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A B S T R A C T   

This study aims to find the association between short-term exposure to air pollutants, such as particulate matters 
and ground-level ozone, and SARS-CoV-2 confirmed cases. Generalized linear models (GLM), a typical choice for 
ecological modeling, have well-established limitations. These limitations include apriori assumptions, inability to 
handle multicollinearity, and considering differential effects as the fixed effect. We propose an Ensemble-based 
Dynamic Emission Model (EDEM) to address these limitations. EDEM is developed at the intersection of network 
science and ensemble learning, i.e., a specialized approach of machine learning. Generalized Additive Model 
(GAM), i.e., a variant of GLM, and EDEM are tested in Los Angeles and Ventura counties of California, which is 
one of the biggest SARS-CoV-2 clusters in the US. GAM depicts that a 1 μg/m3, 1 μg/m3, and 1 ppm increase (lag 
0–7) in PM 2.5, PM 10, and O3 is associated with 4.51% (CI: 7.01 to − 2.00) decrease, 1.62% (CI: 2.23 to − 1.022) 
decrease, and 4.66% (CI: 0.85 to 8.47) increase in daily SARS-CoV-2 cases, respectively. Subsequent increment in 
lag resulted in the negative association between pollutants and SARS-CoV-2 cases. EDEM results in an R2 score of 
90.96% and 79.16% on training and testing datasets, respectively. EDEM confirmed the negative association 
between particulates and SARS-CoV-2 cases; whereas, the O3 depicts a positive association; however, the positive 
association observed through GAM is not statistically significant. In addition, the county-level analysis of 
pollutant concentration interactions suggests that increased emissions from other counties positively affect SARS- 
CoV-2 cases in adjoining counties as well. The results reiterate the significance of uniformly adhering to air 
pollution mitigation strategies, especially related to ground-level ozone.   

1. Introduction 

Prolonged exposure to particulate matters, PM 2.5 and PM 10, is 
related to severe health impacts, including respiratory, cardiovascular, 
and neurocognitive diseases (Brook et al., 2004; Ciencewicki and Jas
pers, 2007; Di et al., 2017; Wellenius et al., 2012). After the SARS-CoV-2 
virus (COVID-19, henceforth) outbreak, the researchers have estab
lished that the people having protracted exposure to PM 2.5 are prone to 
COVID-19 (Saez et al., 2020; Stieb et al., 2020). This exposure gravely 
affects the respiratory and cardiovascular systems that exacerbate the 
impact of COVID-19. A consequence of this is the worse COVID-19 
outbreaks in the industrial cities. 

Proximity to infected persons (Chan et al., 2020; Li et al., 2020), 
population mobility (Kraemer et al., 2020), long-term exposure to par
ticulate matters (Saez et al., 2020; Stieb et al., 2020), and ambient 
temperature (Xie and Zhu, 2020) have been well-associated with 
COVID-19 pandemic. In addition, the existing state-of-the-art in the field 

has established the potential existence of traces of COVID-19 RNA on PM 
(Setti et al., 2020a). This finding is consistent with the evidence avail
able for other viruses (Ma et al., 2017; Qin et al., 2020; Reche et al., 
2018; Zhao et al., 2019). In addition, Setti et al. (2020c) have found that 
initial spread of COVID-19 is significantly associated with daily PM 10 
exceedances in Italy. However, no conclusion can be obtained regarding 
the existence of the virus on PM and severity of the COVID-19 incidences 
as we are not certain about the vitality of the virus on particulates (Setti 
et al., 2020a, 2020b). The analysis of historical exposure to pollution can 
neither validate nor rule out the possibility of airborne transmission. 
Therefore, data-driven analysis exposure to air pollutants for a short 
period of time is required to bridge this technical gap. 

Los Angeles is one of the biggest COVID-19 clusters in the US, and 
Ventura is in geographical proximity to it. Thus, Ventura is considered as 
an extension to Los Angeles, which is also a part of Los Angeles–Long 
Beach Combined statistical area (CSA, Figure S.8). Los Angeles county 
has been associated with bad air quality and greenhouse gas emissions. 
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Bashir et al. (2020) unravel the link between air pollution and COVID-19 
cases and mortality in California. However, there exists three limitations 
that needs to be addressed. Firstly, this study did not consider the use of 
well-established ecological modeling techniques (Saez et al., 2020; Stieb 
et al., 2020; Zheng et al., 2020). On the contrary, it employs funda
mental techniques, such as Spearman, and Kendall correlation. Subse
quently, lagged effect of exposure is not introduced in this study. 
Notably, the impact of pollution can manifest after numerous days (Lin 
et al., 2018; Myung et al., 2019; Yang et al., 2020). Finally, ground-level 
ozone (O3), i.e., an essential pollutant in the Californian context 
(Bytnerowicz and Fenn, 2019; Kahn, 2000) is not included. 

In this work, we aim to examine the association between interim 
exposure to three pollutants: PM 2.5, PM 10, and O3, and COVID-19 
incidences. We begin by modeling the pollutants with Generalized 
Linear Models (GLMs), a classical technique in ecological modeling. 
However, the GLM has well-established limitations: apriori assumptions 
(Ngufor et al., 2019), inability to handle multicollinearity (Chen et al., 
2018; Dastoorpoor et al., 2019; Phosri et al., 2019), and quantifying 
differential county-level (or city-level) effects as fixed effects (Zheng 
et al., 2020). We address these limitations by devising a novel modeling 
approach, Ensemble-based Dynamic Emission Modeling (EDEM), at the 
intersection of network science and machine learning. The study focuses 
on quantifying the emission interactions among counties using 
state-of-the-art in network science. Both of these approaches, GLM and 
EDEM, were examined in Los Angeles and Ventura counties of 
California. 

