the population’s mobility 

ue to Summer holidays accompanied by a relaxation of the social 

istancing measures. All these changes affect the transmissibility 

f the virus. What we do in this section is to propose a model of

ransmission function in each of the countries under study which 

s compatible with real transmissibility data during the second (or 

hird) surge. Once we have an appropriate candidate for the trans- 

ission function, the application of our model produces reasonable 

utcomes about other epidemiological parameters, such as daily 

ew cases, daily and cumulative deaths, to mention just a few. In 

ost cases, the model’s outcomes and real epidemiological data 

lmost coincide. 

.1. Evolution of the first and second surge of Covid-19 in Italy 

In the case of Italy we can observe a slight but steady growth 

f the values of βe (t) since the month of July (see blue graph in

ig. 8 ). 

Unlike what happends with the βe (t) ’s, the values of μ′ 
e (t) 

eem to have a much more predictable behavior as can be seen 

n Fig. 9 . Hence, in order to simulate the second surge of COVID-19 

n Italy we can assume that μ′ (t) has already approximated to its 

aseline value μ′ since the month July and on, whereas β must be 

0 
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Fig. 8. Comparison of the transmission function β∗(t) used in the model and the 

observed values of βe (t) until mid November 2020. 

Fig. 9. Comparison of the death rate function μ′ (t) used in the model and the 

observed values of βe (t) until mid November 2020. 

Fig. 10. Comparison of the model’s outcome for I(t) and the observed values I e (t) 

of active cases in Italy until mid november 2020. 

Fig. 12. Comparison of the transmission function β(t) used in the model and the 

observed values of βe (t) until mid November 2020 in the USA. 

Fig. 13. Comparison of the model’s outcome for I(t) and the observed values I e (t) 

of active cases in the USA until mid november 2020. 
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β

Fig. 11. In the left we show the number of deaths by COVID-19 in Italy since the 20th of 

the observed cumulative incidence in 14 days per 10 0,0 0 0 inhabitants in Italy since mid A
6 
eshaped starting from the month of July according to the values 

f βe (t) . 

Actually, we will replace β(t) by β∗(t) , where β∗(t) is shown 

n red in Fig. 8 . Observe that β(t) and β∗(t) coincide until mid 

uly. To be more precise, until the 16th of July ( t = 117 ). The func-

ion β∗(t) we have considered to model the second surge in Italy 

s given explicitly by 

∗(t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

β(t) if t ≤ 117 , 

β(117) + 

5 . 5 β0 −β(117) 
30 

(t − 117) if 117 ≤ t ≤ 164 , 

5 . 5 β0 if 164 ≤ t ≤ 195 , 

5 . 5 β0 + 

4 . 5 β0 

15 
(t − 195) if 195 ≤ t ≤ 210 , 

10 β0 if 210 ≤ t ≤ 225 , 

10 β0 − 4 . 5 β0 

15 
(t − 225) if 225 ≤ t ≤ 240 . 
march compared with the deaths predicted by the model. On the right we compare 

ugust with the values predicted by our model. 
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Fig. 14. In the left we show the number of deaths by COVID-19 in the USA since the 2nd of April compared with the deaths predicted by the model. On the right we the 

cumulative number of reported recoveries together with the model’s outcome for R (t) . The difference between the two graphs is due to the deaths of recoveries for causes 

other than COVID-19. 
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Fig. 15. Heuristic construction of the transmission function β∗(t) for Spain during 

the second surge. 

Fig. 16. We show the cumulative incidence in 14 days per 10 0,0 0 0 inhabitants in 

Spain obtained with our model compared with real cumulative incidence data. 
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bserve that t = 117 , 164 , 195 , 210 , 225 , 240 correspond, respec-

ively, to the 16th of July, the 31st of August, the 1st of October, the

6th of October, the 31st of October and the 15th of november. The 

unction β∗(t) is depicted in Fig. 8 in red, together with βe (t) . 

The accuracy of the model’s outcomes with β(t) replaced by 
∗(t) is shown Figs. 10 and 11 . 

