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A B S T R A C T   

Background: The Coronavirus disease 2019 pneumonia broke out in 2019 (COVID-19) and spread rapidly, which 
causes serious harm to the health of people and a huge economic burden around the world. 
Purpose: In this study, the network pharmacology, molecular docking and surface plasmon resonance technology 
(SPR) were used to explore the potential compounds and interaction mechanism in the Toujie Quwen Granules 
(TQG) for the treatment of coronavirus pneumonia 2019. 
Study design: The chemical constituents and compound targets of Lonicerae Japonicae Flos, Pseudostellariae Radix, 
Artemisia Annua L, Peucedani Radix, Forsythiae Fructus, Scutellariae Radix, Hedysarum Multijugum Maxim, Isatidis 
Folium, Radix Bupleuri, Fritiliariae Irrhosae Bulbus, Cicadae Periostracum, Poria Cocos Wolf, Pseudobulbus Cremastrae 
Seu Pleiones, Mume Fructus, Figwort Root and Fritillariae Thunbrgii Bulbus in TQG were searched. The target name 
was translated to gene name using the UniProt database and then the Chinese medicine-compound-target 
network was constructed. Protein-protein interaction network (PPI), Gene ontology (GO) function enrichment 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the core targets were 
performed in the Metascape to predict its mechanism. The top 34 compounds in the Chinese medicine- 
compound-target network were docked with SARS-CoV-2 3CL enzyme and SARS--CoV--2 RNA-dependent RNA 
polymerase (RdRp) and then the 13 compounds with lowest affinity score were docked with angiotensin- 
converting enzyme 2 (ACE2), SARS-CoV-2 Spike protein and interleukin 6 to explore its interaction mecha
nism. Lastly, SPR experiments were done using the quercetin, astragaloside IV, rutin and isoquercitrin, which 
were screened from the Chinese medicine-compound-target network and molecular docking. 
Results: The Chinese medicine-compound-target network includes 16 medicinal materials, 111 compounds and 
298 targets, in which the degree of PTGS2, TNF and IL-6 is higher compared with other targets and which are the 
disease target exactly. The result of GO function enrichment analysis included the response to the molecule of 
bacterial origin, positive regulation of cell death, apoptotic signaling pathway, cytokine-mediated signaling 
pathway, cytokine receptor binding and so on. KEGG pathway analysis enrichment revealed two pathways: 
signaling pathway- IL-17 and signaling pathway- TNF. The result of molecular docking showed that the affinity 
score of compounds including quercetin, isoquercitrin, astragaloside IV and rutin is higher than other com
pounds. In addition, the SPR experiments revealed that the quercetin and isoquercitrin were combined with 
SARS-CoV-2 Spike protein rather than Angiotensin-converting enzyme 2, while astragaloside IV and rutin were 
combined with ACE2 rather than SARS-CoV-2 Spike protein. 
Conclusion: TQG may have therapeutic effects on COVID-19 by regulating viral infection, immune and inflam
mation related targets and pathways, in the way of multi-component, multi-target and multi-pathway.  

Abbreviations: ACE2, angiotensin-converting enzyme 2; ARDS, acute respiratory distress syndrome; COVID-19, Coronavirus disease 2019 pneumonia; DL, drug 
likeness; GO, gene ontology; HL, drug half-life; KEGG, Kyoto Encyclopedia of Genes and Genomes; OB, oral bioavailability; PPI, Protein protein interaction network; 
RBD, receptor binding domain; RdRp, RNA-dependent RNA polymerase; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SPR, surface plasmon 
resonance technology; TCMSP, Traditional Chinese Medicine Systems Pharmacology; TQG, Toujie Quwen Granules. 
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Introduction 

In December 2019, COVID-19 has broken out in Wuhan (Zhu et al., 
2020), Hubei province, China and then it spreads rapidly and causes 
serious harm to the health of people and a huge economic burden all 
over the world. Now (September 28, 2020), World Health Organization 
reported that a total of 33 034 598 people have been infected around the 
world (WHO, 2020). COVID-19 is a highly contagious disease caused by 
a new Corona Virus. The incubation period of the COVID-19 is 7-14 days 
in generally, but in some cases, it may last for 24 days (Guan Wei-jie Ni, 
2020). The clinical characteristics of COVID-19 are fever, cough and 
fatigue. But small number of patients had nasal congestion, runny nose, 
sore throat, myalgia, and diarrhea (The Novel Coronavirus Pneumonia 
Emergency Response Epidemiology Team, 2020). In the worse cases 
scenario, severe patients usually had dyspnea and/or hypoxemia infec
tion after one week, in which some of them can developed acute respi
ratory distress syndrome (ARDS), septic shock, refractory metabolic 
acidosis, bleeding and coagulation dysfunction, and multi-organ failure 
(Hemmati et al., 2020). This virus is easy to infect in the people and the 
incubation period could be long. Since the drugs for treating COVID-19 
specifically are not available, and the vaccines of COVID-19 are being 
evaluated at present. China have got great achievement in the treatment 
of COVID-19 by integrating traditional Chinese medicine and Western 
medicine (Wang et al., 2020c), and the rate of cure have exceeded 
94.12%. 