2. Methods 

This section details the methods used for ecological modeling. The 
architecture of the GLM is described. In addition, the architecture of a 
novel EDEM is proposed that takes into account the effect of pollutant 
concentrations from adjoining counties while addressing other major 
challenges of the GLM. Subsequently, detailed sensitivity analyses for 
both approaches are outlined. 

2.1. Data collection 

We have used well established sources of ambient air pollution data, 
ambient meteorological data, county-level COVID-19 data, and county- 
level demographic data. These sources and their web links are listed in 
Table A1. 

2.1.1. COVID-19 cases 
The Johns Hopkins University hosts the most extensive county-level 

data in the US. The available COVID data consists of the cumulative 
count of confirmed, deceased, and recovered cases. However, we are 
interested in daily incidences that are to be modeled against short-term 
exposure (Zheng et al., 2020). The daily incidences for confirmed cases 
and deaths were calculated from the cumulative data (see Figs. A.1 and 
A.2). The delay in reporting and testing practices was accommodated by 
obtaining a moving average of 7 days on the data. Later, the population 
bias among counties was addressed by computing the fraction of 
COVID-19 incidences by the population of the county. 

2.1.2. Air pollution and meteorological data 
The county-level exposure to pollutants is collected from US EPA 

(Environmental Protection Agency) monitoring stations spread across 
these counties. These pollutants include PM 2.5, PM 10, and O3. The 
maximum daily concentration of the pollutants was collected across 
these monitoring stations, and the median concentration of these 
monitoring stations defines the county-level concentration. In addition, 

daily meteorological data are obtained from US EPA monitoring sta
tions. These meteorological data include mean temperature, relative 
humidity (RH), air pressure, and wind speed. 

2.2. Study area 

The contemporary GLM approach and proposed EDEM were applied 
in Los Angeles and Ventura counties of California. Data are collected 
from January 22, 2020. As of 1st July 2020, the air pollution data for Los 
Angeles and Ventura counties are available until 31st March 2020 and 
30th April 2020, respectively. All the necessary files, code, and data 
sources are publicly available on GitHub repository newtein / pollu
tion_science to ensure replication of the study. 

2.3. Generalized linear models 

Generalized Additive Model (GAM) is a special type of GLM with an 
added advantage of introducing smooth functions on the predictor 
variables. GAM is an established choice for modeling the impact of 
pollutants on the health (Hu et al., 2020; Ma et al., 2020a,b; Peng et al., 
2006; Ravindra et al., 2019). Zhu et al. use the same method for 
determining the relationship between short-term exposure to air pol
lutants, and COVID-19 confirmed cases in China. In contrast, we explore 
the effect of exposure on both COVID cases and mortality in the US 
through GAM and extend the approach to propose EDEM. 

2.3.1. Statistical methods 
Although the exposure to these pollutants is hazardous, their effect 

can manifest after numerous days (Lin et al., 2018; Myung et al., 2019; 
Yang et al., 2020). Thus, the moving-average is employed to reflect the 
cumulative lag effect of these pollutants (Lin et al., 2018; Yang et al., 
2020; Zheng et al., 2020). The model is tested for the lag of 7, 14, and 21 
days. The motivation behind choosing the 14-day lag frame is the official 
COVID-19 incubation period issued by the US Centers for Disease Con
trol and Prevention (The White House, 2020). However, research sug
gests that our understanding of this incubation period is limited (Lauer 
et al., 2020); thus, we have included additional multiples of 7, i.e., 7 and 
21 days, to determine the effect of exposure to pollution, which is also 
consistent with the related research in the field (Zheng et al., 2020). 
Three different models were built for three pollutants due to their 
inability to handle multicollinearity (Chen et al., 2018; Dastoorpoor 
et al., 2019; Phosri et al., 2019). 

Each pollutant p is modeled against positive cases and mortalities. 
Adhering to the established principles, these models are assumed to take 
the following form, 

log
(
casest, j

)
≅ p+

∑4

i=1
s(Mati)+ cityj + date + log(casest− 1), (1)  

log
(
deathst, j

)
≅ p+

∑4

i=1
s(Mati)+ cityj + date + log(deathst− 1). (2) 

Here, log(casest, j) and log(deathst, j) denote the COVID-19 cases and 
mortalities observed on day t in city j, respectively (Liu et al., 2017; Zhu 
and Xie, 2020). Unity has been added to these terms to facilitate their 
logarithm transformation. p represents the lagged moving average 
concentration of the pollutant (Chen et al., 2018; Phosri et al., 2019; 
Zheng et al., 2020). The confounding effect of meteorological variables 
was controlled by introducing mean pressure, temperature, RH, and 

wind speed. The term 
∑4

i=1
s(Mati) represents these four meteorological 

variables. s(⋅) is the smooth function of a particular meteorological 
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variable (Zhu and Xie, 2020). Potential serial correlation is handled in 
our model by introducing terms log(casest− 1) and log(deathst− 1), which 
depict reported cases and deaths on a previous day (Liu et al., 2017). The 
cityj represents the fixed effects affecting all the cities in a particular day 
(Amuakwa-Mensah et al., 2017; Zheng et al., 2020). This also aims to 
check time independent characteristics, e.g. population; however, it 
disregards the time variant effects, such as pollution from the adjoining 
counties. 

