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Background and objective 

Many countries around the world experienced a high increase in the number of COVID-19 cases after 

a few weeks of the first case, and along with it, excessive pressure on the healthcare systems. While 

medicines, drugs, and vaccines against the COVID-19 are being developed, social isolation has become 

the most used method for controlling the virus spreading. With the social isolation, authorities aimed 

to slow down the spreading, avoiding saturation of the healthcare system, and allowing that all critical 

COVID-19 cases could be appropriately treated. 

By tuning the proposed model to fit Brazil’s initial COVID-19 data, the objectives of the paper are to 

analyze the impact of the social isolation features on the population dynamics; simulate the number 

of deaths due to COVID-19 and due to the lack of healthcare infrastructure; study combinations of the 

features for the healthcare system does not collapse; and analyze healthcare system responses for the 

crisis. 

Methods 

In this paper, a Susceptible-Exposed-Infected-Removed model is described in terms of probabilistic cel- 

lular automata and ordinary differential equations for the transmission of COVID-19, flexible enough for 

simulating different scenarios of social isolation according to the following features: the start day for the 

social isolation after the first death, the period for the social isolation campaign, and the percentage of 

the population committed to the campaign. 

Results 

Results showed that efforts in the social isolation campaign must be concentrated both on the isolation 

percentage and campaign duration to delay the healthcare system failure. For the hospital situation in 

Brazil at the beginning of the pandemic outbreak, a rate of 200 purchases per day of intensive care units 

and mechanical ventilators is the minimum rate to prevent the collapse of the healthcare system. 

Conclusions 

By using the model for different scenarios, it is possible to estimate the impact of social isolation cam- 

paign adhesion. For instance, if the social isolation percentage increased from 40% to 50% in Brazil, the 

purchase rate of 150 intensive care units and mechanical ventilators per day would be enough to prevent 

the healthcare system to collapse. Moreover, results showed that a premature relaxation of the social 

isolation campaign can lead to subsequent waves of contamination. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The ongoing pandemic of Coronavirus Disease-2019 (COVID-19), 

aused by the virus SARS-CoV-2 (Severe Acute Respiratory Syn- 
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rome - Coronavirus 2), was first identified in Wuhan, China, in 

ecember 2019. As of October 6 th , 2020, more than 35.3 mil- 

ion cases have been reported, resulting in more than 1.03 million 

eaths [9,55] . There are a few points that may explain the mag- 

itude of the problems caused by COVID-19: the first is the fast 

pread of the SARS-CoV-2 virus [24,40,47] ; the second is the wide 
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ange of symptoms, with some cases presenting no symptoms, and 

thers presenting fever and severe respiratory problems [60] , com- 

licating health advice at the onset of symptoms, for instance [40] ; 

nd the third is the colossal number of cases requiring medical 

reatment at the same time, collapsing many healthcare systems 

round the globe [15,48,51] . 

Governments, scientists, and specialists have proposed proto- 

ols for dealing with the situation, like washing hands carefully, 

 proper sneezing and coughing etiquette, self-isolation, social dis- 

ancing, quarantine, and complete lockdown [19] . Due to the rapid 

scalation of cases, countries quickly moved to the lockdown to 

top the COVID-19 spreading [48,51] . The term lockdown has been 

sed for describing different scenarios, but it means the “ban- 

ing of any non-essential public gatherings, closure of educational 

nd public/cultural institutions, ordering people to stay home apart 

rom exercise and essential tasks” [15] . Therefore, according to the 

evel of decreased social contact, a term has been used. Here, we 

ill consider different levels of social isolation, which starts on 

elf-isolation, until a lockdown. However, in order to use a quan- 

ity of isolation, we will refer to any isolation by social isolation, 

nd the percentage is the decreased level of social contact. 

Regarding what we know so far about COVID-19, Susceptible- 

xposed-Infected-Removed (SEIR) models have been used for pre- 

ictions and analysis [19–21,28,53,61] . In this model, susceptible 

ndividuals become exposed when contacting infected, and after an 

ncubation period, exposed individuals become infected. When in- 

ected, individuals may die due to the disease or get cured, chang- 

ng to removed. For the exposed stage ( E I ), researchers are dealing 

ith uncertainties regarding the start of the disease. Some studies 

how that the incubation period for COVID-19 is 4-5 days [15,25] , 

here are cases of transmission during incubation [62] , and evi- 

ence of an early peak of SARS-CoV-2 replication (day 5) than SARS 

days 7-10) [54] . One issue related to regular SEIR models is the 

bsence of the asymptomatic state, and the use of one single in- 

ected state for hospitalized, non-hospitalized, and hospitalized in 

ntensive Care Units (UCI). 

Cellular automata have been used for investigating the spread 

f contagious diseases, and some of the advantages are the flexi- 

ility of local rules and configuration of state transitions [59] . In- 

tead of using deterministic state transitions, the Probabilistic Cel- 

ular Automata (PCA) is more suitable for epidemiological stud- 

es [1,2,45] . Accordingly, it has been used for studying migratory 

ovements on the persistence of contagious disease [5,16] , the im- 

act of the time delay in the spreading of a disease based on SEIR 

odel [44] , the adaptation of cellular automata for using real pop- 

lation density maps [18] , and disease infection in groups of indi- 

iduals [37] . Also, for large homogeneous and well-mixed popula- 

ions, Ordinary Differential Equations (ODE) can be interpreted as 

 mean-field approximation of the PCA model [4,32,42] . 

