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a b s t r a c t

Classification of COVID-19 X-ray images to determine the patient’s health condition is a critical issue
these days since X-ray images provide more information about the patient’s lung status. To determine
the COVID-19 case from other normal and abnormal cases, this work proposes an alternative method
that extracted the informative features from X-ray images, leveraging on a new feature selection
method to determine the relevant features. As such, an enhanced cuckoo search optimization algorithm
(CS) is proposed using fractional-order calculus (FO) and four different heavy-tailed distributions in
place of the Lévy flight to strengthen the algorithm performance during dealing with COVID-19 multi-
class classification optimization task. The classification process includes three classes, called normal
patients, COVID-19 infected patients, and pneumonia patients. The distributions used are Mittag-Leffler
distribution, Cauchy distribution, Pareto distribution, and Weibull distribution. The proposed FO-CS
variants have been validated with eighteen UCI data-sets as the first series of experiments. For the
second series of experiments, two data-sets for COVID-19 X-ray images are considered. The proposed
approach results have been compared with well-regarded optimization algorithms. The outcomes
assess the superiority of the proposed approach for providing accurate results for UCI and COVID-19
data-sets with remarkable improvements in the convergence curves, especially with applying Weibull
distribution instead of Lévy flight.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The first cases of coronavirus disease (COVID-19) were regis-
ered in Wuhan, an important city of China, in December 2019.
OVID-19 is originated by a virus called SARS-CoV-2, and cur-
ently, it is one of the major concerns worldwide. By the middle of
pril 2020, the affectations of COVID-19 in humans can be sum-
arized in more than 150,000 deaths and almost 1,700,00 con-

irmed cases worldwide [1]. These amounts are evidence of the
ast dissemination in the population. The symptoms of COVID-
9 known until now include fever, cough, sore throat, headache,
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fatigue, muscle pain, among others [2]. The test for detection of
COVID-19 commonly used is invasive, and it is called a reverse
transcription-polymerase chain reaction (RT-PCR) [3]. COVID-19
is not only affecting the health of the nations but also the con-
sequences of the diseases are important (e.g., economic and psy-
chological [4,5]). Another important consideration is that prompt
detection could be reflected in early treatment. Then COVID-19
is a pandemic whit a large number of challenges to face. Based
on the above information, they are required tools that permit the
detection of this mortal disease in a timely manner.

On the other hand, the use of medical images to diagnose
disease has increased in the latest years. Different computer
vision and image processing tools can be used to identify the
abnormalities produced by the illnesses. One of the main advan-
tages of using this kind of system is that the detection is fast and

accurate. However, the results must be validated by an expert. In
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his way, medical image processing algorithms can be used as a
rimary diagnosis that provides a clue about a possible disease.
n the case of COVID-19, the use of X-ray images permits to study
ow the virus is affecting the lungs. Since COVID-19 is a recent
irus, only a few data-sets are available, and the number of works
elated to them is also reduced.

A number of studies have been proposed to classify COVID-
9 from X-ray scan images using different techniques, such as
enseNet201 [6], MobileNet v2 [7], DarkNet [8], and others [9–
2]. In general, the medical images can be directly analyzed to
dentify certain elements in the scene that permits the diagnosis.
owever, it is also common to extract different features from all
he images and create a set that contained the information of
he objects contained in the images [13]. In this case, not all the
eatures extracted could provide essential information about the
isease that is going to be detected; for that reason, it is necessary
o use automatic tools that remove the non-desired (irrelevant or
uplicated) elements.
Feature Selection (FS) is an important pre-processing tool

hat helps to extract the information desired from the irrelevant
ata [14–16]. FS helps in reducing the dimensionality of the
ata by selecting only the relevant information in the next steps.
ith this pre-processing, the machine learning could be applied
ore efficiently over the data-set by decreasing computational
ffort [17,18]. The use of FS has been extended for to different
omains, for example in bio-medicine for diagnosis of neuro-
uscular disorders [19], in signal processing for speech emotion

ecognition [20], in internet of things specially for medicine
ith EEG signals [21], human activity recognition [22] and text
lassification [23], to mention some. The FS works by maximizing
he relevance of the features, but also the redundancy could
e minimized. In comparison to other methods, FS preserver
he data by not applying domain transformations; then, the FS
perates by including and excluding the attributes in the data-
et without any modification. The FS has three main advantages,
1) it improves the prediction performance, (2) it permits a better
nderstanding of the processes that fastly generate the data, and
3) it has more effective predictors with lower computational
ost [24]. According to Pinheiro et al. [25], they exist two kinds
f FS method, namely the wrapper and filter methods. The most
opular approaches are the wrapper-based because they provide
ore accurate results [26]. The wrapper FS method needs an

nternal classifier to find a better subset of features; this could
ffect their performance, especially with large data-sets. More-
ver, they also have backward and forward strategies to add or
emove features that become non-suitable for a larger amount of
eatures. Considering these drawbacks, meta-heuristic algorithms
MA) are used to increase the performance of FS processes.

MA have become more popular in recent years due to their
lexibility and adaptability [27]. MA can be used in a wide range
f applications, and FS is not an exception. Some classical ap-
roaches Genetic Algorithms (GA) [28], Particle Swarm Optimiza-
ion (PSO) [29] and Differential Evolution (DE) [30] have been
uccessfully used to solve the FS problem. More so, modern MA
lgorithms also have been applied for FS, such as Grasshopper Op-
imization Algorithm (GOA) [31], Competitive Swarm Optimizer
CSO) [32], Gravitational Search Algorithm (GSA) [33], and others.
ince FS can be seen as an optimization problem, there is not MA
ble to handle all the difficulties in FS. This last fact is defined
ccording to the No-Free-Lunch (NFL) theorem [34]; therefore, it
s necessary to continue exploring new alternative MA.

An interesting MA is the Cuckoo Search (CS) algorithm intro-
uced by Yang and Deb [35,36] as a global optimization method
nspired by the breeding behavior of Cuckoo birds (CB). CS is
population-based method that employs three basic rules that

imic the brood parasitism of the Cuckoo bird. In nature, the t

2

female CB lays the eggs in the nest of other species. Some CB
species can imitate the color of the eggs of the nest where they
will be laid. In the CS context, a set of host nest containing
eggs (candidate solutions) are randomly initialized, then only one
Cuckoo egg is generated in each generation using Lévy Flights.
After that, a random host nest is chosen, and its egg is evaluated
using a fitness function. The fitness value of the Cuckoo egg and
the one selected from a random host nest are compared, the
best egg is preserved in the host nest. A fraction of the worst
nest is abandoned in each generation, and the best solutions
are preserved [35]. The use of CS for several applications has
been increased in recent years [37,38]. The CS is an interesting
alternative for solving complex optimization problems. However,
the CS has the disadvantage that it can fall into sub-optimal
solutions [39]; this is caused due to inappropriate balance be-
tween exploration and exploitation phases. To overcome such
drawbacks, they have been introduced some modifications of the
standard CS.