.2. Evolution of the second and third surge of COVID-19 in the USA 

The USA already suffered a second bust of COVID-19 in Sum- 

ertime that manifested with a substancial increasement of 

eaths in August with respect to June and July. However this sec- 

nd surge had its origin a few weeks earlier in the month of July, 

s can be seen in Fig. 12 . Observe the heap in the graph of βe (t)

long the month of July, when the transmission was multiplied 

y 2. It seems that the βe (t) ’s decreased in August and stabilized 

round the baseline value β0 in September. Unfortunately, since 

he beginning of October, the values of the βe (t) ’s have experi- 

nced a dramatic rise, giving birth to the third surge of COVID- 

9 in the USA. The transmission function β∗(t) we have used to 

odel the second and third surge in the USA is shown in red in

ig. 12 . We provide it explicitly here: 

∗(t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

β(t) if t ≤ 69 , 

β(169) + 

2 β0 −β(69) 
15 

if 69 ≤ t ≤ 84 , 

2 β0 if 84 ≤ t ≤ 120 , 

2 β0 − β0 

15 
(t − 120) if 120 ≤ t ≤ 135 , 

β0 if 135 ≤ t ≤ 182 

β0 + 

1 . 5 β0 

40 
(t − 182) if 182 ≤ t ≤ 227 . 

bserve that t = 69 , 84 , 120 , 135 , 182 , 220 correspond, respec-

ively, to the 10th of June, the 25th of June, the 31st of July, the

5th of August, the 1st of October and the 8th of November. 

The results obtained with this choice of β∗(t) model with great 

ccuracy the main epidemiological figures of the USA during the 

econd and third surge. To provide the reader with some examples 

f the sharpness and precision of our model, see Figs. 13 and 14 . 

.3. Evolution of the second and third surge of COVID-19 in Spain 

The fact that Spain does not publish the number of daily recov- 

ries since the 18th of May 2020 hampers considerably the con- 

truction of a model for the transmission function β∗(t) during the 

econd surge in that country since we are unable to calculate the 

alues of βe (t) . Using a heuristic procedure, we have found a func- 

ion β∗(t) such that the model’s outcome and the real data for 

he cumulative incidence per 10 0,0 0 0 inhabitants coincide. Con- 
7 
ider the function (see Fig. 15 ) defined as 

∗(t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

β(t) if t ≤ 89 , 

β(89) + 

6 . 2 β0 −β(89) 
56 

(t − 89) if 89 ≤ t ≤ 145 , 

6 . 2 β0 − 2 . 2 β0 

16 
(t − 145) if 145 ≤ t ≤ 161 , 

4 β0 if 161 ≤ t ≤ 181 , 

4 β0 − 1 . 5 β0 

20 
(t − 181) if 181 ≤ t ≤ 201 , 

2 . 5 β0 + 

2 . 1 β0 

15 
(t − 201) if 201 ≤ t ≤ 216 , 

4 . 6 β0 − 2 . 1 β0 

20 
(t − 216) if 216 ≤ t ≤ 236 . 

bserve that t = 89 , 145 , 161 , 181 , 201 , 216 , 236 correspond,

espectively, to the 21st of June, the 16th of August, the 1st of 

eptember, the 21st of September, the 11th of October, the 26th of 

ctober and the 15th of November. Running the model with β∗(t) , 

he outcome for cumulative incidence in 14 days per 10 0,0 0 0 in- 

abitants and the real reported incidence have been sketched in 

ig. 16 . 

The fact that the graphs in Fig. 17 , are similar, proves that the 

hoice made for β∗(t) could be appropriate to model the course of 
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Fig. 17. Real data of cumulative deaths by COVID-19 are compared with the model 

outcome for cumulative deaths since the 24th of March. 

Fig. 18. Estimated values of active cases and people with immunity in Spain be- 

tween the 24th of March and mid November 2020. 
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he pandemic in Spain during the second surge. Using the function 

∗(t) it is therefore plausible to make an educated guess of the 

volution of active cases and the number of people with immunity 

y representing the model’s outcome for I(t) and R (t) respectively. 

e do that in Fig. 18 . 

It must be warned that the graphs in Fig. 18 , together with the

euristic guess for β∗(t) have been obtained under the assump- 

ion that γ remains constant along the whole period of study. Also, 

he value assigned to γ has been estimated using only the data 

f the fist weeks of the pandemic. This value, namely γ = 0 . 0357 ,

eems to be a bit high in comparison with the recuperation rates 

f Italy and the USA, which seem to have stabilized within the rel- 

tively narrow interval [0.016,0.020]. There are no objective rea- 

ons to explain why the recuperation constant in Spain should be 

bout twice as big as in Italy or the USA, for which reason we tend

o believe that the current number of active cases in Spain could 

e higher than the predicted values shown in Fig. 18 . 
ig. 19. On the left we show a projection on the daily number of deaths in Italy starting

n 14 days per 10 0,0 0 0 inhabitants in Italy. In all cases the projections star in mid Novem

8 
. Predictions for Italy and the USA 

To finish this manuscript we will provide some projections on 

he evolution of COVID-19 in the countries under study using the 

odel described in the preceding sections. Out of the three coun- 

ries, we believe that Italy has published the most homogeneous, 

onsistent and reliable data, so predictions could be more accurate 

n this case. On the contrary, the data of Spain have undergone 

ubstantial corrections along the pandemic and they lack reliable 

gures on recovered people since the month of may. For this rea- 

on we will restrict our attention to Italy and the USA. 