Therefore, here we propose a model based on Probabilistic 

ellular Automata and Ordinary Differential Equations, where the 

tates are: Susceptible ( S), Exposed ( E I ), Infected Symptomatic ( I S ),

nfected Asymptomatic ( I A ), Infected non-hospitalized ( I S1 ), Infected 

ospitalized ( I S2 ), Infected in ICU ( I S3 ), and Recovered/Removed ( R ).

 S-individual, when exposed to E I , I A , I S , I S1 , I S2 , and I S3 states

not necessarily all and at the same time), has a probability of 

eing infected, changing the state to E I . For E I -individuals, after 

 period of incubation, may either change to symptomatic ( I S ) or 

symptomatic ( I A ). For I A -individuals, there is a probability of get- 

ing recovered, becoming R . After a period of symptoms, an I S - 

ndividual has a probability of not needing hospital, being an I S1 - 

ndividual, and an I S1 -individual has a probability of getting re- 

overed, becoming R . If an I S needs a hospital, the state is up-

ated to I S2 (which has its own probabilities of cure and death), 

nd if a hospitalized case needs an ICU or mechanical ventilator, 

he state is updated to I S3 (also, with its own probabilities of cure 
2 
nd death). All individuals may die due to other causes, with a S- 

ndividual replacing them, to keep the total number of individuals 

onstant. 

It is important to emphasize that the main idea in proposing a 

odel with eight states and fifteen parameters (to be presented) 

s to make the model flexible and easy to input data considering 

he COVID-19 uncertainties. Also, COVID-19 requires different ap- 

roaches for the infected state due to different outcomes for the 

isease case-by-case. Other works also consider parameters for ex- 

ernalities of the epidemiological model (such as the parameters 

o be presented here which are related to the healthcare system 

ynamic) [3,28,39,61] . 

By using available data of COVID-19, and considering the Brazil- 

an situation on hospital beds, ICUs and mechanical ventilator at 

he beginning of pandemic outbreak, we propose a SEIR model ad- 

usted to the disease requirements. The objective of this paper is to 

xplore social isolation features such as the start of the social iso- 

ation campaign, the percentage of reduced contacts and the du- 

ation of the campaign on the spread of the COVID-19. Also, we 

ill explore continuous and periodic isolation operations in order 

o understand the dynamics of the disease and the impact on the 

ealth system for a medium to long-range period. 

The paper is organized as follows: the next section contains the 

roposed SEIR model based on PCA and ODE approaches; the third 

ection has the results of the simulations, and in the fourth section, 

he results are discussed. 

. Methods 

The PCA model consists of a lattice with side n and a total size 

f n × n = N cells with periodic boundary conditions (forming a 

oroidal surface to eliminate edge effects), where each cell repre- 

ents an individual in one of the eight states: S, E i , I A , I S , I S1 , I S2 ,

 S3 , or R . Cellular automata models usually rely on local interac- 

ions to represent an infectious process, and here we expand the 

eighbourhood, as presented on [42] , where, at the beginning of 

ach time step, individuals make C connections to neighbours in- 

ide a Moore radius r. Therefore, the probability of connection be- 

ween an individual centred on a square of side 2 r + 1 , and an-

ther individual at layer i is given by q i,r = 2(r + 1 − i ) /r(r + 1) .

he layer is composed by the 8 l cells at the border of the square 

f side 2 l + 1 , with l ≤ r. For example, if r = 4 , the probability

f interacting to one cell of layers 1, 2, 3, and 4 are q 1 , 4 = 0 . 4 ,

 2 , 4 = 0 . 3 , q 3 , 4 = 0 . 2 , and q 4 , 4 = 0 . 1 , respectively, and after ran-

omly choosing the layer, a random cell of the layer is also ran- 

omly chosen. The random contact network formed by these con- 

ections may have a “high” clustering coefficient and “small” aver- 

ge shortest path length, characteristics of social networks [42] . 

Consider the example shown in Fig. 1 with r = 4 . The first layer

 = 1 is blue, the second layer i = 2 is grey, the third layer i = 3 is

ed, and the fourth layer i = 4 is yellow. The white cells are ex-

mples of C = 5 connections for a maximum radius of r = 4 . After

andomly picking up the layer according to q i,r , a random cell in 

hat layer is randomly chosen. 