Recently, an interesting approach called fractional-order
cuckoo search (FO-CS) is proposed to include the use of fractional
calculus to enhance the performance of the CS [40]. The FO-CS
possesses better convergence speed than the CS; besides, the bal-
ance between exploration and exploitation produced by the frac-
tional calculus permits more accurate solutions to complex op-
timization problems. Nevertheless, several other approaches can
be included with FO-CS for further performance enhancement.

This paper presents the use of heavy-tailed distributions in-
stead of Lévy flights in the FO-CS. This kind of distribution has
been used to enhance the mutation operator in evolutionary
algorithms and other MA [41,42]. Using the heavy-tailed distri-
butions, it is possible to escape from non-prominent regions of
the search space [41]. The distributions used in to enhance the
FO-CS are the Mittag-Leffler distribution (MLD) [43], the Pareto
distribution (PD) [44], the Cauchy distribution (CD) [45], and the

eibull distribution (WD) [46]. The FO-CS based on heavy-tailed
istributions is proposed as an alternative method for solving
eatures selection problems. In this context, the experimental
esults include different tests considering eighteen data-sets from
he UCI repository [47]. The comparisons included different MA
rom the state-of-the-art, where the proposed approach provides
etter results in terms of accuracy and convergence. Moreover,
he most important contribution of this work is the use of the
O-CS based on heavy-tailed distributions for FS over a COVID-
9 data-set. Over this experiment, the results obtained by the
roposed method permits to accurately identify three different
lasses, namely normal patients, COVID-19 infected patients, and
neumonia patients. Regarding the results of UCI and COVID-19
ata-sets, different statistical and metrics validate the good per-
ormance of the FO-CS based on heavy-tailed distributions, espe-
ially Weibull distribution. The main contribution of the current
tudy can be summarized as follows:

1. Provide an alternative COVID-19 X-ray image classification
method which aims to detect the COVID-19 patient from
normal and abnormal cases.

2. Extracting features from X-ray images then using a new
feature selection method to select the relevant features.

3. Develop feature selection method using a modified CS
based on the fractional concept and heavy-tailed distribu-
tions.

4. Evaluate the developed method using two data-set for real
COVID-19 X-ray images.

5. Compare the new developed FS method with other recently
implemented FS methods.

The rest of the paper is organized as follows. Section 2 presents

he related works. Section 3 introduces the basics of heavy-tailed
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istributions, CS, and FO-CS. Section 4 explains the proposed
odified FO-CS, in Section 5 presents the experimental results
nd comparisons. Finally, in Section 6, the conclusions and future
ork are discussed.

. Related works

In this section, we present a simple review of the existing
orks of COVID-19 medical image classification, the applications
f MA for feature selection, and the recent applications of the CS.
Recently, some studies have been presented to classify and

dentify COVID-19 from chest X-ray images using different tech-
iques. Pereira et al. [48] applied CNN to extract texture features
rom chest X-ray images. They applied resampling techniques
o balance the distribution of the classes to implement a multi-
lassification process. Ozturk et al. [8] applied a deep learning-
ased approach for determining COVID-19 for X-ray scan im-
ges. They used DarkNet model to classify images into binary
lassification and multi-classification. For binary classification,
mages were classified into COVID or no-findings. For the multi-
lassification, images were classified into three classes, COVID,
neumonia, and no-findings. Elaziz et al. [49] proposed a machine
earning-based model to classify COVID-19 X-ray images into two
lasses, COVID or non-COVID. They proposed a feature extraction
ethod called fractional multichannel exponent moments to ex-

ract features from X-ray scan images. Thereafter, they applied an
mproved Manta-Ray Foraging Optimization algorithm as a fea-
ure selection method to select the most relevant features. In [9],
he authors evaluated several convolutional neural network mod-
ls with different X-ray scan images that include, COVID-19,
ormal incidents and bacterial pneumonia. Ouchicha et al. [50]
roposed a deep learning-based approach for COVID-19 classifi-
ation, called CVDNet, which is built by using the residual neural
etwork. The evaluation outcomes showed that CVDNet could
chieve a high detection accuracy on a small dataset. In [51], the
uthors proposed a deep learning approach, namely COVIDX-Net
or COVID-19 diagnosis from chest x-ray scan images. COVIDX-
et depends on seven deep learning architectures. It was eval-
ated with 50 X-ray images, and it showed a good performance.
n [52], a new model called CoroNet is proposed for COVID-19 de-
ection from both of CT and X-ray images. Xception architecture
s used to build CoroNet, and ImageNet datasets are applied to
rain it. It showed an acceptable performance for several classes
ith an average accuracy of 89.6 Toraman et al. [53] presented a
onvolutional CapsNet model for COVID-19 detection from X-ray
mages. The proposed model was applied for binary classification
COVID-19, and None- COVID) and also for multi-class classifica-
ion. Furthermore, Jain et al. [54] applied a deep learning model
ased on ResNet-101 for COVID-19 X-ray image classification. The
roposed model achieved significant performance using several
erformance measures. Hassantabar et al. [55] applied deep neu-
al network (DNN) and convolutional neural network (CNN) to
etect infected lung tissue of COVID-19 patients form X-ray scans.
urthermore, there are different approaches for COVID-19 X-ray
mages classification, such as MobileNet v2 [7], DenseNet201 [6],
nd others [10–12]. In recent years, the modern MA have been
idely applied for FS. for example, in [56] it has been proposed
he use of the Grasshopper Optimization Algorithm (GOA) to
dentify the best subset of features, the use of Crow Search
lgorithm (CSA) with chaotic maps has also been proposed for
S using different benchmark data-sets [31]. Another interesting
ork includes the implementation of the Competitive Swarm
ptimizer (CSO) for FS [32]; the advantage of CSO is its capa-
ility to handle high-dimension optimization problems. In [33],
n evolutionary version of the Gravitational Search Algorithm
GSA) is introduced for FS, and the use of mutation and crossover
3

operators enhance the performance of the standard GSA. Besides
using the hybrid Particle Swarm Optimization (PSO) to extract
the optimal features of different benchmark data-sets. Too and
Mirjalili [57] proposed an FS approach based on a hyper learning
binary dragonfly algorithm. They applied the proposed approach
for different FS datasets, including the COVID-19 patient health
prediction dataset. All these approaches are novel, and their per-
formance is relevant. However, they have some disadvantages;
the first is that, like many other meta-heuristics, they can fail into
sub-optimal solutions; the second is related to their use only in
benchmark sets. Finally, since FS can be seen as an optimization
problem, there is not MA able to handle all the difficulties in
FS. This last fact is defined according to the No-Free-Lunch (NFL)
theorem [34]; therefore, it is necessary to continue exploring new
alternative MA.

The cuckoo search (CS) is one of the algorithms that have
been applied for several applications has been increased in recent
years [37,38]. The CS is an interesting alternative for solving
complex optimization problems. However, the CS has the disad-
vantage that it can fall into sub-optimal solutions [39]; this is
caused due to inappropriate balance between exploration and ex-
ploitation phases. To overcome such drawbacks, they have been
introduced some modifications of the standard CS. For example,
in [58], the authors proposed the hybridization of CS with the
Chaotic Flower Pollination algorithm (CFPA) for maximizing area
coverage in Wireless Sensor Networks. The Reinforced Cuckoo
Search Algorithm (RCSA) is presented by Thirugnanasambandam
et al. [59] for multi-modal optimization, the RCSA contains three
operators called modified selection strategy, Patron-Prophet con-
cept, and self-adaptive strategy. An enhanced version of the CS
that includes the quasi-opposition based learning and other two
strategies is introduced in [60] for the parameter estimation of
photovoltaic models. Another recent approach of fractional-order
cuckoo search (FO-CS) including the use of fractional calculus was
proposed for identifying the unknown parameters of the chaotic,
hyper-chaotic fractional-order financial systems [40]. The pro-
posed FO-CS exposed its efficiency in solving set of known math-
ematical benchmarks as well with a remarkable convergence
speed in comparison with the basic CS.