Guangzhou eighth people’s hospital, Guangzhou, Guangdong prov
ince, China, used Toujie Quwen Granules (TGQ) to treat the COVID-19 
patient, which is the first case that used the traditional Chinese medi
cine to treat COVID-19 in China (Xiaoxia Fu et al., 2020). After evalu
ation and identification by Guangzhou Food and Drug Administration, it 
was determined that this method could effectively reduce the rate of 
severe illness in patients and also reduce the mortality caused by severe 
and critical COVID-19. This prescription mainly has the effect of 
detoxification and antipyretic. The lesions in the early stage of 
COVID-19 mainly occurred in the lungs. While Forsythiae Fructus is light, 
cold and moistening into the lung, removing heat of the lung, Pseudo
bulbus Cremastrae Seu Pleiones is used to remove the plague toxin, to 
remove phlegm, and to open the orifices, and Lonicerae Japonicae Flos, 
Scutellariae Radix and Isatidis Folium are used to remove the heat of the 
upper energizer. The lung is the reservoir of phlegm and the spleen is the 
source of phlegm. In order to prevent from consuming Qi, damp-heat 
and filth, Fritiliariae Irrhosae Bulbus and Fritillariae Thunbrgii Bulbus are 
used to remove heat and phlegm and to invigorate the spleen and 
transports dampness. Figwort Root, Mume Fructus are used to prevent 
infection of the uninfected part of the lung. In addition, in the early 
stage, Pseudostellariae Radix and Hedysarum Multijugum Maxim were 
given to protect the healthy Qi and remove the evil Qi, so as to prevent 
too much cold medicine and relieve the worries of deficiency of both Qi 
and Yin in the later stage (Wang et al., 2020b). 

SARS-CoV-2 3CL hydrolase is one of the main proteases of corona
virus and plays an important role in the replication process of the virus 
and, therefore, it is a key target for drug design (Jin et al., 2020). RdRp is 
a kind of polymerases that use single stranded RNA as a template for the 
synthesis of complementary RNA strands and play an important role in 
viral genome replication and virus-induced host immune response 
(Elfiky, 2020). COVID-19 has been confirmed to cause infection by 
entering human cells through ACE2, which is one of the key targets for 
COVID-19 inhibition (Roshanravan et al., 2020). IL-6 have been asso
ciated with lung lesions in SARS-CoV-2 patients (Magro, 2020b). Coro
navirus Spike protein is a very important surface protein of coronavirus, 
which is related to the infectious capacity of the virus. It includes two 
subunits, S1 and S2, in which S1 contains the receptor binding domain 
(RBD) (Wang et al., 2020a). It can bind to ACE2 protein on the surface of 
human cells and then infect it. 

In this study, the active components and potential targets of TQG 
were searched in the database. The key compounds were further 

screened using the network pharmacology. And then, the core targets 
from the intersection of compounds’ target and COVID-19 disease target 
were used to PPI, GO and KEGG functional enrichment analysis. The 
interaction between four enzymes and key compounds was investigated 
by molecular docking. In addition, SPR experiments were used to verify 
the interaction between the selected compounds and proteins. This work 
provides theoretical and experimental basis for the treatment of COVID- 
19 with TQG. 

Material and methods 

Screening of active compound of TQG and prediction of corresponding 
targets 

Sixteen traditional Chinese medicines (Yinhua, Taizishen, Qingsong, 
Qianhu, Lianqiao, Huangqin, Huangqi, Daqingye, Chaihu, Chuanbeimu, 
Chantui, Fuling, Shancigu, Wumei, Xuanshen and Zhebeimu) in TQG 
were respectively input into TCMSP database, which contains 499 herbs 
registered in Chinese pharmacopoeia (2010), related compound, target 
and so on (Ru et al., 2014). The active chemical constituents of sixteen 
traditional Chinese medicines were screened by the three conditions of 
oral bioavailability (OB) value ≥ 30 %, drug likeness (DL) value ≥ 0.18, 
drug half-life (HL) value ≥ 4 h. The targets of active compounds were 
collected through the TCMSP database and the target name was trans
lated to gene name by UniProt database. In addition, the database of 
TCMID (Xue et al., 2012) and YaTCM (Li et al., 2018) were used to 
supplement the compounds and targets. 

Construction of Chinese medicine-compound-target network 

In order to illuminate the relationship between the active chemical 
component and the target protein, we constructed the Chinese medicine- 
compound-target network using the Cytoscape 3.7.1 (Paul Shannon 
et al., 2019), in which the important network topology parameters of the 
compounds and related targets, like the degree, betweenness centrality 
and closeness centrality were calculated. In addition, the edges repre
senting intermolecular interactions is the links between nodes. The 
wider the edges, the stronger the interaction. 