The statistical tests were conducted with a two-tailed confidence 
interval, and p-value of less than 0.05 was categorized as significant. 
Owing to the logarithmic transformation of the independent variable, 
effect estimates were represented by the percentage change in daily 
COVID -19 incidences per unit increase in the pollutant. In this study, 
GAM is built using the mgcv package (v 1.8–31) in R (v 3.5.3). Notably, 
the mgcv package uses implicit generalized cross validation mechanism 
(Wood, 2006). 

2.3.2. Sensitivity analyses 
We conduct five sensitivity analyses. First, the lagged term for cases 

and deaths was removed from the model, since we are analyzing daily 
coronavirus cases and not the communitive ones. Thus, any COVID-19 
related trend is essential for the analysis. Second, Los Angeles had the 
most COVID-19 cases in California; thus, we excluded Los Angeles from 
our data and analyzed Ventura County only. Third, we created a com
bined model of pollutants, PM 2.5, PM 10, and O3, to compare the re
sults from single pollutant models, thereby validating the methodology 
(Chen et al., 2018; Phosri et al., 2019). Forth, we divided cases and 
deaths with the pollution of the city to overcome the population bias. 
Fifth, emission coefficient was modeled along with other parameters. To 
rephrase, GLM was trained with dynamic emission parameters while 
keeping all other parameters constant, e.g., pollutants, meteorological 
factor, lagging function with an exception to the city fixed effects. 

2.4. Limitations 

Three significant limitations of the GLM are summarized as follows. 
Firstly, GLMs are constructed on assumptions. For instance, equations 
(1) and (2), delineate our assumption for the linear dependence of 
COVID-19 cases and deaths, respectively. Although the knowledge is 
obtained from existing studies, the use of such assumptions is highly 
discouraged in association analysis (Ngufor et al., 2019). Nevertheless, 
data-driven machine learning approaches have the potential to obtain 
associations, both linear and non-linear, without facilitating the model 
with linear apriori assumptions. 

Next, the inability of GLMs to accommodate multicollinearity. For 
instance, most of the pollutants depict high correlations among them
selves; this compels the researchers to develop separate models for each 
pollutant (Chen et al., 2018; Dastoorpoor et al., 2019; Phosri et al., 
2019). However, ensemble learning or tree-based machine learning 
approaches are equipped with handling multicollinearity (Ma et al., 
2020a,b; Parsa et al., 2020; Zhai and Chen, 2018). In addition, this helps 
us to obtain the relative importance of each pollutant in the prediction of 
the outcome, which we cannot obtain by developing separate models for 
each pollutant. 

Subsequently, GLMs quantify differential interactions between 
counties or states as fixed effects. For instance, we replace counties 
belonging to the same states with a fixed intercept to accommodate 
diverse demographics, policy implementations, testing procedures, etc. 
followed by the states (Amuakwa-Mensah et al., 2017; Lu and Lu, 2017; 
Zheng et al., 2020). In the era of the plethora of data, this approach leads 
to considerable information loss. We propose the use of network science 

to quantify these county-level interactions. 

2.5. Ensemble-based Dynamic Emission Model 

Pollutants are influenced by transport systems (e.g., wind) and 
meteorological variables (e.g., pressure). The GLM categorizes the dif
ferential effects among counties as fixed, which leads to a colossal in
formation loss. However, a county is a part of a large complex emission 
system experience several state-level and county-level effects. For 
instance, the effect of pollution of adjoining counties needs to be 
quantified. Thus, to quantify these effects, we construct a weighted 
emission network for the pollutants. Each node in the network repre
sents a county, and an edge represents the magnitude of emission (or air 
pollution) interaction between two counties. Emission interactions for 
each county are quantified based on its role in the network. 

COVID-19 incidences were than mapped by county-level pollutant 
(lag 0–14), emission interactions (lag 0–14), meteorological variables 
(wind, RH, temperature, and pressure), geographic, and demographic 
information. State-of-the-art machine learning technique, i.e., ensemble 
learning, is used to determine the outcome. Tree-based ensemble 
learning technique is not affected by multicollinearity, which is one of 
the limitations of GLMs. To rephrase, multiple pollutants can be 
modeled by a single model and thereby comparing the relative effect of 
pollutants on the outcome. In addition, these models can map complex 
and non-linear associations; however, GLMs only focus on linear asso
ciations. The cutting-edge SHAP technique is employed to understand 
the directionality and degree of these associations, including the relative 
importance of all the independent variables. 

Therefore, in this study, we introduce EDEM that uses a combination 
of network science and machine learning techniques. EDEM is scripted 
in python programming language (v 3.7.9) using Networkx (v 2.4), 
XGBoost (v 1.0.2), SHAP (v 0.35.0), FastDTW (v 0.3.4), CDTW (v 0.0.1), 
Haversine (v 2.2.0), and SciPy (v 1.0.0). 

2.5.1. Emission network 
A short-term emission network, for a pollutant p with a lag of 14 

days, is constructed. Each node represents the monitoring sites, and the 
edge represents the observed interaction among them. This interaction is 
quantified using the following methodology. The emission coefficient 
ECc quantifies the effect of emissions of various counties on a particular 
county c, 

ECc =
∑en

j=0
ECc,d , (3)  

where en denotes the total number of counties minus one (excluding c). 
ECc,d denotes the emission coefficient between counties c and d, 

ECc,d =Ed × θ
(
rc,d

)
× nc,d , (4)  

where E denotes the maximum daily value of the emission recording for 
the county d, r denotes the observed similarity between the emissions 
(lag 0–14), n is the geometrical nearness factor and θ is a min-max 
normalized scalar. 