3. Background

In this section, the essential knowledge about the features
extraction and feature selection approaches from images are ex-
plained in detail. Moreover, we introduce an overall background
about the integrated parts in the novel optimizer variants that
are the heavy-tailed distributions and the novel fractional-order
cuckoo search optimizer (FO-CS) as described below:

3.1. Image features extraction techniques

In this study, the image features are extracted using the
following techniques, the Fractional Zernike Moments (FrZMs),
Wavelet Transform (WT), Gabor Wavelet Transform (GW), and
Gray Level Co-Occurrence Matrix (GLCM). Brief descriptions of
these techniques are listed below.

3.1.1. Fractional Zernike Moments (FrZMs)
The FrZMs are used to extract gray images features as pre-

sented by [61]. This process is shown in Eq. (1) [62].

FrZMαn,m(f ) =

∫ 1

0

∫ 2π

0
FrRαn,m(r)g(r, θ )e−jmθ rdθdr (1)

here α denotes the fractional parameter, α ∈ R+. g(r, θ ) is a
ray image. FrR (r) denotes the real valued radial polynomial
αn,m
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s, and it is calculated by Eq. (2). n and m define the order which
m| ≤ n and n − |m| be even, j2 = −1.

FrRαn,m(r)

=
n + 1
π

{
0 r = 0

√
α

∑(n−|m|)/2
k=0

(−1)k(n−k)!
k!((n+|m|)/2−k)!((n−|m|)/2−k)! r

α(n−2k+1)−1 0 < r ≤ 1

(2)

The calculation of FrZMs need a linear mapping transformation
of image coordinates system to a proper space inside a unit circle
because they are determined in polar coordinates (r, θ ) where
|r| ≤ 1 [63]. This step is calculated by Eq. (3)

rx,y =

√
(c1x + c2)2 + (c1y + c2)2 (3)

θx,y = tan−1(
c1y + c2
c1x + c2

) (4)

where c1 =
√
2/(N − 1), c2 = −1/

√
2. N defines the pixels

umber in the image.

.1.2. Wavelet Transform (WT)
The WT is a method used for signal analysis and feature

xtraction [64]. It breaks up a signal into scaled and shifted
ersions of the mother wavelet. It is represented by the sum of
he signal multiplied by the shifted and scaled versions of the
avelet function (ψ). The continuous WT (CWT) of a signal x(t)

can be computed as:

CWT (a, b) =

∫
R
x(t)ψa,b(t)dt , (5)

ψa,b(t) =
1

√
a
ψ(

t − b
a

) (6)

here ψ denotes the mother wavelet. a and b ∈ R and represent
he shifted and scaled parameters, respectively. a is not equal to
ero.

.1.3. Gabor Wavelet Transform (GW)
The GW is a popular technique used filters for extracting

mage features [65]. It is calculated by Eq. (7).

µ,ν(z) =
∥k(µ,ν)∥2

σ 2 e∥k(µ,ν)∥2∥z∥2/2σ2
[eik(µ,ν)z − e−σ2/2

] (7)

where µ and ν represent the kernels’ orientation and scale. k(µ,ν)
denotes the Gabor vector as in Eq. (8).

k(µ,ν) = kνeiφµ (8)

where, kν equals kmax/f ν . kmax represents the max frequency. f
epresents the spacing factor among kernels in the frequency
pace. φ equals πµ/8.

.1.4. Gray Level Co-Occurrence Matrix (GLCM)
The GLCM technique is a statistical technique which applied

o extract the texture features from an image [66].
The GLCM uses five equations to perform its task as follow:

• The contrast (con) equation represents the amount of local
variations in an image Iij. Eq. (9) calculates this equation.

con =
1

(L − 1)2

L−1∑
i=0

L−1∑
j=0

|i − j|2pij (9)

• The correlation (corr) equation represents the relationship
among the image pixels. Eq. (10) calculates this equation.

corr =
1
2

L−1∑
i=0

L−1∑
j=0

(i − µi)(j − µj)
σ 2
i σ

2
j

pij + 1 (10)
4

• The energy equation represents the textural uniformity.
Eq. (11) calculates this equation.

energy =

L−1∑
i=0

L−1∑
j=0

p2ij (11)

• The entropy equation defines the intensity distribution ran-
domness. Eq. (12) calculates this equation.

entropy =
1

2log(N)

L−1∑
i=0

L−1∑
j=0

pijlog2pij (12)

• The homogeneity (hg) equation defines the distribution
closeness. Eq. (13) calculates this equation.

hg =

L−1∑
i=0

L−1∑
j=0

pij
1 + |i − j|

(13)

where L defines the gray levels in the image. pij is the
number of transitions between i and j.

3.2. Heavy-tailed distributions overview

Random walking has an important effect on the efficiency and
quality of the MA. The Lévy flight distribution may consider the
most popular random walk whereby the jump-lengths have a
heavy-tailed probability distribution. That is why the Lévy flight
distribution is employed in MA to be a more effective source for
the random walk than the Gaussian distribution.

For the heavy-tailed distributions, there are several types of
distributions, such as Mittag-Leffler distribution, Cauchy distribu-
tion, Pareto distribution, and Weibull distribution can be applied
to the MA to emulate the random walk in the algorithms. In this
section, we present the details and the mathematical formulas of
those heavy-tied distributions and their charts as follows;

• Mittag-Leffler distribution (MLD) [43]: a random variable has
been followed the MLD distribution that its distribution can
be defined via the following function;

MLD(U) =

∞∑
k=1

(−1)k−1Ukδ

Γ (1 + kδ)
,

τ = −γ lnw
(

sin(δπ )
tan(δπv)

− cos(δπ )
) 1
δ

.

(14)

where MLD distribution is a heavy-tailed when the U > 0
and δ ∈ [0 1]. The symbols γ and δ are the scale and
shape parameters, and they take the value of 4.5, and 0.8, re-
spectively. The symbols of w and v denote uniform random
numbers. The τ is a Mittag-Leffler random number.

• Pareto distribution (PD) [44]: a random variable has been
followed the Pareto distribution if it has the following tail
pattern as below:

PD(U) =

{
1 −

( b
U

)a
, U ≥ b

0, U < b
(15)

where a and b are the scale and shape parameters and have
values of 1.5 and 4.5, respectively.