Due to COVID-19 uncertainties, parameters used for the states 

ransitions are either based on probabilities, or periods before 

hanging the state. Therefore, at each time step a S-individual 

ay be infected with probability P i (v i ) = 1 − e −k v i , where v i is

ased on the number of connections with different types of 

nfective individuals, given by v i = 0 . 5 v E I + v I A + 2 v I S + 0 . 5 v I IS1 
+

 . 5 v I IS2 
+ 0 . 5 v I IS3 

, where v E I is the number of E I -individuals, v I A is

he number of I A -individuals, and so on for other states, and k 

s a parameter related to the disease infectivity. The weights are 

elated to the infectiousness at each stage of the COVID-19, with 

ymptomatic ( I S ) individuals being twice as infective as asymp- 

omatic ( I ), and advanced stages ( I , I , and I ) with half the
A IS1 IS2 IS3 



P.H.T. Schimit Computer Methods and Programs in Biomedicine 200 (2021) 105832 

Fig. 1. Neighbourhood example with four layers ( r = 4 ) and five connections ( C = 

5 ). 
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Fig. 2. States transitions for the SEIR model. 
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nfectiousness of I S due to limited contact with their close rela- 

ives and health care personnel. Although states I IS2 and I IS3 are 

elated to individuals at hospitals beds and ICUs, they are respon- 

ible for spreading the disease due to health care overwhelmed 

ituation [8,56] . We consider a lower infectivity for E I -individuals 

ue to conclusion about the infectiousness starting 12 hours be- 

ore the onset of symptoms for symptomatic, and 4.6 days when 

symptomatic [15] . Also, there are some cases of infection from a 

ecent exposed individual [62] . Therefore, E I -individuals are mildly 

nfective for a period T E I . 

After the T E I period, P I S is the probability of the E I individ- 

al becomes symptomatic I S , and 1 − P I S to become asymptomatic. 

hen asymptomatic, I A -individuals have an average period of T I A 
ays of infectivity, and after this period, they become recovered 

 R -individual). For I S -individuals, there is an average delay period 

f T I S days before going to their final stages of the disease. After 

his period, a fraction P hosp needs hospitalization, going to I S2 state, 

nd 1 − P hosp becomes I S1 . An I S1 -individual has an average period 

f T CIS1 days for recovering from the disease. For I S2 -individuals, the 

verage period for a hospital stay is T HIS 2 
, and after this period, ei-

her I S2 -individual is transferred for an ICU with probability P ICU , 

ie with probability P d , or get cured. Finally, I S3 -individuals have 

n average hospital stay of T HIS 3 
days, and after this period, there 

s a probability P d−IS3 of dying due to disease complications and 

 − P d−IS3 of getting cured. Finally, all individuals may die due to 

atural causes with probability P n per time step. 

Therefore, one time step consists of generating C connections 

er individual; for S-individuals, the transition S → E is tested ac- 

ording to P i (v i ) ; for the other states the transitions are tested con-

orming to the respective periods and probabilities; and, after all 

ndividuals calculations, their states are updated synchronously at 

he end of the time step. 

An approach for the PCA model can be described in terms of 

he following ODE if we consider that individuals are homoge- 

eously distributed over space: 

dS(t) = −aS(t)(E I (t) + I S (t) + I A (t) + I S1 (t) + 
dt 

3 
+ I S2 (t) + I S3 (t)) + d S2 I S2 (t) + 

+ d S3 I S3 (t) + e (E I (t) + I S (t) + I A (t) + 

+ I S1 (t) + I S2 (t) + I S3 (t) + R (t)) 

dE I (t) 

dt 
= aS(t)(E I (t) + I S (t) + I A (t) + I S1 (t) + 

+ I S2 (t) + I S3 (t)) − αS E I (t) − αA E I (t) + 

− eE I (t) 

dI S (t) 

dt 
= αS E I (t) − βS1 I S (t) − βS2 I S (t) − eI S (t) 

dI A (t) 

dt 
= αA E I (t) − b A I A (t) − eI A (t) 

dI S1 (t) 

dt 
= βS1 I S (t) − b S1 I S1 (t) − eI S1 (t) 

dI S2 (t) 

dt 
= βS2 I S (t) − b S2 I S2 (t) − βS3 I S2 (t) + 

− d S2 I S2 (t) − eI S2 (t) 

dI S3 (t) 

dt 
= βS3 I S2 (t) − b S3 I S3 (t) + 

− d S3 I S3 (t) − eI S1 (t) 

dR (t) 

dt 
= b A I A (t) + b S1 I S1(t) + b S2 I S2 (t) + 

+ b S3 I S3 (t) − eR (t) (1) 

here a is the infection rate constant; b a , b S1 , b S2 , and b S3 are

he recovering rate constant for I A , I S1 , I S2 , and I S3 individuals, re-

pectively; d S2 and d S3 are the death rate constant due to disease 

or I S2 and I S3 individuals; e is the death rate constant due to other 

auses; αA and αS are the symptomatic and asymptomatic constant 

ates from exposed individuals; and βS1 , βS2 , and βS3 are constant 

ates for symptomatic individuals related to non-hospitalization, 

ospitalization and hospitalized cases requiring ICUs for I S , I S1 , and 

 S2 , respectively. Fig. 2 contains the diagram of the transitions with 

he associated variables. 

Note that dS(t) / dt + dE I (t) / dt + dI S (t) / dt + dI A (t) / dt + 

I S1 (t) / dt + dI S2 (t) / dt + dI S3 (t) / dt + dR (t) / dt = 0 , there- 

ore the total number of individuals is constant, and 

(t) + E I (t) + I S (t) + I A (t) + I S1 (t) + I S2 (t) + I S3 (t) + R (t) = N. We 

ssume that for the period analyzed, the number of deaths is 

qual to the number of births. 