The emission recorded at the monitoring sites is represented by time 
series; therefore, time series similarity metrics were employed to 
compute the similarity among emissions. One of the well-established 
similarity metrics is the Pearson correlation coefficient. Prior to 
computing correlation, both of the time series were de-trended to 
eliminate bi-weekly trends (Li et al., 2019; Tong et al., 2020; Zou et al., 
2019). The correlations below 98% significance were not considered. 
Therefore, the rc,d can be obtained by cross-correlation, 
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rc, d =
n(

∑
c*d*) −

∑
c* ∑ d*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[n
∑

c*2]−
√

[
∑

c*]
2
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
n
∑

d*2
]
−

√

[
∑

d*]
2
, (5)  

where c* and d* are de-trended values of air pollution concentrations in 
city c and d, respectively, and n is the number of data points. Notably, 
the air pollution concentrations is referred to as emissions. Moreover, 
three additional state-of-the-art similarity metrics were employed for 
sensitivity analyses: Euclidean distance, dynamic time wrapping (DTW), 
and constrained dynamic time wrapping (CDTW). The rationale of 
employing DTW and CDTW involves their capability of computing 
similarity between two time series that can vary disproportionately with 
time. This virtue makes them suitable for computing the similarity due 
to the lag between emissions. Notably, r, which represents the observed 
similarity between two time series of pollutant p, is an empirical quan
tity that can be computed by a wide variety of methods. In this study, we 
have reported results from Pearson correlation, Euclidean distance, 
DTW, and CDTW. In addition, Spearman correlation can be employed to 
compute monotonic relationships (Okada, 2018). 

The nearness factor aims to amplify the emission similarity for 
counties situated at a close distance from each other. The nearness factor 
is obtained by, 

nc,d = 1 − θ(haversine(gc, gd)) , (6)  

where gc and gd denote the set of latitude and longitude for county c and 
d, respectively. The haversine distance, i.e., the actual circular distance 
between two places, is used to compute the physical distance. 

Three weighted networks were constructed for three pollutants. 
Notably, a county consists of multiple monitoring sites; thus, the median 
effect of various monitoring sites is considered the net county-level 
effect. 

2.5.2. Quantification of the interactions 
Network centralities metrics provide quantitative tools to pick out 

fine interactions in complex networks. In terms of emission network, 
betweenness denotes the extent to which a node is influenced by the 
other nodes in the emission network. To rephrase, the extent to which a 
node is influenced (as a bridge) when information, i.e., emission, is 
passed around the network. Current flow betweenness, i.e., inspired by 
the random-walk, focuses on the flow of emissions across all the paths by 
incorporating a component of randomness in the flow (Brandes and 
Fleischer, 2005), which makes it suitable for emission modeling. In 
addition, we introduce diverse centrality metrics in sensitivity analyses. 

The emission network for pollutant p, 

Ep =
(

Np, EC
)
, (7)  

where Np is the network of the pollutant p and EC is the emission co
efficients, i.e., the edge weights of the network. Current flow between
ness centrality of pollutant p for county c is defined as: 

CFBp,c =
1
nb

(∑
τ(p, c)

)
, (8)  

where 
∑

τ(p, c) represents the net emission of pollutant p received at 
county c. Net emission for county c is calculated by combining the net 
impact from the emission based on the edge weight, i.e.,ECc. Brandes 
and Fleischer (2005) compute 

∑
τ(c) by Kirchhoff’s Current Law and 

Potential Law. nb is the normalizing constant (n − 1)(n − 2). 

2.5.3. Association analysis using machine learning 
The features fed to the ensemble learning model broadly covers four 

domains. First, daily pollutant maximum concentration (lag 0–14), 
second, daily mean values for meteorological variables (e.g., wind, 
pressure, temperature, and RH), and third, quantification of county- 
level interactions (lag 0–14). These features were modeled against 

COVID incidences. The data are split randomly between training and 
testing set in the ratio of 7:3. XGBoost (eXtreme Gradient Boosting) 
technique was used to train the model (Chen et al., 2019; Ma et al., 
2020a,b; Pan, 2018). The details of hyperparameter tuning of XGBoost 
using five-fold cross validation is listed in Table S.9. Subsequently, the 
associations obtained from the model are interpreted using SHapley 
Additive exPlanations or SHAP (García and Aznarte, 2020; Stojić et al., 
2019; Zheng et al., 2020). 

2.5.4. Quantifying unmeasured confounding bias 
We take potential meteorological and demographic confounding 

factors into consideration. These include the daily average value of 
temperature, pressure, RH, wind, and population. In addition, we 
quantify the county-level emissions to account for the differential 
emissions. We conduct various sensitivity analyses to determine statis
tical significance and robustness of the results. 

2.5.5. Sensitivity analyses 
We conduct 39 sensitivity analyses. First, we create three separate 

ensemble learning models separately for three pollutants. Second, we 
create two separate models for Los Angeles and Ventura counties 
because out of 170 total data points – 100 belong to Ventura and 70 
belong to Los Angeles. Third, an incremental term is added to our 
original ensemble learning model similar to Equations (1) and (2). Forth, 
the independent variable, i.e., coronavirus cases, was transformed into 
the logarithmic domain. The subsequent 35 sensitivity analyses involves 
variation in metrics for (1) computing similarity between observed 
emissions, i.e., used for network creation, and (2) quantification of the 
influence of the county by network centralities. Thus, the next 35 
sensitivity analyses involve exploring various combinations of similarity 
and centrality metrics. We use four methods for similarity metrics, 
namely Pearson correlation coefficient, Euclidian distance, DTW, and 
CDTW, in combination with 9 methods for centrality metrics, e.g., de
gree, betweenness, closeness, harmonic, current flow betweenness, 
current flow closeness, communicability betweenness, load, and 
clustering. 