• Cauchy distribution (CD) [45]: a random variable has been
followed the Cauchy distribution if it has the following tail
formula as below:

CD(U) =
1
π

arctan
(
2 (U − µ)

β

)
+

1
2

(16)

where β and µ are the scale and location parameters, and
they have values of 4.5 and 0.8, respectively.
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Fig. 1. Heavy-tailed distributions for (a) Lévy distribution, (b) Mittag-Leffler, (c) Pareto distribution, (d) Cauchy distribution, and (e) Weibull distribution.
Fig. 2. The structure of FO-CS FS COVID-19 detection/classification approach.
• Weibull distribution (WD) [46]: a random variable has been
shown to follow the Weibull distribution if it has the follow-
ing tail formula as below:

WD(U) = exp
(
U
k

)ζ
(17)

where k and ζ are the scale and shape parameters. The
Weibull Distribution is a heavy-tied when ζ has values less
than 1. Therefore in the current work, the tuned values of k,
and ζ are 4 and 0.3, respectively.
5

The charts for the jump-length of the proposed distributions
with a scaling factor of 0.01 against the number of functions
evaluation are plotted in Fig. 1. By inspecting the figures, once can
detect that (I) the Lévy and Cauchy distributions are two-sided
distributions where the random numbers have positive and neg-
ative values. (II) Mittag-Leffler, Pareto, and Weibull distributions
are one-side distributions as the random numbers have posi-
tive values. (III) All the distributions expose long jumps (steps)
frequently with different step values.
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.3. Cuckoo search

The cuckoo search (CS) has been innovated by Yang et al. [36]
nspiriting from the natural behavior of cuckoo breeding para-
itism. In [36], authors modeled that behavior mathematically
ia three hypotheses mainly (I) each cuckoo lays one egg at a
ime, and (II) cuckoo puts egg in a nest that chosen randomly, and
he fittest is retained for the next generation (III) the available
ost nests number is bounded, and a host cuckoo can detect a
tranger egg with a probability Ps ∈ [0 1]. These behaviors can
e formulated mathematically using Levy fights. For each cuckoo

i, a new solution U (t+1) is obtained based on Levy flight as in
Eq. (18).

U t+1
i = U t

i + σ Levy(s, λ),
where

Levy(s, λ) =
λΓ (λ) × sin( πλ2 )

π

1
s(1+λ)

(18)

here σ > 0 is the step size, as per the literature, it is tuned as
. Levy flight is a random walk, and its jumps are computed from
Levy distribution.
For the local random walk, the solution will be updated using

he following equation;
t+1
i = U t

i + σ s
⨂

H(Ps − ϵ)
⨂

(Uj − Uk), (19)

here the product
⨂

denotes entry-wise multiplications. Where
j and Uk are two randomly selected solutions. The H is a Heavi-

side function, s is the step size, and ϵ is a random number drawn
rom a uniform distribution. Yang et al. [36] utilized a switching
robability Ps to transmit amongst the local and global random
alk and assumed its values as 0.25 to achieve a balance in the
ransmission stage.

.4. Fractional-order cuckoo search

Recently Yousri et al. [40] proposed a novel variant for CS
lgorithm to improve the global cuckoo walk of Eq. (18) via ac-
ounting the memory prospective of cuckoo during motion based
n fractional-calculus (FC) method. In the FO-CS, four previous
erms from memory are saved for each cuckoo during its motion,
nd that memory has been modified based on the first input first
utput concept. Moreover, the switching probability Ps has been
omputed based on Beta function and FC parameters as follow:

• The enhanced global random walk of cuckoo based on the
previous four terms from memory (m = 4) is updated as
follow;

U t+1
i =

1
1!
σU t

i +
1
2!
σ (1 − σ )U t−1

i +
1
3!
σ (1 − σ )(2 − σ )U t−2

i

+
1
4!
σ (1 − σ )(2 − σ )(3 − σ )U t−3

i + αLevy(s, λ),

(20)

where σ refers to the derivative order coefficient [40]. The
authors strongly believe that with increasing the memory
terms, the execution time has been increased; therefore, in
the current study, the number of terms is selected as m = 4
to maintain an acceptable execution time.

• In the FO-CS, the switching probability Ps has generated
using the B distribution. The B function is calculated for σ
from 0.1 to 1 with step 0.1 and number of memory terms
(m = 4) using Eq. (21b).

Z = B((σ ), r), (21a)
vec s

6

Ps(l) =
(Z − min(Z)) ∗ (d − c)
(max(Z) − min(Z))

+ c (21b)

where B refers to the beta function with inputs of the
derivative order vector (σvec) that is varied from 0.1 to 1
with step 0.1 and memory terms is m = 4. The generated
distribution Z has minimum and maximum values min(Z)
and max(Z). The normalization interval ranges are c = 0.2
and d = 0.3. The l = 1, 2, 3, . . . , 10 denotes the index of the
derivative order. The recommended value of the derivative
order is 0.3 therefore the index l is 3 [40].

. Proposed methodology

The structure of the proposed COVID-19 classification ap-
roach is given in Fig. 2, and the following steps summarized
his structure. In general, the proposed COVID-19 classification
ethod consists of two stages. The first stage is to extract the

eatures using a set of methods, as discussed in Section 3.1. The
econd stage is to select the relevant features from those ex-
racted features. To achieve this task, a modified FO-CS based on
eavy-tailed distributions is implemented as a feature selection
ethod. Where combining among the heavy-tailed distributions
nd FO-CS in place of the lévy flight distribution, open the door
or new four variants of the FO-CS algorithm that can be viewed
s FO-CSML, FO-CSP , FO-CSP , FO-CSC , and FO-CSW . For the first
ariant FO-CSML, the Mittag-Leffler used in place of lévy flight.
or the FO-CSP , FO-CSP , FO-CSC , and FO-CSW variants, the Pareto,
auchy, and Weibull distributions, respectively, merged with FO-
S in place of lévy flight. Sequentially, the mathematical equation
f Eq. (20) can be rewritten as follows for the four variants:

In case of FO − CSML :

U t+1
i =

1
1!
σU t

i +
1
2!
σ (1 − σ )U t−1

i +
1
3!
σ (1 − σ )(2 − σ )U t−2

i

+
1
4!
σ (1 − σ )(2 − σ )(3 − σ )U t−3

i + αMLD(γ , δ),

(22)
In case of Fo − CSP :

U t+1
i =

1
1!
σU t

i +
1
2!
σ (1 − σ )U t−1

i +
1
3!
σ (1 − σ )(2 − σ )U t−2

i

+
1
4!
σ (1 − σ )(2 − σ )(3 − σ )U t−3

i + αPD(a, b),

(23)
In case of Fo − CSC :

U t+1
i =

1
1!
σU t

i +
1
2!
σ (1 − σ )U t−1

i +
1
3!
σ (1 − σ )(2 − σ )U t−2

i

+
1
4!
σ (1 − σ )(2 − σ )(3 − σ )U t−3

i + αCD(β,µ),

(24)
In case of Fo − CSW :

U t+1
i =

1
1!
σU t

i +
1
2!
σ (1 − σ )U t−1

i +
1
3!
σ (1 − σ )(2 − σ )U t−2

i

+
1
4!
σ (1 − σ )(2 − σ )(3 − σ )U t−3

i + αWD(k, ζ ),

(25)

The details of the stages of the proposed method are given as
resented below:

.1. Stage 1: Extract features

In this stage, the X-ray COVID-19 images are used as input
o our methods. Then, for each image in the current data-set, a
et of features are extracted using Fractional Zernike moments,
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avelet, Gabor Wavelet, and GLCM, as discussed in Section 3.1.
ll of these features are collected in one matrix, where each
ow represents the extracted features from its corresponding
OVID-19 image. This matrix of extracted features is used as an
nput to the second stage (i.e., to the developed FO-CS method)
o determine the irrelevant features that are removed and the
elevant features that are kept.