.1. Projections for Italy 

If we examine the data of Italy by mid November, we can see 

hat new infections, cumulative incidence, daily deaths and other 

pidemiological indicators are still growing or stabilized around 

ery high values. However, the transmission curve βe (t) for Italy 

see Fig. 8 ) has been decreasing since the beginning of November. 

his descending tendency will surely translate into a steady reduc- 

ion of the most significant epidemiological figures in the next few 

eeks starting on the 16th of November 2020 t = 241 , when the 

evision of this paper has been finished. To obtain our projections 

or Italy we will consider the same function μ′ (t) (which at that 

tage will be almost equal to μ′ 
0 
), but the function β∗(t) will be 

xtended for t ≥ 241 as follows: 

∗(t) = 

{ 

10 β0 − 4 . 5 β0 

15 
(t − 225) if 225 ≤ t ≤ 255 , 

β0 if t ≥ 255 . 

bserve that t = 225 is the 15th of November whereas t = 255 is

he 30th of November. 

The model’s outcome for daily deaths and cumulative incidence 

n 14 days per 10 0,0 0 0 inhabitants can be seen in Fig. 19 in two

ifferent scenarios. In the worst scenario we assume that the recu- 

eration constant γ preserves the value it had since the month of 

ugust, that is γ = 0 . 0160 . In the optimist scenario γ is supposed 

o have the value it had in June, that is γ = 0 . 0405 . It is devastat-

ng that, in the worst scenario, the incidence will not fall below the 

hreshold of 50 cases until mid April 2020, and by that time some 

2,0 0 0 people could have died since the 16th of November alone. 

n the most favorable scenario, the cumulative incidence would fall 

elow 50 cases right at the beginning of 2021. In this scenario 

bout 16,0 0 0 people would die between the 16th of November and 

he end of 2020 and about 4,700 mode in 2021. Daily deaths would 

ot fall below 10 until the end of March 2021. Daily new cases 

ould not fall below 50 untl mid April 2021. 

.2. Projections for the USA 

Looking at the transmission curve of the USA (see Fig. 12 ) it 

eems that the third surge is still on the rise with no sign of 
 in mid November. On the right we show a projection on the cumulative incidence 

ber 2020. 
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Fig. 20. Projected cumulative incidence in 14 days per 10 0,0 0 0 inhabitants in the 

USA. 
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hange by mid November 2020 when the revision of this paper 

as been concluded. Even in the case that a dramatic change of 

endency occurs in mid November with a linear decay of β∗(t) to 

he base line value β0 in, say, 15 days, the situation would be quite 

ad with at least 1,0 0 0 deaths every day until the end of January

021. To calculate our projections, let us extend β∗(t) as follows: 

∗(t) = 

{ 

43 
16 

β0 − 9 β0 

80 
(t − 227) if 227 ≤ t ≤ 242 , 

β0 if t ≥ 260 . 

ere t = 227 is the 16th of November and t = 242 is the 30th of

ovember. With this transmission function the pandemic would be 

uite spread in the USA for several months, having very high inci- 

ence values way above 100 cases even in the month of March 

021 (see Fig. 20 ). 

. Conclusions and discussion 

In this paper we have seen that the course of COVID-19 in three 

ountries, Italy, Spain and the USA, can be modeled using a simple 

IR-type model with non-constant parameters. The parameters, af- 

er a transient state tend to approach their asymptotic values. This 

s particularly true with the mortality rate μ′ and the recupera- 

ion rate. The transmission rate shows a tendency to approach its 

symptotic value as well, but it is sensitive to sociological changes 

uch as a higher mobility, a relaxation of social distancing and 

he massive use of protection material, like face masks. We have 

roved that an appropriate choice of the transmission function al- 

ows us to obtain very realistic outcomes. Using the model, we 

ave also been able to produce several predictions in the case of 

taly and the USA. These predictions a quite negative even in the 

ost favorable scenario, which should serve as a motivation to 

ouble the effort s of everybody. The situation of the USA is so bad

hat, even if the current tendency is reversed in just two weeks, 

hat country would keep extremely high values of incidence even 

n the month of March 2021. Only a dramatic fall of the transmis- 

ion, even below its baseline value, could bring some normality to 

hat country. In any case, that would not happend immediately. 
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