The basic reproduction number ( R 0 ) can be derived from the 

DE by using the Next-Generation Matrix (NGM), which is an al- 

ernative for models with finite categories of individuals. There- 

ore, we decompose the Jacobian matrix from the system of ODEs 

s T + �, where T is the transmission part, containing the pro- 

uction of new infected, and � is the transition part, containing 

hanges in the states [11] , only for the infected states. With these 

atrices, we calculate the dominant eigenvalue (spectral radius) ρ
f the matrix −T �−1 . For the ODE (1), at the infection-free steady 
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tate with E I = I S = I A = I S1 = I S2 = I S3 = 0 , we have: 

T = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

a a a a a a 
0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

and 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−αS − αA − e 0 0 0 

αS −βS1 − βS2 − e 0 0 

αA 0 −b A − e 0 

0 βS1 0 −b S1 − e 
0 βS2 0 0 −b
0 0 0 0 

Then, the spectral radius ρ(−T �−1 ) returns: 

 0 = 

a 

ν1 

+ 

aαA 

ν1 ν2 

+ 

aαS 

ν1 ν3 

+ 

aαS βS2 

ν1 ν3 ν4 

+ 

aαS βS1 

ν1 ν3 ν5 

+ 

aαS βS2 βS3 

ν1 ν3 ν4 ν6 

(2) 

ith: 

1 = αA + αS + e 

2 = b A + e 

3 = βS1 + βS2 + e 

4 = βS3 + b S2 + d S2 + e 

5 = b S1 + e 

6 = b S3 + d S3 + e 

Here, we will consider the effective basic reproduction number, 

 t , which is similar to R 0 by assuming that susceptibility is not 

omplete in the population, and can be used for a partially recov- 

red population. It is given by: 

 t (t) = S(t) R 0 (3) 

here S(t) is the normalized concentration of susceptible individ- 

al at time step t in the population. 
The constant parameters from Equation (1) can be obtained 

rom PCA simulation, since the ODE is a mean-field for the PCA 

odel [42] . Therefore, 

a � 

�E I ( t ) S→ E I 

S ( t ) �( t ) �t 

αS � 

�I S ( t ) E I → I S 

E I ( t ) �t 

αA � 

�I A ( t ) E I → I A 

E I ( t ) �t 

b A � 

�R ( t ) I A → R 

I A ( t ) �t 

βS1 � 

�I S1 ( t ) I S → I S1 

I S ( t ) �t 

βS2 � 

�I S2 ( t ) I S → I S2 

I S ( t ) �t 

βS3 � 

�I S3 ( t ) I S2 → I S3 

I S2 ( t ) �t 

d S2 � 

�S ( t ) I S2 → S 

I S2 ( t ) �t 

d S3 � 

�S ( t ) I S3 → S 

I S3 ( t ) �t 

e � 

�S ( t ) I S → S + �S ( t ) I A → S + �S ( t ) I S1 → S 

( S ( t ) + �( t ) + R ( t ) ) �t 
+ 

+ 

�I S2 ( t ) I S → S + �S ( t ) I 3 → S + �S ( t ) R → S 

( S ( t ) + �( t ) + R ( t ) ) �t 
+ 

+ 

�S ( t ) S→ S 

( S ( t ) + �( t ) + R ( t ) ) �t 

(4) 
4 
0 0 

0 0 

0 0 

0 0 

βS3 − d S2 − e 0 

βS3 −b S3 − d S3 − e 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

here �(t) = E I (t) + I S (t) + I A (t) + I S1 (t) + I S2 (t) + I S3 (t) ;

E I (t) S→ E I 
is the increase per time step of exposed individu- 

ls due to contamination process; �I S (t) E I → I S 
is the increase per 

ime step of symptomatic from exposed individuals; �I S (t) E I → I A 
s the increase per time step of asymptomatic from exposed 

ndividuals; �I S1 (t) I S → I S1 
is the increase per time step of non- 

ospitalized from symptomatic individuals; �I S1 (t) I S → I S2 
is the 

ncrease per time step of hospitalized from symptomatic individu- 

ls; �I S1 (t) I S → I S1 
is the increase per time step of ICU patients from 

ospitalized individuals; �S(t) I S2 → S is the increase per time step 

f susceptible individuals due to the death caused by the disease 

f hospitalized individuals; �S(t) I S3 → S is the increase per time 

tep of susceptible individuals due to the death caused by the 

isease of ICU patients. Finally, �S(t) E I → S , �S(t) I S → S , �S(t) I A → S , 

S(t) I S1 → S , �I S2 (t) I S → S , �S(t) I 3 → S , �S(t) R → S are the increase per 

ime step of susceptible individuals due to the death for other 

auses of exposed, symptomatic, asymptomatic, non-hospitalized, 

ospitalized, and ICU patients, respectively. 

In the next sections, the results are presented. 

. Results 

In this section, we present the results of the simulations with 

he proposed model. The results are divided into five situations, 

tarting with a comparison between the PCA and ODE approaches, 

ollowed by a simulation of the model using real data from Brazil 

ithout social distancing control and hospital beds and UCIs un- 

imited. Then, an analysis of the social isolation features contrast- 

ng with the condition with absolutely no isolation between in- 

ividuals is presented. The fourth situation is an investigation of 

he minimum percentage of isolation in the population in order 

o the healthcare system can deal with the ill individuals who re- 

uire hospital beds, ICUs and mechanical ventilators. Finally, the 

eriodic characteristics of the social isolation campaigns and indi- 

iduals perceptions of the disease are explored. 

