Skip to main content
. 2020 Dec 4;212:106647. doi: 10.1016/j.knosys.2020.106647

Table 2.

Model comparison for COVID-19 infection segmentation.

Methods Pre-trained architecture DSC Sens Spec Sα Eϕ MAE
U-Net [9] VGG16 0.459 0.568 0.881 0.639 0.651 0.196
H-DenseUNet [11] DenseNet-101 0.537 0.611 0.870 0.663 0.683 0.189
U-Net++ [12] VGG16 0.607 0.701 0.932 0.739 0.751 0.139
SegNet [13] VGG16 0.657 0.728 0.941 0.744 0.750 0.129
Inf-Net [39] Res2Net 0.705 0.746 0.966 0.798 0.851 0.086
SE-Net [18] 0.621 0.719 0.949 0.751 0.801 0.142
Semi-Inf-Net [39] Res2Net 0.752 0.757 0.965 0.818 0.902 0.061
*FSS-2019-nCov Res2Net 0.798 0.803 0.986 0.834 0.908 0.065

denote ‘higher is better’, denote ‘lower is better’.