Skip to main content
. 2020 Dec 4;212:106647. doi: 10.1016/j.knosys.2020.106647

Table 3.

Model comparison for GGO segmentation.

Methods Pre-trained architecture GGO segmentation
Consolidation segmentation
DSC Sens Spec Sα Eϕ MAE DSC Sens Spec Sα Eϕ MAE
FCN8s [7] VGG16 0.482 0.552 0.917 0.591 0.788 0.098 0.289 0.281 0.728 0.573 0.581 0.058
DeepLabV3+ (s=8) [14] ResNet101 0.402 0.501 0.871 0.553 0.682 0.121 0.157 0.173 0.744 0.511 0.556 0.065
DeepLabV3+ (s=16) [14] ResNet101 0.457 0.728 0.845 0.559 0.673 0.149 0.245 0.322 0.721 0.526 0.619 0.079
U-Net [9] VGG16 0.462 0.374 0.988 0.564 0.731 0.079 0.421 0.427 0.978 0.581 0.781 0.053
SE-Net [18] 0.508 0.415 0.889 0.541 0.751 0.075 0.449 0.467 0.958 0.554 0.797 0.051
Semi-Inf-Net-FCN8s [39] Res2Net + VGG16 0.657 0.731 0.954 0.722 0.884 0.073 0.318 0.251 0.819 0.582 0.588 0.043
Semi-Inf-Net & MC [39] VGG16 + Res2Net 0.639 0.631 0.973 0.715 0.904 0.070 0.471 0.527 0.979 0.618 0.781 0.045
*FSS-2019-nCov Res2Net 0.679 0.768 0.980 0.739 0.894 0.061 0.529 0.534 0.983 0.661 0.797 0.045

denote ‘higher is better’, denote ‘lower is better’.