3. Results 

This section presents the results obtained by modeling exposure to 
air pollution and daily COVID-19 cases. The results can be classified into 
descriptive, association, and sensitivity analyses. The descriptive anal
ysis focuses on the overall statistics and correlations observed in the 
data, whereas the association analysis aims to determine the relation
ship between interim exposure to airborne pollutants and COVID-19 
cases. The sensitivity analyses focus on ensuring the robustness and 
significance of the results. 

3.1. Descriptive analysis 

The observed mean and standard deviation (mean ± std) for daily 
maximum values for the pollutants, PM 2.5, PM 10 and O3, were 14.68 
± 7.55 μg/m3, 42.48 ± 28.20 μg/m3, and 0.05 ± 0.008 ppm, respec
tively. Meteorological variables, namely daily mean pressure, RH, 
temperature, and wind, depicted the mean and standard deviations of 
961.56 ± 26.69 mbar, 61.08 ± 17.55%, 56.05 ± 7.09 ◦F, and 5.11 ±
2.12 kn, respectively (Table 1). 

Fig. 1(a–b) illustrate the Spearman and Kendall coefficients of cor
relation among air pollutants and meteorological variables. Notably, the 
usage of Spearman and Kendall coefficients for obtaining correlation 
among meteorological variables and pollutants is established in the 
literature because data is not assumed to be normally distributed (Copat 
et al., 2020; Liu et al., 2017). All three pollutants were observed to be 
significantly correlated with each other. The pressure is significantly 
correlated with the other meteorological variables. However, the 
strength of correlation is weak in all these cases. Notably, a statistically 
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significant correlation does not imply the strength of the correlation 
(Akoglu, 2018). To rephrase, the significant correlation reassures its 
strength, whether weak or strong. In addition, the temperature is 
significantly correlated with the wind. However, pollutants are not 
observed to be strongly correlated with meteorological variables. 

3.2. Association analysis 

By applying GAM, i.e., a specialized model of GLM family, we have 
observed a negative association between particulate matter and COVID- 
19 cases and mortality across all the lags. Specifically, for (1) PM 2.5 at 
lag 0–21 percentage change equals − 18.2% (95% CI: 23.28 to − 13.26) 
for cases and − 6.7% (95% CI: 8.59 to − 4.84) in mortality, (2) PM 10 at 
lag 0–21 percentage change equals − 5.1% (95% CI: 6.06 to − 4.29) and 
− 1.1% (95% CI: 1.47 to − 0.84). However, for the lag of 7 days, O3 is 
observed to be positively associated with the COVID-19 incidences. 
Specifically, for O3 at lag 0–7 percentage change equals 4.6% (95% CI: 
0.85 to 8.47) for cases and 246.83% (95% CI: 369.02 to 862.69) in 
mortality. 

Notably, the observed significance of these pollutants is as follows. 

Firstly, PM 2.5 is negatively associated with COVID-19 incidences for 
14-day lag with 99% confidence. However, similar confidence (or p- 
value) is not observed for 7 and 21 days. Secondly, the negative asso
ciation of PM 10 and COVID-19 cases for 7-day lag depicts 95% confi
dence; however, the confidence is decreased to 90% with an increment 
in the lag. Finally, O3 is positively associated with COVID-19 cases for 7- 
day lag; however, the p-value is much higher to be statistically signifi
cant. Along with other pollutants, O3 depicts a negative association with 
COVID-19 cases for 14- and 21- day lag with 99% and 95% confidence, 
respectively. These results are delineated in Table 2. The moving 
average lag effects for pollutants, PM 2.5, PM 10, and O3, on daily cases 
and mortality related to COVID -19 is illustrated in Fig. A.3. 

Although GAM has been a classical modeling approach for modeling 
health outcomes, the proposed EDEM addresses some of its well- 
established limitations, which are detailed in Section 2.4. In essence, 
these are its dependence on apriori assumptions, inability to handle 
multicollinearity, and quantifying differential county-level (or city- 
level) effects as fixed effects. To address these limitations, EDEM is 
built at the intersection of two cutting-edge technologies: network sci
ence and machine learning. 

Table 1 
Descriptive statistics of air pollutants and meteorological variables.   

PM 2.5 PM 10 O3 Pressure RH Temperature Wind 

count 170 170 170 170 170 170 170 
mean 14.68 42.48 0.05 961.57 61.08 56.06 5.11 
std 7.55 28.2 0.01 26.7 17.56 7.1 2.13 
min 4 4 0.03 921.04 21.38 36.07 1.48 
25% 9.18 25.25 0.04 930.59 47.64 51.32 3.96 
50% 13.4 37 0.05 980.35 65.15 55.02 5.18 
75% 17 55 0.06 984.42 76.2 59.36 6.01 
max 48 213 0.08 991.04 91.25 81.33 12.55  

Fig. 1. Observed correlation among pollutants and meteorological variables.  

Table 2 
Intercept – P value table depicting relationship between lagged exposure to air pollutants and COVID-19 incidences.  