.1. Comparison of PCA and ODE approaches 

In order to have the PCA lattice with a similar size of Brazil- 

an population, we consider n = 14500 , and N = 210 , 250 , 0 0 0 (the

razilian population is around 211,0 0 0,0 0 0 inhabitants according to 

BGE [36] , Brazilian Institute of Geography and Statistics, in direct 

ranslation). The movements characteristics are C = 32 and r = 8 . 

he parameters for PCA simulations are: T E i = 5 days, P I S = 0 . 5 ,

 I A 
= 1 − P I S = 0 . 5 , T I S = 4 days, T I A = 14 , P hosp = 0 . 2 , T CIS1 = 14 days,

 HIS 2 
= 8 days, P ICU = 0 . 33 , P d = 0 . 0165 , T HIS 3 

= 10 days, P d−IS3 =
 . 5 , and P n = 0 . 1 . The initial conditions will always be S(0) = N −
0 , E I (0) = 10 , and I S (0) = I A (0) = I S1 (0) = I S2 (0) = I S3 = 0 with

ndividuals randomly distributed over space. The simulation runs 

or t s = 30 0 0 time steps (one time step is considered to be one
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Fig. 3. Temporal evolution of PCA and ODE approaches. 
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Fig. 4. The accumulated number of deaths for the first twenty-five days after the 

first death in Brazil. Simulation and Brazilian official data. 

Fig. 5. Temporal evolution of COVID-19 in Brazil without restrictions of hospital 

and ICU beds. 

c

B

2

t

e

n

3  

i

t

ay). The ODE parameters are calculated from the PCA average re- 

ults of the last 10 time steps by using Eqs. 4 , and we obtain: a =
 . 2 × 10 −9 × N, αS = 0 . 1 , αA = 0 . 1 , b A = 0 . 0714 , βS1 = 0 . 2 , βS2 =
 . 05 , βS3 = 0 . 0412 , d S2 = 0 . 002 , d S3 = 0 . 05 , and e = 0 . 0948 . The

DE is numerically solved with the 4 th -order Runge-Kutta method 

ith integration time step of 0.01. The initial conditions for ODE 

re S(0) = (N − 10) /N, E I (0) = 10 /N, and I S (0) = I A (0) = I S1 (0) =
 S2 (0) = I S3 = 0 . 

Fig. 3 shows the temporal evolution of PCA ( Fig. 3 a) and ODE 

 Fig. 3 b) simulations. For the PCA simulation, the effective basic 

eproduction number ( R t ) is also plotted. Note the good agreement 

etween the two approaches when we compare the steady states 

f the simulation (where the ODE parameters are based on PCA 

imulation). The initial transient is not similar as a result of data 

rom the permanent regime of PCA being used to simulate the 

DE, and ODE being a mean-field approach for PCA. Other com- 

inations of parameters have also been tested showing similar re- 

ults. 

.2. Simulation of Brazil 

Concerning the COVID-19 parameters, we will use the follow- 

ng data: an average period of T E i = 5 days [15] for E I -individuals,

robabilities of P I S = 0 . 5 , and P I A = 1 − P I S = 0 . 5 [15,52] for an E I -

ndividual becoming symptomatic or asymptomatic, respectively. 

nce in one of these states, the average period is T I S = 4 days

15] for symptomatic, and T I A = 14 days [15,40] for asymptomatic. 

ymptomatic individuals soon need hospital, and they are proba- 

ly the most tested individuals. Therefore, T I S < T I A , because after 

his period either I S -individuals need a hospital with probability 

 hosp = 0 . 2 [27] becoming a I S2 -individual, or they are considered a

on-hospitalized case, becoming an I S1 -individual. 

I S1 -individual remains in this state for an average period of 

 CIS1 = 14 days [7] , and then it is cured ( R -individual). A hospital-

zed I S2 -individual stays at the hospital bed for an average period 

f T HIS 2 
= 8 days [15] . After this period, either there is a probability

f P ICU = 0 . 33 [8] to require an ICU treatment, or die due to dis-

ase with probability P d = 0 . 0165 [26] , or get cured ( R -individual).

inally, an ICU patient remains in intensive care for an average pe- 

iod of T HIS 3 
= 10 days [15] with a mortality of P d−IS3 = 0 . 5 [15] af-

er this period (or 1 − P d−IS3 = 0 . 5 of getting cured). All individ-

als may die due to other causes with probability P n = 0 . 0 0 0 036

50] (considering the data from Brazilian population). 