.2. Stage 2: Features selection

This stage is considered the main core of the proposed COVID-
9 detection using X-ray images. Since it aims to normal and
bnormal images first, then determines COVID-19 patients from
bnormal images. This aim is achieved by using the following
teps:

.2.1. Step 1: Construct initial population
The developed feature selection FO-CS method begins by di-

iding the data-set (features from the first stage) into training
nd testing sets, which represent 80% and 20% from the data-
et, respectively. Then constructing a population of N real-valued
olutions generated from a uniform random number. This step is
ormulated as:

i,j = LBj + r1 × (UBj − LBj), j = 1, 2, . . . ,D, i = 1, 2, . . . ,N (26)

n the above equation, the LBj and UBj denote the lower and upper
oundaries of search space at dimension j, and r1 is a random
umber drawn from uniform distribution in the interval of [0 1].

.2.2. Step 2: updating solutions
In this step, the solutions starting their updating by computing

he fitness value of each of them. Since the FS problem is a
iscrete problem, so we convert the real-value of each solution
o binary to deal with this type of problem. This process is
ormulated using the following equation.

Uij =

{
1 if Uij > 0.5
0 otherwise (27)

hen features that corresponding 1’s in BU are selected, and
he other features are removed. Followed by using Eq. (28) to
valuate the performance of those selected features.

iti = λ× ηi + (1 − λ) × (
|BUi|

Dim
) (28)

Fiti represents the fitness value of the ith solution. ηi denotes
the error of classification using the KNN classifier. |BUi| is the
number of selected features (i.e., the number of features which
corresponding to ones in BUi). λ ∈ [0, 1] denotes a uniform
random number used to make a balance between two parts of
the fitness value.

The next process is that the solutions U will be updated using
the operators of the FO-CS algorithm and one of the heavy tail
distributions. This performed by generating a step size in basis
of the utilized distribution (i.e., Mittag Leffler Eq. (22), or Pareto
Eq. (23), or Cauchy Eq. (24), or Weibull Eq. (25), or Levy flight
Eq. (20)), respectively to update the current solution. Then using
Eq. (21b) to compute the switching probability Ps and applied to
discover the solution that will be replaced by new ones. Before
starting a new iteration, the memory window can be updated
using first in first out approach, as depicted in Algorithm 1.

4.2.3. Step 3: Terminal conditions of training
The main target of this step is to check whether the second

step will be conducted again or not. This is achieved by checking
if the terminal conditions are reached or not. In the case they are
not reached, then step 2 (i.e., updating solution) is repeated again;
otherwise, it will return by best solution U .
b

7

4.2.4. Step 4: Evaluate best solution Ub
In this step, the testing set is used as input to KNN; how-

ever, their features that are corresponding to 0’s in Ub will be
removed. Then predict the target of the testing set and compute
the performance of this output using different metrics.

Algorithm 1 Pseudo-code of FO-CS algorithm
1: Set the population size N , maximum number of iterations T ,

the used distribution (Dis), derivative order coefficient β and
number of terms r .

2: Initialize the random population of n host nests Ui(i =

1, 2, . . . ,N).
3: Calculate the fitness values.
4: Initialize the past solutions (memory property) .
5: while (t < T (Stop criteria is not satisfied)) do
6: Get a cuckoo randomly.
7: if Dis is MLD then
8: Utilize the modified equation of motion Eq. (22) to update

the solutions.
9: else if Dis is PD then

10: Utilize the modified equation of motion Eq. (23) to update
the solutions.

1: else if Dis is CD then
2: Utilize the modified equation of motion Eq. (24) to update

the solutions.
3: else if Dis is WD then

14: Utilize the modified equation of motion Eq. (25) to update
the solutions.

5: else
16: Utilize the equation of motion Eq. (20) to update the

solutions.
7: end if

18: Update the past solutions (memory terms (r)) on FIFO bases
FIFO.

19: Compute the fitness function Fiti(i = 1, 2, . . . ,N).
20: Select a nest from n randomly and compute the fitness at

this index (index = j)
21: if Fiti < Fitj then
22: Replace Uj by the new one Ui
23: end if
24: Calculate Ps based on r = 4 and β = 0.3 via Eq. (21b).
25: Abandon a fraction Ps of worst nest and build new ones via

Eq. (19).
6: Retain the best solutions.

27: Sort the solutions and determine the current best.
28: t = t+1.
9: end while
0: Return the best solution

5. Simulation and results

To validate the performance of the developed COVID-19 detec-
tion method, a set of experimental series is performed. The main
aim of the first experimental series is to evaluate the performance
of the main core of our COVID-19 detection (i.e., FO-CS based
on heavy-tailed distributions), a set of eighteen UCI data-sets is
used. Meanwhile, the second experimental series aims to test
the applicability of the developed COVID-19 detection method
by using two real-world COVID-19 images which have different
characteristics.

5.1. Experimental Series 1: FS using UCI data-sets

In this experimental, eighteen well-regarded data-sets of UCI
[47] source are used. These data-sets specifications are listed in
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Table 1
Data-sets description [47].
Data-sets Number of features Number of instances Number of classes Data category

Breastcancer (DS1) 9 699 2 Biology
BreastEW (DS2) 30 569 2 Biology
CongressEW (DS3) 16 435 2 Politics
Exactly (DS4) 13 1000 2 Biology
Exactly2 (DS5) 13 1000 2 Biology
HeartEW (DS6) 13 270 2 Biology
IonosphereEW (DS7) 34 351 2 Electromagnetic
KrvskpEW (DS8) 36 3196 2 Game
Lymphography (DS9) 18 148 2 Biology
M-of-n (DS10) 13 1000 2 Biology
PenglungEW (DS11) 325 73 2 Biology
SonarEW (DS12) 60 208 2 Biology
SpectEW (DS13) 22 267 2 Biology
Tic-tac-toc (DS14) 9 958 2 Game
Vote (DS15) 16 300 2 Politics
WaveformEW (DS16) 40 5000 3 Physics
WineEW (DS17) 13 178 3 Chemistry
Zoo (DS18) 16 101 6 Artificial
Table 2
Accuracy results for the FO-CS variants along with the compared algorithms.
Data-set CS FO-CS FO-CSML FO-CSP FO-CSC FO-CSW HHO HGSO WOA SSA GWO GA