Screening targets of COVID-19 disease and Selection of core targets of 
TQG for COVID-19 

GeneCards database was used to search genes related to COVID-19 
disease with “COVID-19” as the key word (Rappaport et al., 2017). 
The core targets of TQG in the treatment of COVID-19 were obtained by 
intersecting the targets of the active chemical components in TQG with 
the genes related to COVID-19 disease and the Venn diagram was then 
prepared. 

Construct PPI of the core target of TQG for COVID-19 

With the advent of molecular biology, it has been assumed that 
proteins have interactions with one another and also with other mole
cules. To study the interaction of proteins that are basic to perceive their 
role within the cell, protein-protein interaction (PPI) data can be used in 
a larger scale to map networks of interactions rely on their physical or 
functional association (Harel et al., 2009; Kibble, 2004; Safar
i-Alighiarloo et al., 2014). In order to explain the mechanisms of cura
tive effect of the medicine more comprehensively, core targets of TQG 
for COVID-19 were input to STRING (von Mering et al., 2005) to conduct 
a PPI. In STRING databases, the confidence score thresholds including 
low confidence 0.15, medium confidence 0.4, high confidence 0.7 and 
highest confidence 0.9 represent the estimated likelihood that a given 
interaction is biologically meaningful, specific and reproducible given 
the supporting evidence (Szklarczyk et al., 2017). In general, the higher 
the confidence score, the more accurate it is. But the higher the 
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confidence score, the less data is obtained. Therefore, we selected PPI 
data with a confidence score of > 0.7 to construct the protein interaction 
network, which satisfied the accuracy and quantity of PPI (Zheng et al., 
2020). 

GO function enrichment and KEGG pathway enrichment analysis 

The Gene Ontology (GO) is a primary bioinformatics initiative to 
unify the representation of gene and gene product attributes across all 
species, which include biological process, molecular function and 
cellular component. Biological process involves with a biological 
objective to which the gene or gene product contributes. Molecular 
function is considered as the biochemical activity. Cellular component is 
defined as the place in the cell where a gene product is active (Kibble, 
2004). KEGG is a knowledge base for biological interpretation of 
completely sequenced genomes by pathway mapping and the procedure 
to map genes in the genome to manually created pathway maps, which 
have been developed into a comprehensive knowledge base for both 
functional interpretation and practical application of genomic infor
mation (Kanehisa et al., 2017). The key target proteins of TQG for 
COVID-19 were submitted to Metascape to analyze GO function 
enrichment and KEGG pathway enrichment (Zhou et al., 2019). The 
operation is simply to copy and paste the genes in the Metascape’s gene 
list and then select the species of H.salpaiens. In the Enrichment section 
of the analysis page, KEGG Pathways, GO Molecular Functions, GO 
Biological Processes and GO Cellular Components were selected for 
enrichment analysis of KEGG Pathways, GO Molecular Functions, GO 
Biological Processes and GO Cellular Components respectively. 

Molecular docking 

The three dimensional structure of SARS-CoV-2 3CL enzyme (ID: 
6lu7) and SARS--CoV--2 RdRp (ID: 6m71), ACE2 (ID: 1r4l), SARS-CoV-2 

Spike protein (ID: 6vsb) and interleukin 6 (ID: 1p9m) were obtained 
from the PDB database. Recently the “Novel Coronavirus Pneumonia 
Diagnosis and Treatment Scheme (Trial Edition 8)” issued by the Na
tional Health Commission (NHC) of China (National Health Commis
sion) recommended ribavirin, lopinavir and ritonavir for clinical drugs. 
Here, ribavirin, lopinavir and ritonavir were selected as the positive 
control drug. The ligand and water in the protein were removed by 
AutoDock Tools and stored in PDBQT format. The mol2 format of 34 
compounds screened from Chinese medicine-compound-target network 
and ribavirin, lopinavir and ritonavir were downloaded from the TCMSP 
database and PubChem database (Kim et al., 2019b) respectively, and 
then the software raccoon was used to convert the format of mol2 to 

Fig. 1. The Chinese medicine herb-compound-target network of TQG.  

Fig. 2. The Venn diagram of TQG and COVID-19 disease.  
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PDBQT. The binding site of SARS-CoV-2 3CL is defined as the site of 
existing inhibitor in the protein. We removed the inhibitor and a grid 
box with the size 50  Å × 50  Å × 50 Å with coordinates (x, y, z) of 
-9.253, 16.459, 65.388 and having the grid spacing of 0.375 Å was used. 
The binding site of SARS-CoV-2 RNA-dependent RNA polymerase was 
consistent with the binding site of the inhibition of Remdesivir (Wan
chao Yin et al., 2020). The grid box size of coordinates (x, y, z) was set to 
128.447, 116.512, 102.160 and 60 Å × 60 Å × 60 Å, respectively, with 
grid spacing of 0.375 Å. The binding site of ACE2 was defined as a grid 
box centered at the center of mass of the co-crystallized inhibitor (x =
40.199, y = 6.024; z = 29.006), with the size 50  Å × 50  Å × 50 Å and 
grid spacing of 0.375 Å. The binding site of IL-6 was defined as the active 
site Phe229 and Phe279 reported in previous research (Blanchetot et al., 
2016; Boulanger et al., 2003). 