Pollutants lag(0–7) days lag(0–14) days lag(0–21) days 

Cases Mortality Cases Mortality Cases Mortality 

PM 2.5 Intercept − 0.045. − 0.015. − 0.089* − 0.031* − 0.182*** − 0.067*** 
P value 0.0733 0.0882 0.0164 0.0223 0.0003 0.0004 

PM 10 Intercept − 0.016** − 0.003 − 0.035*** − 0.007** − 0.051*** − 0.011*** 
P value 0.0080 0.1582 3.71e-06 0.0077 2.68e-08 0.0003 

O3 Intercept 0.046 2.468 − 55.00* − 3.931 − 72.14** 0.057. 
P value 0.2227 0.6891 0.0122 0.6183 0.0029 0.0910 

‘***‘, ‘**‘, and ‘*’ shows the significance at 10%, 5%, and 1%. 
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By introducing EDEM, the county-level interactions were quantified. 
Fig. 2(a–c) represents the emission network for PM 2.5, PM 10, and O3, 
respectively. The network comprises short-term exposure information 
about the particular pollutants. Stronger influence is represented by the 
bolder edge in the network. EDEM results in an R2 score of 90.96% and 
79.16% on training and testing datasets, respectively. Fig. 2 d illustrates 
the relative importance of features and the directionality of their impact 
on COVID-19 cases. The result suggests that particulates negatively 
associated with the cases; however, the ozone factor positively associ
ates. In addition, a positive association is observed between county-level 
emission interactions and COVID-19 cases. Since EDEM can handle 
multicollinearity, the decreasing importance of pollutants for deter
mining COVID-19 cases are as follows: PM 10, PM 2.5, and O3 (Fig. 2 d). 
The airborne nature of COVID-19 is still not explicit; thus, we have re
ported the results of both models separately without delineating final 
decisions. 

3.3. Sensitivity analyses 

Five sensitivity analyses were conducted for the GLM. As part of the 
first sensitivity analysis, the association between COVID-19 incidences 
and pollutants become more robust after removing the incremental 
lagging term from the model (Table A.2). As part of the second sensi
tivity analysis, the removal of Los Angeles from the data has resulted in 
positive associations between particulate matter and coronavirus 

incidences. However, the association with O3 is observed to be signifi
cantly negative (Table A.3). The third sensitivity analysis involves 
modeling all pollutants together, which has resulted in the decline of the 
association (Table S.1). In the fourth sensitivity analysis, the association 
has become most robust with multiple significant relationships 
(Table S.2). Notably, the association of COVID-19 cases with all three 
pollutants is significant. The fifth sensitivity analysis introduces the 
emission coefficient in the GLM model; the results show a negative as
sociation (Table S.7). 

Thirty-nine sensitivity analyses were conducted for the EDEM. The 
first sensitivity analysis confirms the positive association between 
county-level emissions and COVID-19 cases separately for each 
pollutant (Figure S.1). However, the separate O3 model has yielded the 
worst performance with 0.72 and 0.54 R2 scores on training and testing 
datasets, respectively (Table A.4). Thus, the associations in separate O3 
model is not entirely reliable. In the second sensitivity analysis, a higher 
influence of PM 2.5 and PM 10 is observed by separately modeling Los 
Angeles and Ventura counties, respectively (Figure S.2). It is intriguing 
to note that the combined model is influenced by Ventura county, and 
PM 2.5 is the only influential component in Los Angeles context. The 
third sensitivity analysis involves the introduction of an incremental 
term, i.e., day of the year. The results are robust and validate the 
dependence between pollutants and COVID-19 cases. Consistent with 
the original model, the particulates are observed to be negatively asso
ciated; in addition, the ozone is positively associated (Figure S.3). 

Fig. 2. The results obtained from EDEM. (a) Represents an emission network of PM 2.5 for an arbitrary day. The nodes (in red) represents the monitoring stations 
in counties of Los Angeles and Ventura. The influence of the emissions of adjoining counties, grey nodes, are represented by the edge. A stronger edge represents a 
higher influence. (b) Represents the emission network of PM 10 for an arbitrary day. (c) Represents the emission network of O3 for an arbitrary day. (d) Depicts the 
impact, direction, and relative importance of the association between exposure to pollutants for a short period of time and COVID-19 cases (also refer to Fig. A.4). 
Emission centrality reflects the county-level effects obtained from Equation (8) through the current flow betweenness centrality measure. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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As part of the fourth sensitivity analysis, the results became more 
robust and significant after transforming COVID-19 cases into the log
arithmic domain. As compared to the baseline model (Fig. 2 d), the 
impact and association of pollutants have increased after log trans
formation, as shown in Fig. A.4. Specifically, the number of data points 
showing associations is significantly increased; this effect is observed for 
all the pollutants: PM 10, PM 2.5, and O3. In addition, Fig. A.4 shows 
that a significant positive association is observed between meteorolog
ical variables, namely pressure and Rh, and COVID-19 cases. The R2 
score observed across training, and testing dataset for these four sensi
tivity analyses is delineated in Table A.4. 

The next thirty-five sensitivity analyses confirm the robustness of 
results by introducing diverse methods for computing emission simi
larity and network centrality. The results are detailed in Table S.3-S.6 
and Figure S.4-S.7. We compare the R2 scores across several similarity 
and centrality metrics, as shown in Figure S.9. The observed results for 
four similarity metrics: Pearson correlation, Euclidean distance, DTW, 
and CDTW, are as follows. Firstly, when used with the Pearson corre
lation, the current flow closeness achieved the highest R2 score of 
0.9375 and 0.9088 for training and testing datasets, respectively. Sec
ondly, the usage of harmonic centrality metrics with the Euclidean 
distance outperformed other network centralities. This combination 
observed an R2 score of 0.9542 and 0.9575 on training and testing 
datasets, respectively. Moreover, Figure S.5 h shows the model impact of 
this combination. In addition to confirming the directionality of asso
ciations of the baseline model, the county-level interactions of O3 are 
most prominent. 

