Table 3.
Model comparison for GGO segmentation.
| Methods | Pre-trained architecture | GGO segmentation |
Consolidation segmentation |
||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| DSC | Sens | Spec | MAE | DSC | Sens | Spec | MAE | ||||||
| FCN8s [7] | VGG16 | 0.482 | 0.552 | 0.917 | 0.591 | 0.788 | 0.098 | 0.289 | 0.281 | 0.728 | 0.573 | 0.581 | 0.058 |
| DeepLabV3+ (s8) [14] | ResNet101 | 0.402 | 0.501 | 0.871 | 0.553 | 0.682 | 0.121 | 0.157 | 0.173 | 0.744 | 0.511 | 0.556 | 0.065 |
| DeepLabV3+ (s16) [14] | ResNet101 | 0.457 | 0.728 | 0.845 | 0.559 | 0.673 | 0.149 | 0.245 | 0.322 | 0.721 | 0.526 | 0.619 | 0.079 |
| U-Net [9] | VGG16 | 0.462 | 0.374 | 0.988 | 0.564 | 0.731 | 0.079 | 0.421 | 0.427 | 0.978 | 0.581 | 0.781 | 0.053 |
| SE-Net [18] | – | 0.508 | 0.415 | 0.889 | 0.541 | 0.751 | 0.075 | 0.449 | 0.467 | 0.958 | 0.554 | 0.797 | 0.051 |
| Semi-Inf-Net-FCN8s [39] | Res2Net + VGG16 | 0.657 | 0.731 | 0.954 | 0.722 | 0.884 | 0.073 | 0.318 | 0.251 | 0.819 | 0.582 | 0.588 | 0.043 |
| Semi-Inf-Net & MC [39] | VGG16 + Res2Net | 0.639 | 0.631 | 0.973 | 0.715 | 0.904 | 0.070 | 0.471 | 0.527 | 0.979 | 0.618 | 0.781 | 0.045 |
| *FSS-2019-nCov | Res2Net | 0.679 | 0.768 | 0.980 | 0.739 | 0.894 | 0.061 | 0.529 | 0.534 | 0.983 | 0.661 | 0.797 | 0.045 |
denote ‘higher is better’, denote ‘lower is better’.