A grid box with the size 23.656  × 25.926  × 27.932 with co
ordinates (x, y, z) of -11.493, 15.366, 69.444 having the grid spacing of 
0.375 Å was used. We used a grid spacing of 0.375 Å grid box with the 

size 50 Å × 50 Å × 50 Å and coordinates (x, y, z) of -37.192, 170.960, 
47.861. The binding site of Spike protein is consistent with previous 
report by Ran Yu et al (Yu et al., 2020). Grid box (60 Å × 60 Å × 60 Å) 
centered at (214.246, 233.152, 240.842) with the grid spacing of 
0.375Å. The Vina was used to perform molecular docking and the 
compounds were screened according to the binding energy (Trott and 
Olson, 2010). All docking simulations were run with default settings, 
generating a maximum of 10 binding modes at an exhaustiveness level 
of 8. The smaller the binding energy is, the better the ligand can bind to 
the protein. 

SPR assay evaluated the combination of compound binding to SARS-CoV- 
2 Spike and ACE2 receptor protein 

Surface Plasmon resonance (SPR) sensor is a powerful tool for real- 
time monitoring the interaction of binding kinetic and affinity. Due to 
its label-free and real-time monitoring, keen price and simple methods 

Fig. 3. PPI of TQG in treating COVID-19.  
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for sample preparation, the SPR technique has become one of the most 
important analytical tools for interrogation of bimolecular interactions, 
particularly in the study the binding between small molecules and target 
protein (Mohammadzadeh-Asl et al., 2020; Olaru et al., 2015; Singh, 
2016). 

Microarray conjugated ligand proteins 

The SARS-CoV-2 Spike-RBD protein and ACE2 protein were pur
chased from Nanjing Kingsley Biotechnology Co., Ltd (Nanjing, China). 
Quercetin, astragaloside IV, rutin, and isoquercitrin were provided by 
Golden Health (Guangdong) Biotechnology Co (Foshan, China) and the 
purity of all compounds are higher than 98%. 

The Spike-RBD protein and ACE2 protein were conjugated onto the 
surface of the esterified CM5 chip (Biacore™) via covalent bonds. In the 
experiments, the amino covalent coupling method was selected. First, 
the surface of the chip was esterified with the crosslinking agent EDC 
(E6383, Sigma-Aldrich) and NHS (130672, Sigma-Aldrich) at a pH of 
4.5-5. Second, the Spike-RBD protein and ACE2 protein were coupled to 
the surface of the chip, which required that the purity of SARS-CoV-2 
Spike-RBD protein and ACE2 protein are higher than 90%. Finally, the 
remaining reactive carboxyl on the matrix were blocked using 1 M 
β-Aminoethanol hydrochloride (E6133, Sigma-Aldrich), at pH 8.5. 

Diluting compounds of traditional Chinese medicine 

The compound was dissolved in DMSO (D8418, Sigma-Aldrich) and 
was diluted twice with 5% DMSO PBS-P buffer solution to 100 mM or 
200 mM, which were diluted twice to 5 mM or 10 mM, and then diluted 
successively to 100 μM, 50 μM, 25 μM, 12.5 μM, 6.25 μM, 3.125 μM, 
1.5625 μM (quercetin and isoquercitrin), 100 μM, 50 μM, 25 μM, 12.5 
μM, 1.5625 μM (rutin), 25 μM, 12.5 μM, 6.25 μM, 3.125 μM, 1.5625 μM 
(astragaloside IV) using 5% DMSO PBS-P buffer. The sample was filtered 
by pumping through a 0.2 m membrane. 

Inject sample to test 

The SPR experiment was performed using the Biacore T200 SPR 
instrument (GE Healthcare Life Sciences, Uppsala, Sweden). Injection 
sample of time was 1.5 min and velocity was 30 μl/min. The time of 
protein dissociation was 2 min. 

Result 

Effective components and target prediction of TQG 

A total of 111 compounds were selected from TCMSP, TCMID and 
YaTCM database based on the criteria about oral bioavailability, drug 
similarity and drug half-life mentioned in above. The basic information 
of these compounds in TQG was showed in Table S1. 

Chinese medicine-compound-target network 

As showed in Fig. 1, we can clearly find that Chinese medicine- 
compound-target network includes 425 nodes (16 of Chinese medi
cine, 111 of compound nodes and 298 of target) and 3018 edges. Among 
them, the blue arrow, red circle, and purple diamond represent the 
medicinal material, compound and target respectively. In addition, a 
compound interacts with multiple targets and different compounds also 
act on a target at the same time. According to topological analysis, with 
higher edge, the compounds with more than 2-fold of the median degree 
and betweenness centrality, of more than the median closeness cen
trality, were extracted from the network. So, we obtained 34 compounds 
by screening of the Chinese medicine-compound-target network. The 
topology parameter of Chinese medicine-compound-target network are 
shown in Table S4. According to the Chinese medicine-compound-target 
network, we know that different Chinese medicine may have the same 
active compounds (Fig. 1). 