DS1 0.9633 0.9729 0.9774 0.9662 0.9695 0.9695 0.9643 0.9752 0.9476 0.9790 0.9567 0.9462
DS2 0.9476 0.9594 0.9912 0.9611 0.9629 0.9716 0.9731 0.9333 0.9433 0.9719 0.9415 0.9351
DS3 0.9651 0.9410 0.9877 0.9728 0.9567 0.9322 0.9640 0.9854 0.9448 0.9594 0.9157 0.9609
DS4 0.9893 0.9998 0.9923 0.9885 0.9915 0.9968 0.9720 0.9743 0.8960 0.9587 0.8987 0.8667
DS5 0.7403 0.7567 0.8050 0.7395 0.7737 0.7500 0.7450 0.7260 0.7703 0.7653 0.7900 0.7130
DS6 0.8911 0.8605 0.8802 0.9160 0.8198 0.8691 0.9062 0.8914 0.7988 0.8975 0.8272 0.8753
DS7 0.9793 0.8704 0.9394 0.9864 0.9343 0.9249 0.9268 0.9117 0.9174 0.9700 0.9380 0.9577
DS8 0.9370 0.9682 0.9679 0.9753 0.9692 0.9705 0.9725 0.9495 0.9507 0.9655 0.9577 0.9616
DS9 0.9351 0.9978 0.8767 0.9263 0.9667 0.9943 0.9133 0.9319 0.8821 0.9685 0.8756 0.8844
DS10 0.9970 1.0000 0.9993 0.9985 0.9965 0.9988 0.9947 0.9853 0.9497 0.9637 0.9627 0.9477
DS11 0.9133 0.9333 0.8733 0.9333 0.9333 0.9978 0.9556 1.0000 0.9686 1.0000 0.9822 0.8667
DS12 0.9473 0.9730 0.9008 0.9905 0.9833 0.9730 0.9571 0.9556 0.9825 0.9190 0.9381 0.9937
DS13 0.8919 0.8889 0.9580 0.9235 0.8401 0.8654 0.9308 0.9148 0.7593 0.8099 0.7716 0.8580
DS14 0.8389 0.8247 0.8194 0.8399 0.8408 0.8229 0.8177 0.8101 0.7809 0.7990 0.7819 0.8250
DS15 0.9056 0.9356 0.9317 0.9789 0.9744 0.9289 0.9667 0.9844 0.9622 0.9567 0.9700 0.9600
DS16 0.7246 0.7538 0.7464 0.7478 0.7444 0.7567 0.7287 0.7283 0.7283 0.7381 0.7186 0.75333
DS17 0.9741 1.0000 0.9991 1.0000 0.9954 1.0000 0.9981 0.9981 0.9759 1.0000 0.9833 0.9833
DS18 1.0000 0.9984 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9968 1.0000 0.9841 1.0000
Table 3
Selected features results for the FO-CS variants along with the compared algorithms.
Data-set CS FO-CS FO-CSML FO-CSP FO-CSC FO-CSW HHO HGSO WOA SSA GWO GA

DS1 1.87 3.47 3.43 2.37 3.60 3.00 1.80 3.40 2.40 3.27 2.60 4.80
DS2 7.97 12.47 12.67 15.33 11.90 6.30 8.60 9.33 5.67 15.73 8.47 20.87
DS3 4.50 7.50 4.73 7.80 7.53 4.20 2.73 2.73 3.87 8.47 5.07 10.67
DS4 7.00 6.87 7.13 7.37 7.23 7.07 6.73 8.07 8.60 8.27 6.53 9.40
DS5 6.73 2.97 2.03 7.43 2.83 2.10 3.50 5.67 4.33 8.20 3.40 9.40
DS6 7.17 5.53 8.40 8.07 6.90 2.97 3.80 4.20 4.53 6.87 6.27 10.87
DS7 13.43 15.57 17.77 19.90 16.70 5.40 9.47 8.93 8.47 19.07 8.80 28.07
DS8 20.83 21.33 21.43 21.03 22.27 21.80 19.07 17.80 19.00 22.93 20.67 28.87
DS9 10.23 11.60 11.23 10.63 9.50 10.63 8.60 7.13 4.07 9.93 8.00 14.00
DS10 7.17 7.07 7.40 7.03 7.40 7.37 7.47 8.27 9.40 8.73 8.60 9.20
DS11 103.67 168.63 167.13 184.17 159.20 11.73 37.20 77.73 40.53 185.33 106.80 267.27
DS12 38.53 36.87 36.07 40.13 36.10 33.43 24.80 25.93 30.93 35.33 24.47 50.00
DS13 11.57 5.37 14.97 13.13 11.63 1.77 8.33 7.67 3.73 12.60 6.53 16.93
DS14 6.00 6.00 5.80 5.93 5.90 5.97 5.93 4.67 5.40 5.87 5.27 6.33
DS15 7.17 6.63 7.27 7.30 6.90 2.40 4.87 5.20 1.87 6.93 4.20 11.07
DS16 24.73 26.37 24.93 25.57 25.77 16.70 18.53 19.87 22.00 26.80 19.73 34.20
DS17 6.80 5.73 6.70 7.27 7.27 4.07 6.20 5.27 6.27 6.60 5.47 9.47
DS18 5.80 6.10 5.50 5.77 6.10 2.50 2.60 6.20 8.07 6.87 8.27 9.00
Table 1. As noted from Table 1, the examined benchmark prob-
lems diverse from the small to the high dimension to evaluate the
efficiency of the proposed algorithm. In this study, the first stage
of the proposed classification COVID-19 X-ray images (i.e., feature
extraction) not used.
8

5.2. Comparative algorithms

We compared the improved FO-CS variants with several ex-
isting MA, including the original CS, Henry gas solubility op-
timization (HGSO) [67], Harris hawks optimization (HHO) [68],
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esults of the mean fitness values for the FO-CS variants along with the compared algorithms.
Data-set CS FO-CS FO-CSML FO-CSP FO-CSC FO-CSW HHO HGSO WOA SSA GWO GA