The last parameter for the model is k, related to the infectivity 

f the disease. This parameter will be tuned by using COVID-19 ac- 
5 
umulated deaths for the first twenty-five days of the outbreak in 

razil after the first known death, which happened in March 6 th , 

020. In this period, there is no, if any, effect of initial isolation ac- 

ions (which started somehow at March 21 th , 2020). This param- 

ter has been adjusted manually by considering the accumulated 

umber of death in the period from March 6 th , 2020 to March 

0 th , 2020 [31] . Note in Fig. 4 that the adjustment with k = 0 . 15

s conservative when comparing with real data [31] . Table 1 con- 

ains a summary of all variables and values considered here. 
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Table 1 

Model parameters 

Param. Description Value Unit Source 

k Related to disease infectivity. 0.150 - estimated 

T E i Average period of incubation. 5 days [15] 

P I S Probability of an Exposed becoming Infected Symptomatic. 0.5 - [15,52] 

P I A Probability of an Exposed becoming Infected Asymptomatic. 0.5 - [15,52] 

T I A Average period of infectiousness for I A . 14 days [15,52] 

T I S Average period for state I S . 4 days [15] 

P hosp Probability of a I S case becoming hospitalized ( I S2 ). 0.2 - [27] 

P ICU Probability of a hospitalized case ( I S2 ) requires a ICU ( I S3 ). 0.33 - [8] 

T CIS1 Average period of cure for I S1 . 31 days [7] 

T HIS2 Average period of I S2 in the hospital. 8 days [15] 

T HIS3 Average period of I S3 in the hospital. 10 days [15] 

P d Average probability of death due to COVID-19. 0.0165 - [26] 

P d−IS3 Probability of death for I S3 . 0.5 - [15] 

P c−IS3 Probability of cure for I S3 . 0.5 - [15] 

P n Probability of death due to natural/other causes. 0.000036 - [50] 
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Fig. 6. Temporal evolution of COVID-19 in Brazil with restrictions of hospital and 

ICU beds. 
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By using these values, the PCA simulation is shown in Fig. 5 

or the initial conditions. It is worth noting that the model used 

ere does not consider limits of hospital and ICU/mechanical ven- 

ilators beds. Therefore, at the peak of the hospital and ICU beds 

emand, it would be required 228,243 hospital beds and 93,692 

CU/mechanical ventilators. The total number of deaths until the 

ade-out of any type of infected individuals in the population is 

,887,423. Also, after the initial peak of infections with R t ≈ 7 , 

he effective basic reproduction number remains constant with 

 t ≈ 1 . 2 while the disease is active. These values of R t have been

omputed by using Eqs. 2, 3 , and 4 . 

However, Brazil is far from offering 10 0,0 0 0 ICU/mechanical 

entilators for this crisis. Data acquired at the beginning of the 

andemic showed that there were around 426,380 hospital beds, 

5,100 ICU beds, and 10311 mechanical ventilators available in 

razil [6,38] . Although the recommended occupation rate of ICU 

eds in Brazil is 85% [49] , usually the rate is higher than 90%.

herefore, by considering that the medical staff can handle the 

CU and mechanical ventilators management during this period, 

e consider that I S3 may require either ICU or mechanical venti- 

ator. Also, by considering an occupation rate of 80% on hospital 

eds, 85% on ICU beds, and 50% on mechanical ventilators, there 

ill be available to COVID-19 patients a total of 85,276 hospital 

eds and 13,421 ICU/mechanical ventilators. From here, we will re- 

er to the management of ICU and mechanical ventilators only by 

CU. Therefore, these limits on patients treatment are set on the 

odel on the state transitions I S → I S2 , when symptomatic individ- 

als require a hospital, and I S2 → I S3 , when hospitalized individu- 

ls require an ICU. We consider that if there are beds available, the 

ransition is done; otherwise, the individual dies. In this case, tran- 

itions I S → S and I S2 → I S are counted. In this restriction of hospi-

al and ICU beds situation, there would be a total of 13,591,960 

eaths, with 2,051,427 deaths due to ICU limit, and 11,540,533 due 

o hospital beds limit. Fig. 6 shows the temporal evolution for this 

ituation. 

.3. Social isolation effects 

The social isolation is modelled by considering three parame- 

ers: the beginning of the social isolation after the first confirmed 

eath ( Q S ), the duration of the social isolation ( Q P ), and the per-

entage of social contact reduction ( Q φ). By using these three fea- 

ures of a social isolation campaign, it is possible to understand 

heir effects on the number of deaths due to healthcare system 

ollapse and the time for the healthcare system to collapse. 

Therefore, the same simulation configuration presented in the 

revious section to generate Fig. 6 is used here with the follow- 

ng modifications: After Q time steps of the first death, the social 
S 

6 
solation campaign begins. During the campaign, individuals cut 

 percentage Q φ of the C contacts per time step. Thus, if C = 32 

nd Q φ = 0 . 25 , individuals have an average of 24 contacts per

ime step. The isolation campaign is active for Q P time steps. One 

imulation is run for each combination of the following values: 

 S = 0 , 5 , 10 , 15 , 20 , 25 , Q φ = 0 . 2 , 0 . 3 , . . . 1 , and Q P = 1 , 2 , . . . 12 , re-

ulting in 648 cases. If the first death occurs in time step t d , each

imulation runs for t d + Q S + 180 time steps. In this period, the sys-

em does not achieve a permanent regime, but it is enough for 

aking some considerations. 

The first data to be analysed is the number of days for the 

ealthcare system to collapse, when the deaths due to limits of 

ospital and ICU beds start to happen. This result is shown in 

ig. 7 , where the number of days for the healthcare system to 

ollapse is plotted in function of the duration of social isolation 

 Q P , in weeks) and the isolation percentage ( Q φ), for the six values

f the isolation campaign start ( Q S ). The figure colour is related 

o the gradient g(x, y ) of the surface f (x, y ) , given by g(x, y ) =
 

(δ f/δx ) 2 + (δ f/δy ) 2 . 