Fig. 4. The top 20 pathways for GO enrichment analysis of the targets of TQG.  
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Core targets of TQG for COVID-19 and PPI 

Three hundred and fifty-one genes associated with COVID-19 were 
collected. Among them, the minimum value of GIFtS and Score is 5 and 
0.24, respectively. The GIFtS Score is a measure of the confidence in the 
known protein interactions for that gene, inferring an enhanced accu
racy of known protein interactions for genes with a higher GIFtS score 
(Harel et al., 2009). The higher the score, the stronger the correlation 
between disease and genes. Therefore, we selected all the genes 
collected for further investigations. As showed in Fig. 2, the intersection 
of the active compound targets and disease targets have 54 genes, which 
include PTGS2, PTGS1, IL6, IL10, TNF, ACE2 and so on. It was surprised 
that the degree of PTGS2 (117), PTGS1 (91), TNF (32) and IL6 (31) were 
higher in the Chinese medicine-compound-target network. The PPI of 
the above intersection targets was obtained using the String database. As 
showed in Fig. 3, the proteins in the center of the PPI are PTGS2, IL6, 
TNF, MAPK14, and so on, which may play an important role in the 
treatment of COVID-19 with TQG. PTGS2, encoding COX2, plays an 
important role in SARS-CoV infections and SARS-CoV N protein causes 
lung inflammation by activating COX2 and stimulating multiple COX2 
inflammatory cascades (Elkahloun and Saavedra, 2020; He et al., 2020). 
IL-6 plays an important role in the immunopathogenesis of COVID-19 
and is supported by data from a range of studies reporting increased 
serum concentrations of this cytokine, foremost in the severe cases 
(Nasonov and Samsonov, 2020). MAPK signaling pathway involves a 
wide range of cellular functions like cell proliferation, differentiation 

and survival, which plays crucial roles in coronavirus propagation 
(Muthuramalingam et al., 2020). The TNF receptors are the crucial 
players involved in apoptosis and inflammation. The cross-talk between 
viral proteins and intracellular components of the TNF receptors 
confirmed the significant ability of viral replication machinery to evade 
the immunological responses (Favalli et al., 2020). IL-6 is the cytokine in 
COVID-19 correlated with severity, criticality, viral load, and prognosis 
of patients with COVID-19 (Saghazadeh and Rezaei, 2020). The bio
logical activity of IL-6 depend on its potential to activate target genes 
that regulate cell differentiation, survival, proliferation, and apoptosis. 
IL-6 functions as an autocrine, paracrine, and “hormone-like” regulator 
of various normal and pathological biological processes associated with 
local and systemic inflammation (Nasonov and Samsonov, 2020). 

GO functional enrichment and KEGG signal pathway enrichment analysis 
of TQG for COVID-19 

Relying on the Metascape database, GO functional enrichment 
analysis of key targets were performed, which include biological pro
cesses, cellular components and molecular functions. According to the p 
(p < 0.01) value, the terms were screened. As showed in Fig. 4, the top 
20 items of biological processes annotations included response to 
molecule of bacterial origin, response to lipopolysaccharide, cytokine- 
mediated signaling pathway and so on. For cellular components, the 
targets were enriched in membrane raft, RNA polymerase II transcrip
tion factor complex, membrane region, nuclear transcription factor 

Fig. 5. The top 20 pathways for KEGG enrichment analysis of the targets of TQG.  

M. Ye et al.                                                                                                                                                                                                                                      



Phytomedicine 85 (2021) 153401

7

complex, vesicle lumen, cytoplasmic vesicle lumen etc. Vesicles may 
play an important part in the spreading of COVID-19 virus as they 
transfer such receptors as CD9 and ACE2 (Hassanpour et al., 2020). 
Molecular Functions analysis revealed cytokine receptor binding, cyto
kine activity, receptor ligand activity, receptor regulator activity, che
mokine receptor binding etc. The primary pathology of COVID-19 is 
viral pneumonia with pulmonary edema and patchy inflammatory 
cellular infiltration and the levels of many proinflammatory cytokines 
and chemokines is higher in COVID-19 patients (Dhama et al., 2020). 
The above biological processes or molecular functions may infer in the 

pathogenic of COVID-19. 
The KEGG signal pathway enrichment analysis contained 132 path

ways. The top 20 pathways are showed in Fig. 5, in which the ordinate 
represents KEGG pathways of the target genes, and the abscissa repre
sents the rich factor, which indicated the ratio of the number of target 
genes belonging to a pathway to the number of all the annotated genes 
located in the pathway. The higher value for this ratio corresponds to a 
higher level of enrichment. In addition, the size of the dot indicates the 
number of target genes in the pathway. The gradually changing colors, 
from red to green, represent the highest to the lowest p values, 

Table 1 
The result of core compounds docked with enzymes.  

