Table 2.
Model comparison for COVID-19 infection segmentation.
| Methods | Pre-trained architecture | DSC | Sens | Spec | MAE | ||
|---|---|---|---|---|---|---|---|
| U-Net [9] | VGG16 | 0.459 | 0.568 | 0.881 | 0.639 | 0.651 | 0.196 |
| H-DenseUNet [11] | DenseNet-101 | 0.537 | 0.611 | 0.870 | 0.663 | 0.683 | 0.189 |
| U-Net++ [12] | VGG16 | 0.607 | 0.701 | 0.932 | 0.739 | 0.751 | 0.139 |
| SegNet [13] | VGG16 | 0.657 | 0.728 | 0.941 | 0.744 | 0.750 | 0.129 |
| Inf-Net [39] | Res2Net | 0.705 | 0.746 | 0.966 | 0.798 | 0.851 | 0.086 |
| SE-Net [18] | – | 0.621 | 0.719 | 0.949 | 0.751 | 0.801 | 0.142 |
| Semi-Inf-Net [39] | Res2Net | 0.752 | 0.757 | 0.965 | 0.818 | 0.902 | 0.061 |
| *FSS-2019-nCov | Res2Net | 0.798 | 0.803 | 0.986 | 0.834 | 0.908 | 0.065 |
denote ‘higher is better’, denote ‘lower is better’.