Note that there are only small shifts between the surfaces of 

ifferent values of Q S . Also, the gradient of the figure is useful to 

heck that combining the effort s on Q P and Q φ is a better option

han invest only on either the period or percentage of social isola- 

ion. Thus, the isolation campaign should start with at least Q P � 6 

nd Q φ � 0 . 6 . 

A second analysis consists of the saved lives in function of the 

ocial isolation parameters. By considering the same simulations 

f the previous analysis, the number of saved lives when compar- 

ng with simulation without any social isolation ( Fig. 6 ) is shown 

n Fig. 8 . The period used for comparison is the 180 days follow- 
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Fig. 7. Number of days for the healthcare system to collapse in function of the du- 

ration of social isolation ( Q P , in weeks) and the isolation percentage ( Q φ ), for the 

six values of the isolation campaign start ( Q S ). The colour and the colour bar are 

related to the gradient of the plot. 

Fig. 8. Saved lives in function of the duration of social isolation ( Q P , in weeks) and 

the isolation percentage ( Q φ ), for the six values of the isolation campaign start ( Q S ). 

The colour and the colour bar are related to the gradient of the surface. 
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Fig. 9. Minimum constant daily purchase rate of ICU beds in function of the isola- 

tion percentage ( Q φ ) and the isolation campaign beginning ( Q S ). The colour and the 

colour bar are related to the gradient of the surface. 
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ng the beginning of social isolation campaign. The deaths differ- 

nce due to unavailable hospital and ICU beds is plotted in func- 

ion of Q P (in weeks), and Q φ, for the six values of Q S . The colour

f the figure is related to the gradient of the surface. As in the 

revious analysis, the isolation campaign should start with at least 

 P � 6 and Q φ � 0 . 6 , considering that any extra effort from this

oint could have more significant gains than increasing effort s on 

ow values of Q P and Q φ . 

In this section, the number of hospital and ICU beds, and me- 

hanical ventilator were fixed during the whole simulation. Of 

ourse, once the COVID-19 outbreak takes place, government and 

ealthcare association act to increase these numbers. Also, for the 

ases simulated here, independent of the social isolation features, 

he COVID-19 is not entirely eliminated of the population. All re- 

ults showed that the COVID-19 returns to rapidly spread once the 

ocial isolation campaign is down. These points are better explored 

n the next sub-sections and in the supplementary file. 

.4. Healthcare system response to the crisis 

One of the primary responses of healthcare systems around the 

lobe to the pandemics crisis is the purchase of ICU and mechan- 

cal ventilators due to the high increase of the demand. There- 

ore, the minimum daily purchase rate of ICU beds to the health- 

are system does not collapse is investigated. We consider a con- 

tant daily purchase rate ( τ ) during a simulation from the begin- 

ing of social isolation campaign ( Q S ), and the minimum rate is 

aken. The Fig. 9 contain the results of the simulations for Q = 
S 

7 
 , 5 , 10 , 15 , 25 , and Q φ = 0 . 2 , 0 . 3 , . . . 1 , with the colour of the figure

epresenting the surface gradient (same process of Figs. 7 and 8 ). 

or each combination of these parameters, simulations are run for 

= 0 , 5 , 10 , . . . 400 , and the simulation with the minimum value

f τ where no deaths occurred due to hospital and ICU beds col- 

apse is considered for the figure. Each simulation runs for Q S + 

65 time steps, and the social isolation campaign is active during 

he rest of the simulation. 

Note that the beginning of the campaign does not influence the 

CU purchase rate. On the other hand, an increase in the social iso- 

ation from Q φ = 0 . 4 to Q φ = 0 . 6 may reduce the daily constant

urchase rate of ICU by around 100 unities. 

A supplementary file is provided with different formats of social 

solation campaigns and their effects on the time evolution of the 

isease. 

. Discussion 

The objective of this paper was not to propose a breakthrough 

odel which would change the current analysis of COVID-19 

hose results should be strictly taken into consideration for public 

uthorities. The objective was to propose a model based on reliable 

odels used for past epidemics to analyse how social isolation can 

nterfere with the COVID-19 dynamics. We used initial data from 

razil, but the same model could be used for any territory or coun- 

ry. It is clear that if the whole population is confined at home, 

he disease slows down. However, it is not clear that this is the 

nly variable to consider for decisions concerning the COVID-19 

uture. As discussed in [22] , numerous mathematical models have 

een suggested since the beginning of the pandemic, and many of 

hem have limitations (usually with an optimistic view) for fore- 

asting the COVID-19 spreading with precision. Not to mention the 

ncertainty regarding the SARS-Cov-2 or the disease statistics, for 

nstance. 