Compound molecular 
formula 

CAS 3CLaffinity score 
(kJ/mol) 

RNA-dependent 
affinity score (KJ/ 

mol) 

ACE2 affinity 
score (KJ/mol) 

IL--6 affinity 
score (KJ/mol) 

S-protein 
(KJ/mol) 

Ritonavir C37H48N6O5S2 155213- 
67-5 

-7.1 -7.3 -8.0 -6.0 -5.9 

Ribavirin C8H12N4O5 36791- 
04-5 

-6.2 -7.2 -7.2 -5.9 -5.9 

Lopinavir C27H38N4O3 192725- 
17-0 

-7.2 -7.3 -8.1 -6.0 6.0 

quercetin C15H10O7 117-39-5 -7.3 -7.3 -8.3 -7.2 -7.6 
astragaloside IV C41H68O14 83207- 

58-3 
-7.3 -7.7 -9 -6.6 -7.5 

rutin C27H30O16 153-18-4 -8.8 -8.1 -9.9 -6.0 -8.2 
isoquercitrin C21H20O12 21637- 

25-2 
-8.3 -8.1 -9.8 -6.6 -8.8 

kaempferol C15H10O6 520-18-3 -7.8 -7.2 -8.3 -6.3 -6.5 
bicuculline C20H17NO6 485-49-4 -7.8 -8.9 -10 -7.2 -7.2 
beta-carotene C40H56 7235-40- 

7 
-7.7 -7.3 -9 -6.3 -6.9 

Salvigenin C18H16O6 19103- 
54-9 

-7.6 -8.1 -11.1 -7.6 -6.0 

indirubin C16H10N2O2 479-41-4 -7.5 -7.5 -8.4 -6.3 -6.4 
baicalein C15H10O5 491-67-8 -7.5 -7.6 -9.1 -7.6 -6.6 
Calycosin C16H12O5 20575- 

57-9 
-7.4 -7.1 -8.8 -6.7 -6.8 

Artemetin C20H20O8 479-90-3 -7.4 -6.7 -8.1 -6 -6.2 
(2R)-7-hydroxy-5-methoxy-2- 

phenylchroman-4-one 
C16H14O4 1090-65- 

9 
-7.3 -7 -8.1 -6.2 -6.6 

Glycyrol C21H18O6 23013- 
84-5 

-7.3 -7.6    

5-hydroxy-7-methoxy-2-(3,4,5- 
trimethoxyphenyl)chromone 

C18H16O7 18103- 
41-8 

-7.3 -7.4    

tanshinone iia C19H18O3 568-72-9 -7.3 -7.5    
luteolin C15H10O6 491-70-3 -7.2 -7.5    
beta-sitosterol C29H50O 83-46-5 -7.0 -7.1    
Skullcapflavone II C19H18O8 55084- 

08-7 
-7.2 -7.2    

5,7,4′-Trihydroxy-8-methoxyflavone C16H12O6 57096- 
02-3 

-7.2 -7    

wogonin C16H12O5 632-85-9 -7.1 -7.2    
isorhamnetin C16H12O7 480-19-3 -7.1 -7.3    
(6aR,11aR)-9,10-dimethoxy-6a,11a- 

dihydro-6H-benzofurano[3,2-c] 
chromen-3-ol 

C23H26O10 94367- 
42-7 

-7.1 -7    

formononetin C16H12O4 485-72-3 -7.1 -6.8    
Cirsiliol C17H14O7 34334- 

69-5 
-7.1 -7    

Moslosooflavone C17H14O5 3570-62- 
5 

-7 -7    

5,2′-Dihydroxy-6,7,8-trimethoxyflavone C18H16O7 86926- 
52-5 

-6.9 -7.2    

Chryseriol C16H12O6 491-71-4 -6.9 -7.1    
sitosterol C29H50O 68555- 

08-8 
-6.8 -7.4    

oroxylin a C16H12O5 480-11-5 -6.8 -7.1    
rivularin C18H16O7 70028- 

59-0 
-6.8 -7.3    

Stigmasterol C29H48O 83-48-7 -6.7 -7.1    
hederagenin C30H48O4 465-99-6 -6.6 -7.5    
acacetin C16H12O5 480-44-4 -4.3 -5.2     
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respectively. It involved with IL-17 signaling pathway, TNF signaling 
pathway, T cell receptor signaling pathway and so on. On the patho
genesis of SARS-CoV-2 infection, ICU patients had significantly higher 
levels of interleukin IL-17 and TNF than the healthy controls (Gao et al., 
2020). One study demonstrated that excessive non-effective host im
mune responses by pathogenic T cells may associate with severe lung 
pathology (Yonggang Zhou et al., 2020). 