In essence, the aforementioned Euclidean distance (between two 
time-series) is the square root of the sum of the squared distances be
tween data-points belonging to these time-series (Iglesias and Kastner, 
2013). In contrast, DTW and CDTW emphasize capturing similar pat
terns between two time-series by calculating the longest common sub
sequence. Finally, for DTW and CDTW, harmonic and communicability 
betweenness metrics yielded approximately 95% of R2 scores, as shown 
in Table S.5-S.6, respectively. Although R2 scores slightly vary with 
various centralities, the difference is not significant. The current flow 
betweenness, harmonic, and communicability betweenness yielded 
significant results in all the scenarios. Since there exists limited research 
at the intersection of air pollution and network science, an in-depth 
analysis of these metrics across various pollutants remains future work. 

4. Discussions 

This study is focused on devising a novel approach to quantify 
county-level interactions by mapping air pollution to emission net
works. The association analysis is conducted by ensemble learning 
techniques. The proposed method that lies at the intersection of network 
science and machine learning addresses several well-established limi
tations of the GLM. We applied the contemporary method and proposed 
EDEM to the Los Angeles and Ventura counties. The GLM depicts a 
negative association between particulate matters and COVID-19 in
cidences. In addition, our proposed method validates these negative 
associations; however, the emission interactions were observed to be 
positively associated with corona cases. To rephrase, the emissions from 
the adjoining counties are positively related to COVID-19 cases. 

The analysis of O3 through GLM delineated a mixed association with 
coronavirus incidences. The GLM has reported a positive relationship for 
lag (0–7) days; however, a negative association is observed for lag 
(0–14) days and lag (0–21) days. Nevertheless, EDEM depicted the 
positive association between O3 and COVID-19 incidences. Bernardini 
et al. (2020) found a positive association between exposure to 
ground-level ozone and hospitalizations in Umbria, Italy. The authors 
conclude that short-term exposure to ground-level ozone may be linked 
with increased psychiatric emergency related hospitalizations in 
Umbria; however, the mental health implication of ground-level ozone 
is not clear. On the other hand, there exist studies that focus on growing 

mental health issues during COVID-19. Shi et al. (2020) have reported 
that the mental health symptoms may have been common in the general 
population of China during the COVID-19 outbreak. In addition, Lai 
et al. report mental health outcomes among frontline workers (Lai et al., 
2020). However, the role of ground-level ozone is yet to be determined. 

The observation of the negative association between particulate 
matters and corona incidences is perplexing. This negative association 
between particulates and COVID-19 incidences is consistent with Bashir 
et al. (2020). This can be attributed to the stringent drop in particulate 
matter during lockdown (stay at home order) and subsequent increment 
in the COVID-19 incidences. Berman and Ebisu (2020) show that urban 
areas of the US are associated with a statistically significant reduction in 
PM 2.5 during COVID-19. In addition, this is validated by the second 
sensitivity analysis, where the removal of Los Angeles, i.e., highly 
polluted, has resulted in a positive association between particulates and 
corona cases. Chan et al. (2020) have observed a positive association 
between short term exposure to particulates and corona incidences in 
China, which is contested to be spurious by Copiello and Grillenzoni 
(2020). With a systematic review of the literature, Copat et al. (2020) 
point out that PM 2.5 is closely associated with COVID-19 than PM 10 
due to the inability of the latter to penetrate type II alveolar cells. 

Los Angeles has struggled with high levels of ground-level ozone, a 
major constituent of photochemical smog (Bytnerowicz and Fenn, 2019; 
Haagen-Smit and Arie, 1952; Kahn, 2000). Reducing ozone levels re
quires dedicated and continuous efforts. Studies show that temporary 
measures fail to reduce ozone concentration (Su et al., 2017). Imple
menting strict emission standards can be expensive, albeit research 
shows that fiscal health advantages associated with decreased ambient 
air pollution would compensate 26–1050% of the expenditure of US 
policies to reduce greenhouse gas emissions (Thompson et al., 2014). In 
addition, the literature has established strong link between air pollution 
and airborne viral respiratory diseases (Chauhan and Johnston, 2003; 
Mehta et al., 2013), along with the subsequent hospitalization (Phosri 
et al., 2019; Xie et al., 2019). 

Despite the inherent challenges in designing an ecological study 
(Saez et al., 2020; Stieb et al., 2020; Zheng et al., 2020), the results 
obtained from EDEM through network analyses reiterate the importance 
of (1) uniformly abiding by the air pollution regulations across counties, 
and (2) continuing to reinforce existing air pollution mitigation strate
gies to ensure healthy living during and after the pandemic. The im
plications of our results in the control and prevention of COVID-19 as are 
follows. First, it suggests that federal and county-level administrations 
should work uniformly in all the counties to reduce the pollution as 
emission from one county affects the other, which in turn positively 
associates with coronavirus incidences. Second, stringer automobile 
standards to limit ground-level ozone could aid in bringing down the net 
ozone emissions that might lead to the reduction in COVID-19 cases. 
Third, urban city dwellers might avoid areas with high ozone concen
tration, e.g., parking lots and traffic jams, since automobiles are the 
major contributor to ozone and its precursors. 

Although we devise a novel approach at the intersection of network 
science and machine learning, the major limitation of our work is its 
application in Los Angeles and Ventura counties only. Since this work is 
focused on the introduction of EDEM, a country wide cross-county 
analysis of the complete USA remains the future work. In addition, we 
did not include multi-dimensional demographic information e.g., 
gender, population composition. Future studies are required to address 
these limitations. 