What mathematical models can do is to bring light on COVID- 

9 issues. Here, we attempted to cover how the social isolation 

eatures may change the disease dynamics. Therefore, by propos- 

ng a model based on probabilistic cellular automata and ordinary 

ifferential equations for a modified Susceptible-Exposed-Infected- 

emoved case, we added the social isolation variables, as the be- 

inning and the period of the campaign, and the percentage of so- 

ial contact reduction, for evaluating the impact on the population 

ynamics. The healthcare system has also been considered, by clas- 

ifying the infected individuals according to the disease stage and 

dding healthcare infrastructure data, like hospital beds, intensive 

are units, and mechanical ventilator numbers. 
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Fig. 10. Accumulated number of deaths for the first 55 days after the first death in 

Brazil. Data from simulation and Brazilian official data. 
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Cellular automata have been used for studying many diseases, 

uch as dengue [10,34] , Chagas disease [46] , foot and mouth dis- 

ase in feral pigs [12] , bubonic plague [23] , and hepatitis B [57] ,

ith some of these models considering some heterogeneities in 

he spatial distributions of the population. Also, in [41] , ordinary 

ifferential equations were a good approach for heterogeneous 

opulation models based on a wide range of complex random net- 

orks. Here, probabilistic cellular automata with a randomly vary- 

ng neighbourhood could replicate the first days of the COVID-19 

preading. Fig. 10 contains the expansion of the data presented in 

ig. 4 (that is, the simulation runs without social isolation), and 

he divergent trend is visible few days after some social distanc- 

ng procedures, which started in March 24 th , 2020 (also using data 

rom [31] ). 

It is worth mentioning that the flexibility for implementing a 

odel in cellular automata has its drawback. In a regular PC with 

 4GHz processor with 16 GB RAM, the simulations of this paper 

ould take two months to be completed. Some efforts have been 

ade to run the model in a Graphics Processing Unit (GPU), which 

educed the time to one week and a half. 

The first result of the paper is the model itself. Although not 

sual, the classification of infected states according to the infec- 

ion stage, with the representation of each stage by a state in the 

odel may help to describe the COVID-19 specification fully. In a 

tudy for the Italian case [17] , the infected state has also been split

nto five states: infected, diagnosed, ailing, recognized and threat- 

ned, similar to the states E, I A , I S , I S1 , I S2 , and I S3 presented here.

he comparison between the PCA and ODE models showed a good 

greement between the approaches. 

The second result helps to understand the impact of the social 

solation on the Brazilian healthcare system, and it was presented 

n Fig. 7 . The number of days for the healthcare system to collapse

as shown in terms of the isolation percentage and the duration 

f the campaign. For a short period of social isolation with a low 

ercentage of reduced contacts, the system would collapse in 50 

ays after the first registered death. The company Inloco , which 

stimates the social isolation level based on cell phones location 

ata from networks providers [29] , showed that this estimation is 

round 40% since March, 24 th , 2020. 

The estimative was that the hospital and ICU beds will be full in 

round 80 days after the first death. Since the first registered death 

ccurred in March, 6 th , 2020, the prediction of the paper would 

e May 25 th , 2020. The peak of hospitals crisis was around June, 

xtending to early August, depending on the region. The long-term 

esults presented here reduced the importance of the day when 

he isolation campaign starts. Of course that in a short-term, the 

volution of infected states is delayed, as also reported in [60] . 
8 
Certainly, there would be responses from the Brazilian health- 

are system. Therefore, we simulated the minimum purchase rate 

f intensive care units to consider all patients that could require 

uch treatment. Considering the social isolation features in Brazil 

or the beginning of the pandemic outbreak, the rate was around 

00 ICUs/day ( Q φ = 0 . 4 and Q S = 18 ) according to Fig. 9 . Also, a

mall increase in social isolation percentage to Q φ = 0 . 5 would re- 

uce the rate to around 150 ICUs/day. It is hard to estimate the 

xact number of ICU and mechanical ventilators purchased for the 

ealthcare system in Brazil, but a data from Brazilian Ministry Of 

ealth updated in April, 20 th , 2020, showed that 14,100 mechan- 

cal ventilators had been purchased, to be fully available for use 

n July 20 th , 2020. Considering the beginning of the social isola- 

ion (in some states) as of March 24 th , 2020, the average purchase 

ate per day is around 120. This number does not consider private 

ealthcare or purchases made directly by states. 

Finally, some social isolation campaign configurations were pre- 

ented in the supplementary file. The conclusion is that if we con- 

ider one data from the epidemic evolution or one data from the 

ealthcare system for the decision about starting and stopping a 

ampaign, there will be a long disease persistence in the popula- 

ion, with oscillations of the infected states over time.Such oscil- 

atory behaviour for public health issues has also been found in a 

accination campaign, for instance [43] . Further waves of COVID- 

9 propagation have been concerned specialists due to premature 

elaxation of social isolation campaigns worldwide [58] . Further- 

ore, campaigns that hardly slow the virus propagation make the 

isease endemic in population for many years. 

Overall, delaying the SARS-Cov-2 spreading seems to be the 

ost effective way to avoid the healthcare system to collapse and 

ave lives. There are some variables to delay the spreading, and 

ere we attempted to investigate some of them. Splitting the cam- 

aign decisions into different variables may help to deal with some 

ide effects of social distancing, as reduced sleep quality of self- 

solated individuals [56] , extreme social isolation of people living 

ith HIV [30] or living in long-term care facilities [13] , for in- 

tance. The next steps of this work could be in the following di- 

ections: use a population density map to build the spatial cellu- 

ar automata; consider a network of cities, to study how the dis- 

ase spread over the country, and; consider groups of individuals 

14,33,35,37] as an approach for the social contact. 
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