Molecular docking 

The 34 compounds obtained after the screening of Chinese medicine- 
compound-target network were docked with SARS-CoV-2 3CL enzyme 
and SARS-CoV-2 RdRp. It is believed that the lower the binding energy, 
the greater the protein binding affinity of the ligand. As showed in 
Table 1, the binding energy of SARS-CoV-2 3CL enzyme and SARS-CoV- 
2 RdRp with compounds are low, which indicated that the conformation 
of protein binding of key compounds in the TQG are stable. So, for 
further study, we choose the 13 compounds with the lower affinity score 
in both SARS-CoV-2 3CL enzyme and SARS-CoV-2 RdRp, which were 
docked with ACE2, Spike protein and interleukin 6. The binding energy 
of these compounds was lower than the positive control drug, predicting 
that these components may affect the stability of the complex by binding 
with protein and play a role in the treatment of COVID-19. The binding 
energy of compounds including bicuculline, salvigenin, baicalein, 
quercetin, calycosin, astragaloside IV, rutin and isoquercitrin was found 
to be low. What’ more, the degree of quercetin (750), astragaloside IV 
(31), rutin (69) and isoquercitrin (44) is higher than that of bicuculline 
(19), salvigenin (12), baicalein (25) and calycosin (16) in network 
(Table S4). Numerous studies have demonstrated that quercetin acts as 
potent drug candidate towards inhibition of influenza virus infection 
through inferring the viral cellular immune system, inhibition of viral 
cellular targets, interfering the viral replication and inhibiting the viral 
growth phases and quercetin can be considered as a good candidate for 
further optimization and development, or repositioned for COVID-19 
treatment (Abian et al., 2020; Sargiacomo et al., 2020; Enkhtaivan 
et al., 2017; Gansukh et al., 2021; Kim et al., 2019a). Astragaloside IV 
has been suggested to have anti-inflammatory, anti-oxidative and 

immunoregulatory activities in various diseases (Li et al., 2017; Zhi-guo 
Zhang et al., 2012). Many studies have confirmed that rutin can change 
the morphology of cells and reduce the apoptosis caused by toxic sub
stances via eliminating ROS and inhibiting oxidative stress (Caglayan 
et al., 2019; Qian et al., 2020; Singh et al., 2019). Rutin also has been 
applied in the field of biotoxicity repair (Yang et al., 2008). Previous 
studies have suggested that isoquercitrin has biological activities of 
anti-inflammatory and antiapoptotic actions, which has used to be 
effective against cadmium-induced renal oxidative damage (Wang et al., 
2017). Taking into account all these, we thus selected quercetin, astra
galoside IV, rutin and isoquercitrin for experiment of SPR. In addition, 
the binding affinity score of these four compounds with ACE2 and Spike 
protein is higher than other protein. The GIFtS and Score of ACE2 which 
is also the compound target in the network, is the highest in the disease 
targets which obtained from the GeneCards. The SARS-CoV-2 could 
entry the host cells by viral Spike protein binding to the host cell re
ceptor of ACE2, resulting in the virus invading the human body and 
causing disease (Hoffmann et al., 2020). Therefore, the ACE2 and S 
protein were selected for SPR investigation. The stable docking 
conformation pose of eight compounds with four enzymes are showed in 
Fig. 6. The interaction between quercetin, astragaloside IV, rutin, iso
quercitrin and ACE2 and Spike protein are showed in Figs. 7 and 8, 
which showed that the four enzymes have hydrogen bond interactions 
and hydrophobic interactions with quercetin, calycosin, astragaloside 
IV, rutin, isoquercitrin. (The amino acid of enzymes interaction with 
compounds are showed in Table S3). The interactions of SARS-CoV-2 
3CL enzyme, SARS-CoV-2 RdRp, IL-6 with compounds are showed in 
Figs. S1, S2 and S3, respectively. 

SPR experiment 

In the SPR experiments, quercetin, astragaloside IV, rutin and iso
quercitrin were selected as an extracellular validation molecular model 
to conduct small-molecule and macromolecule interaction experiments 
with Spike protein and ACE2 protein, respectively. In the study, Spike 
protein and ACE2 protein were fixed in the chip through covalent bonds 
and the solutions of quercetin, astragaloside IV, rutin and isoquercitrin 

Fig. 6. The docking pose of (A) SARS-CoV-2 3CL enzyme, (B) SARS-CoV-2 RdRp, (C) ACE2 and (D) Spike protein with bicuculline, salvigenin, baicalein, calycosin, 
quercetin, astragaloside IV, rutin and isoquercitrin. 
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flowed through the chip to test the binding energy, respectively. Titra
tion result is showed in Fig. 9, which revealed that rutin and astraga
loside IV bound to ACE2 rather than Spike protein, while quercetin and 
isoquercitrin bound to Spike protein rather than ACE2. The KD of 
quercetin and Spike protein is 1.69 × 10− 5 M. The KD of astragaloside IV 
and ACE2 protein is 3.69 × 10− 7 M. The KD of rutin and ACE2 protein is 
6.68 × 10− 5 M. The KD value of isoquercitrin and protein S is 4.54 ×
10− 6 M. Therefore, it could be speculated that quercetin and iso
quercitrin could bind to the RBD region of Spike protein and inactivate it 
and then prevent Spike protein binding to ACE2 of epithelial cell sur
face. Astragaloside IV and rutin could bind to ACE2, which weakened 
the ability of SARS-Cov-2 infecting host to some extent. 