DS1 0.0537 0.0629 0.0585 0.0567 0.0674 0.0608 0.0712 0.0601 0.0738 0.0552 0.0679 0.1018
DS2 0.0647 0.0781 0.0501 0.0861 0.0731 0.0465 0.0636 0.0911 0.0699 0.0777 0.0809 0.1280
DS3 0.0595 0.1000 0.0406 0.0732 0.0860 0.0873 0.0364 0.0302 0.0738 0.0895 0.1075 0.1018
DS4 0.0601 0.0530 0.0618 0.0670 0.0633 0.0572 0.0607 0.0852 0.1598 0.1008 0.1415 0.1923
DS5 0.2855 0.2418 0.1834 0.2916 0.2178 0.2327 0.2155 0.2902 0.2170 0.2743 0.1998 0.3306
DS6 0.1351 0.1681 0.1724 0.1376 0.2153 0.1406 0.1555 0.1301 0.2160 0.1450 0.2038 0.1958
DS7 0.0581 0.1624 0.1068 0.0708 0.1083 0.0835 0.0415 0.1057 0.0993 0.0831 0.0817 0.1206
DS8 0.0815 0.0879 0.0884 0.0806 0.0896 0.0871 0.0739 0.0949 0.0971 0.0947 0.0955 0.1148
DS9 0.1152 0.0664 0.1734 0.1254 0.0828 0.0642 0.1058 0.1009 0.1287 0.0835 0.1564 0.1818
DS10 0.0578 0.0544 0.0575 0.0555 0.0601 0.0577 0.0540 0.0768 0.1176 0.0999 0.0998 0.1179
DS11 0.0919 0.1119 0.1654 0.1167 0.1090 0.0056 0.0121 0.0239 0.0408 0.0570 0.0489 0.2022
DS12 0.0757 0.0857 0.1494 0.0755 0.0752 0.0800 0.0690 0.0832 0.0673 0.1317 0.0965 0.0890
DS13 0.1254 0.1244 0.1058 0.1286 0.1968 0.1291 0.1584 0.1115 0.2336 0.2284 0.2353 0.2047
DS14 0.2117 0.2245 0.2269 0.2100 0.2088 0.2257 0.2360 0.2228 0.2572 0.2461 0.2548 0.2279
DS15 0.0623 0.0995 0.1069 0.0646 0.0661 0.0790 0.0390 0.0465 0.0457 0.0823 0.0533 0.1052
DS16 0.2909 0.2875 0.2905 0.2909 0.2945 0.2832 0.3662 0.2942 0.2996 0.3027 0.3026 0.3075
DS17 0.0531 0.0441 0.0524 0.0559 0.0601 0.0390 0.0429 0.0422 0.0699 0.0508 0.0571 0.0878
DS18 0.0363 0.0396 0.0344 0.0360 0.0381 0.0063 0.0371 0.0388 0.0533 0.0429 0.0660 0.0563
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Genetic Algorithm (GA) [69], Salp Swarm Algorithm (SSA) [70],
Whale optimization algorithm (WOA) [71], and Grey wolf op-
timizer (GWO) [72]. These algorithms are employed based on
their original implementation and parameter values. All the algo-
rithms have been implemented with a population size of 15 and
a number of iterations of 50 using Matlab R2018b working on
Windows 10, 64 bit. Computations were performed on a 2.5 GHz
CPU processor with 16 GB RAM.

5.3. Performance measures

In this paper, we employed several performance measures to
valuate the improved FO-CS variants as follows.

• Average of accuracy (Avgacc): It is applied to test the effi-
ciency of the algorithm for predicting target labels of each
class during a set of Nr runs:

Avgacc =
1
Nr

Nr∑
k=1

AcckBest , Acc
k
Best =

TP + TN
TP + FN + FP + TN

(29)

• Standard deviation (STD): It is applied to for calculating
dispersion between the accuracy value overall runs their
average values:

STD =

√ 1
Nr

Nr∑
k=1

(
AcckBest − Avgacc

)2 (30)

• Average of selected features (AVG|BXBest |): It is used to test the
ability of the algorithm for selecting the smallest relevant
features set during all runs as defined by the following
equation:

AVG|BXBest | =
1
Nr

Nr∑
k=1

⏐⏐BXk
Best

⏐⏐ (31)

where |.| represents the cardinality of BXk
Best at kth run.

• Average of fitness value (AVGFit ): It is employed to test the
performance of the algorithm in balancing between the ratio
of selecting features and the error:

AVGFit =
1
Nr

Nr∑
k=1

FitkBest (32)
9

5.3.1. Results and discussion
In this section, the results of the proposed fractional-order

cuckoo search algorithm using five types of distributions ap-
proaches are given; Levy distribution (FO-CS), Mittag-Leffler dis-
tribution (FO-CSML), Pareto distribution (FO-CSP ), Cauchy distri-
bution (FO-CSC ), and Weibull distribution (FO-CSW ). Table 2 de-
scribes the accuracy results of the proposed methods compared
to other competitor optimization methods.

It is apparent from Table 2 that the proposed FO-CSML and FO-
SP got almost the same response over the proposed methods;
ach method got five best results out of eighteen. They gave
etter results than the other proposed methods (i.e., FO-CS, FO-
SC , and FO-CSW ) in terms of the classification accuracy measure.
he proposed FO-CS and FO-CSW also show almost the same
erformance over the proposed methods; each method excelled
n three cases. They gave better results than only one of the other
roposed methods (i.e., FO-CSC ) according to used measure. The
onventional CS performed better than only one of the proposed
ethods (FO-CS) over all the data-sets utilized in this paper in

erms of the classification accuracy measure.
It is worthwhile to mention that the proposed FO-CSML and FO-

SP got better results in five out of eighteen compared to all other
omparative methods (i.e., HHO, HGSO, WOA, SSA, GWO, and
A). Meantime, SSA got the best results in four cases (i.e., DS1,
S11, DS17, and DS18) compared to all other methods. Gen-
rally, in terms of the accuracy measure, the proposed FO-CS
utperformed the other state-of-the-art methods using various
istribution approaches, mainly when used FO-CSML and FO-CSP .
Table 3 shows the number of selected features achieved by

the feature selection algorithms. From this Table, we can notice
that the proposed FO-CSW made the smallest number of features
selected in seven data-sets (DS6, DS7, DS11, DS13, DS16, DS17,
and DS18). In comparison with the proposed FO-CS methods,
the FO-CSW got the smallest optimal number of the selected
features according to the results of the proposed FO-CS with
the used distribution approaches, followed by FO-CSML. As well,
in comparison with all tested methods, most of the best cases
(in terms of the best number of selected features) have been
accomplished by the FO-CSW . WOA achieved the smallest number
of selected features in three data-sets. FO-CSW BDA gave a better
performance than other methods on most of the used data-
sets according to the number of selected feature measures. The
high-performance of the FO-CS with Weibull distribution (FO-
CSW ) enhances its capability in reducing the number of selected
features.

Table 4 summarizes the mean fitness function values obtained

by the proposed algorithms. According to this measure, we can
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able 5
TD results of the fitness values for the FO-CS variants along with the compared algorithms.
Data-set CS FO-CS FO-CSML FO-CSP FO-CSC FO-CSW HHO HGSO WOA SSA GWO GA