5. Conclusions 

In this work, we examined the association between short-term 
exposure to air pollution and COVID cases using two modeling tech
niques. These models include classical GLMs and proposed EDEMs. 
EDEM was implemented at the intersection of network science and 
machine learning for ecological modeling. We modeled particulate and 
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ground-level ozone pollution as networks. Subsequently, we used 
ensemble learning, i.e., a specialized machine learning technique due to 
its virtue of handling multicollinearity. Finally, we obtained a deeper- 
understanding of the association through SHAP, i.e., a specialized ma
chine learning interpretability technique inspired by the Shapley values. 
The models were evaluated using the R2 score, the training and testing 
datasets yielded R2 score of 90.96% and 79.16%, respectively. The re
sults suggested a significant relationship between airborne pollutants 
and COVID-19 cases. The results showed that short-term exposure to 
ground-level ozone is positively related to daily confirmed cases; how
ever, exposure to particulates, PM 2.5 and PM 10, depicts a negative 
association. The analysis of county-level emission interactions suggests 
that increased influence from other counties positively affects the 
COVID-19 confirmed cases. Although the empirical results depict posi
tive associations, considering the paucity of data, it would be early to 
present a conclusive decision. Currently, the possible setbacks of the 
pandemic cannot be averted until potent vaccines or immunoprophy
laxis with recombinant antibodies will be adequately administered; 
however, adhering to the existing air pollution standards, especially 
ground-level ozone regulations, can potentially ameliorate the situation. 
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Fig. A.1. Los Angeles County COVID-19 Statistics   
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Fig. A.2. Ventura County COVID-19 Statistics  

Fig. A.3. Association between short - term exposure to pollutants and COVID Incidences across lags   
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Fig. A.4. Results of 4th sensitivity analysis of the proposed EDEM. COVID-19 cases were transformed by log scale.   

Table A.1 
Data Sources   

Source Access link 

COVID-19 incidences Johns Hopkins University 
COVID-19 Resource Center 

GitHub Repository: CSSEGISandData/COVID-19 
Full address: https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data 
/csse_covid_19_time_series 

Air Pollution and Meteorological 
data 

US EPA – AQS API API documentation: https://aqs.epa.gov/aqsweb/documents/data_api.html 
Data files: https://aqs.epa.gov/aqsweb/airdata/download_files.html 

Demographic data 2014-18 release of the American 
Community Survey 

Module documentation: https://walker-data.com/tidycensus/ 
Full address: https://www.kaggle.com/headsortails/covid19-us-county-jhu-data-demographics   

Table A.2 
Generalized linear models – 1st Sensitivity Analysis. The lagged term for cases and deaths is removed from the model since we are analyzing daily COVID cases and not 
communitive COVID cases.  

Pollutant Feature Cases Deaths Cases Deaths Cases Deaths 

Pollution exposure lag lag(0–7) lag(0–7) lag(0–14) lag(0–14) lag(0–21) lag(0–21) 
PM2 Intercept − 0.057* − 0.025** − 0.122** − 0.050*** − 0.239*** − 0.097*** 

P-value 0.0277 0.0092 0.0014 0.0004 1.67E-06 1.76E-07 
PM10 Intercept − 0.022*** − 0.004* − 0.043*** − 0.010*** − 0.058*** − 0.016*** 

P-value 0.0001 0.0367 4.00E-10 9.17E-05 5.16E-13 1.86E-07 
O3 Intercept − 29.19 2.5875 − 76.61*** 0.0464* − 1.046e+02*** − 21.80* 

P-value 0.1073 0.6983 0.0007 0.0491 2.13E-05 0.0195   

Table A.3 
Generalized linear models – 2nd Sensitivity Analysis. Los Angeles has most COVID cases in the California; thus, we exclude Los Angeles from our data and conduct 
analysis only on Ventura County.  

Pollutant Feature Cases Deaths Cases Deaths Cases Deaths 

Pollution exposure lag lag(0–7) lag(0–7) lag(0–14) lag(0–14) lag(0–21) lag(0–21) 
PM2 Intercept 0.014 − 0.006 0.0464 0.015 − 0.006 0.001 

P-value 0.6484 0.5448 0.3497 0.3417 0.9219 0.9647 
PM10 Intercept − 0.015 − 0.004 − 0.034*** − 0.004 − 0.057*** − 0.008* 

P-value 0.0517 0.1078 0.0004 0.1157 1.01E-06 0.0165 
O3 Intercept − 0.012*** − 0.014 − 67.73* − 0.009 − 1.287e+02*** − 19.13 

P-value 9.10E-05 0.6415 0.0117 0.6347 7.98E-05 0.0602   

Table A.4 
Evaluation metrics of 1st – 4th sensitivity analyses for EDEM. These four sensitivity analyses are as follows. First, we create three separate ensemble 
learning models separately for three pollutants. Second, we create two separate models for Los Angeles and Ventura counties because out of 170 total 
data points – 100 belong to Ventura and 70 belong to Los Angeles. Third, an incremental term is added to our original ensemble learning model similar 
to Equations (1) and (2). Forth, the independent variable, i.e., coronavirus cases, was transformed into the logarithmic domain.  

Sensitivity Analysis Details Training R2 score Testing R2 score 

1 Three models for three pollutants 

(continued on next page) 
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Table A.4 (continued ) 

Sensitivity Analysis Details Training R2 score Testing R2 score 

0.7871 
0.8776 
0.7247 

0.6869 
0.7457 
0.5471 

2 Two models for Los Angeles and Ventura 0.8820 
0.9059 

0.6210 
0.8323 

3 Added incremental term, i.e., day of the year. 0.9576 0.9229 
4 Logarithmic transformation of covid-19 cases 0.9999 0.9635  

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envres.2020.110704. 
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