Discussion 

Since the outbreak of COVID-19, it has spread all over the world, 
with the morbidity and mortality rate rising continuously. The global 
epidemic is extremely severe, but there is still lack of specific vaccine 
and therapeutic drugs. Currently, old drugs were used to treat the virus, 
but it could occur medication side effect (Di Lorenzo et al., 2020; 
Nakhleh and Shehadeh, 2020). COVID-19 patients not only showed 
respiratory symptoms, but also liver damage and inflammation (Wei 
et al., 2020). Chinese medicine plays an important role in the treatment 
of COVID-19. 

Therefore, network pharmacology and molecular docking may be 
useful to excavate the potential compounds of TQG for COVID-19 
treatment. According to the results of network pharmacology and mo
lecular docking, the main active compounds with higher comprehensive 
scores of TQG included quercetin, astragaloside IV, rutin and iso
quercitrin. Quercetin is a natural flavonoid with antioxidant, antiviral 
and anti-inflammatory effects, which can be used for the treatment of 
liver, heart, spleen, lung, kidney, orthopedic diseases, nervous system 
diseases and so on (Boots et al., 2008; Hatahet et al., 2016). Astragalo
side IV is a saponin and serving as the predominant constituent of 
Astragalus membranaceus, which is used in Chinese medicine for the 
treatment of anti-inflammatory, anti-oxidative, immune disorders and 
liver cirrhosis with an excellent safety record (Li et al., 2017). Astra
galoside IV inhibits HSC (the key effectors in hepatic fibrogenesis) 
activation by inhibiting generation of oxidative stress and associated 
p38 MAPK activation (Li et al., 2013). Increasing evidence supports that 
astragaloside IV play an important role in the treatment of pulmonary 
fibrosis and myocardial fibrosis (Shuang Ren et al., 2013). Rutin is a 
natural flavonoid derivative, which has been used to treat diseases 
including antiallergic, hypolipidemic, anti-inflammatory and vasoac
tive, antitumor, antibacterial, antiviral and antiprotozoal properties, 
cytoprotective, and antioxidant properties (Khan et al., 2012). 

The results of network pharmacology and PPI analysis showed that 
the top targets involved PTGS2, PTGS1, TNF, IL-6, IL-2, and IL-10, which 

Fig. 7. The molecular interaction of ACE2 and quercetin, astragaloside IV, rutin and isoquercitrin.  
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are the potential targets of the compounds including quercetin, astra
galoside IV, rutin and isoquercitrin. Studies have shown that PTGS2 and 
PTGS1 play an important role in the treatment of inflammation and 
PTGS1 promotes osteogenic differentiation of adipogenic stem cells by 
inhibiting NF-kB signaling. IL-6 is an important inflammatory factor 
involved in the pathological process of inflammation (Magro, 2020). 
The result of KEGG functional enrichment analysis involved IL-17 
signaling pathway, TNF signaling pathway and so on. Recent study re
ported that Anti-TNF therapy may have positive effect in COVID-19 
patient (Ye et al., 2020). Therefore, we speculate that the multiple 
active compounds in TQG may play an important role in therapeutic of 
COVID-19 by multiple signal pathways including IL-17 signaling 
pathway, TNF signaling pathway, etc. 

The KD of ACE2 protein with astragaloside IV and rutin is 3.69 ×
10− 7 M and 6.68 × 10− 5 M respectively. While the affinity score of ACE2 
between astragaloside IV and rutin is -9 KJ/mol and -9.9 KJ/mol 
respectively. It seems that the results of molecular docking were not 
consistent with the SPR assay. The difference of 0.9 in affinity score may 
not demonstrated the level of binding, which can be used as a reference 
only on the contrary. 

By further analyzing the interaction mechanism, it could be found 
that the four enzymes have hydrophobic interaction and hydrogen bond 
interactions with the compounds shown in Table S3. Combined with the 

results of molecular docking and SPR experiment, quercetin, astraga
loside IV, and isoquercitrin could be effective for the treatment of 
COVID-19. The interaction mechanism between four enzymes and the 
core compounds in TQG were analyzed and the results provided a 
theoretical basis for the study of drug therapy in COVID-19. 

Conclusion 

In summary, we explored the potential compounds of TQG for the 
treatment of COVID-19 using the network pharmacology and molecular 
docking. A number of compounds including quercetin, astragaloside IV, 
rutin and isoquercitrin were screened from TQG and were used to 
conduct SPR experiments. Our study provides both theoretical and 
experimental basis for the treatment of COVID-19 with TQG. 
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