DS1 0.0024 0.0046 0.0055 0.0043 0.0062 0.0038 0.0059 0.0018 0.0113 0.0053 0.0061 0.0120
DS2 0.0097 0.0109 0.0100 0.0078 0.0107 0.0058 0.0087 0.0058 0.0115 0.0081 0.0114 0.0067
DS3 0.0125 0.0099 0.0179 0.0104 0.0128 0.0073 0.0064 0.0019 0.0153 0.0087 0.0196 0.0119
DS4 0.0157 0.0048 0.0202 0.0193 0.0204 0.0110 0.0211 0.0330 0.0963 0.0418 0.0810 0.0823
DS5 0.0131 0.0172 0.0014 0.0135 0.0095 0.0000 0.0022 0.0417 0.0262 0.0164 0.0049 0.0164
DS6 0.0101 0.0196 0.0093 0.0112 0.0248 0.0026 0.0175 0.0182 0.0225 0.0240 0.0319 0.0105
DS7 0.0115 0.0243 0.0136 0.0087 0.0146 0.0096 0.0128 0.0165 0.0177 0.0174 0.0094 0.0091
DS8 0.0059 0.0066 0.0060 0.0073 0.0053 0.0069 0.0104 0.0079 0.0150 0.0092 0.0141 0.0106
DS9 0.0220 0.0110 0.0207 0.0209 0.0253 0.0132 0.0256 0.0134 0.0597 0.0132 0.0255 0.0271
DS10 0.0090 0.0040 0.0053 0.0078 0.0100 0.0085 0.0148 0.0236 0.0410 0.0384 0.0416 0.0425
DS11 0.0149 0.0027 0.0160 0.0041 0.0017 0.0115 0.0044 0.0116 0.0314 0.0025 0.0266 0.0023
DS12 0.0104 0.0116 0.0175 0.0109 0.0093 0.0139 0.0213 0.0170 0.0128 0.0168 0.0202 0.0106
DS13 0.0118 0.0122 0.0166 0.0101 0.0109 0.0158 0.0213 0.0152 0.0072 0.0158 0.0177 0.0119
DS14 0.0068 0.0062 0.0018 0.0061 0.0120 0.0078 0.0085 0.0093 0.0180 0.0188 0.0177 0.0231
DS15 0.0070 0.0141 0.0164 0.0089 0.0160 0.0029 0.0050 0.0053 0.0168 0.0173 0.0201 0.0232
DS16 0.0079 0.0079 0.0071 0.0096 0.0092 0.0089 0.0111 0.0103 0.0174 0.0102 0.0115 0.0085
DS17 0.0059 0.0078 0.0097 0.0067 0.0118 0.0073 0.0068 0.0097 0.0139 0.0091 0.0117 0.0161
DS18 0.0050 0.0198 0.0051 0.0042 0.0055 0.0000 0.0056 0.0035 0.0119 0.0052 0.0157 0.0075
Table 6
Min results of the fitness values for the FO-CS variants along with the compared algorithms.
Data-set CS FO-CS FO-CSML FO-CSP FO-CSC FO-CSW HHO HGSO WOA SSA GWO GA

DS1 0.0479 0.0590 0.0526 0.0479 0.0590 0.0590 0.0766 0.059 0.059 0.0462 0.0573 0.083
DS2 0.0470 0.0582 0.0267 0.0674 0.0516 0.0358 0.0561 0.0786 0.0491 0.0646 0.0607 0.1107
DS3 0.0313 0.0726 0.0166 0.0541 0.0519 0.0726 0.1056 0.0291 0.056 0.0769 0.0664 0.0769
DS4 0.0462 0.0462 0.0462 0.0462 0.0462 0.0462 0.093 0.0538 0.0462 0.0538 0.0462 0.0615
DS5 0.2455 0.2327 0.1832 0.2455 0.2147 0.2327 0.2327 0.2417 0.2102 0.2505 0.1967 0.3032
DS6 0.1128 0.1385 0.1308 0.1205 0.1808 0.1397 0.1487 0.1064 0.1731 0.1128 0.1628 0.1692
DS7 0.0303 0.0976 0.0733 0.0509 0.0713 0.0654 0.1025 0.0654 0.0742 0.0441 0.0674 0.1048
DS8 0.0683 0.0753 0.0725 0.0669 0.0781 0.0738 0.1004 0.0809 0.0660 0.0822 0.0683 0.1003
DS9 0.0800 0.0500 0.1289 0.0800 0.0111 0.0333 0.0967 0.0624 0.0471 0.0444 0.1065 0.1322
DS10 0.0462 0.0462 0.0462 0.0462 0.0462 0.0462 0.0782 0.0538 0.0615 0.0538 0.0538 0.0615
DS11 0.0640 0.1068 0.1132 0.1086 0.1046 0.0006 0.0652 0.0108 0.0031 0.0532 0.0203 0.1982
DS12 0.0500 0.0617 0.1126 0.0567 0.0500 0.0500 0.1112 0.0564 0.0481 0.1045 0.0648 0.075
DS13 0.1030 0.0970 0.0667 0.1045 0.1803 0.0939 0.1379 0.0894 0.2182 0.2045 0.1939 0.1773
DS14 0.2073 0.2214 0.2243 0.2073 0.2026 0.2214 0.2495 0.2179 0.2354 0.229 0.2307 0.212
DS15 0.0525 0.0788 0.0663 0.0400 0.0313 0.0700 0.0813 0.0375 0.0363 0.0525 0.0338 0.0625
DS16 0.2775 0.2688 0.2745 0.2677 0.2751 0.2649 0.3018 0.2758 0.273 0.2843 0.2847 0.2951
DS17 0.0385 0.0308 0.0385 0.0462 0.0308 0.0231 0.0462 0.0308 0.0462 0.0385 0.0385 0.0692
DS18 0.0250 0.0063 0.0250 0.0313 0.0250 0.0063 0.0063 0.0313 0.0375 0.0313 0.0438 0.0438
Table 7
Worst results of the fitness values for the FO-CS variants along with the compared algorithms.
Data-set CS FO-CS FO-CSML FO-CSP FO-CSC FO-CSW HHO HGSO WOA SSA GWO GA

DS1 0.0561 0.0766 0.0684 0.0655 0.0766 0.0766 0.0818 0.0637 0.0976 0.0637 0.0818 0.1228
DS2 0.0819 0.0986 0.0633 0.0995 0.0940 0.0561 0.0774 0.1023 0.0856 0.0882 0.1011 0.1365
DS3 0.0748 0.1183 0.0769 0.0955 0.1039 0.1056 0.0519 0.0332 0.1037 0.1080 0.1431 0.1330
DS4 0.0975 0.0660 0.1187 0.1322 0.1412 0.0930 0.1277 0.1547 0.2822 0.1727 0.2372 0.3096
DS5 0.3090 0.2852 0.1909 0.3130 0.2479 0.2327 0.2211 0.3334 0.3117 0.3000 0.2121 0.3559
DS6 0.1526 0.2026 0.1859 0.1603 0.2782 0.1487 0.1846 0.1577 0.2513 0.2026 0.2692 0.2090
DS7 0.0803 0.1924 0.1319 0.0871 0.1378 0.1025 0.0616 0.1299 0.1279 0.1057 0.0996 0.1389
DS8 0.0951 0.1004 0.1003 0.1003 0.1018 0.1004 0.0891 0.1051 0.1160 0.1089 0.1215 0.1340
DS9 0.1511 0.0967 0.2278 0.1456 0.1156 0.0967 0.1630 0.1198 0.2467 0.1022 0.2052 0.2278
DS10 0.0795 0.0615 0.0705 0.0750 0.0917 0.0782 0.1007 0.1219 0.1836 0.1868 0.1785 0.2106
DS11 0.1197 0.1182 0.1751 0.1274 0.1111 0.0652 0.0206 0.0542 0.0852 0.0618 0.0905 0.2065
DS12 0.0964 0.1062 0.1721 0.0948 0.0898 0.1112 0.1043 0.1110 0.0867 0.1621 0.1243 0.1081
DS13 0.1545 0.1379 0.1273 0.1470 0.2227 0.1379 0.1939 0.1439 0.2379 0.2591 0.2652 0.2227
DS14 0.2325 0.2495 0.2307 0.2290 0.2401 0.2495 0.2465 0.2418 0.2917 0.2964 0.2924 0.2793
DS15 0.0775 0.1338 0.1288 0.0825 0.0925 0.0813 0.0488 0.0550 0.0950 0.1100 0.0975 0.1438
DS16 0.3016 0.3074 0.3030 0.3071 0.3074 0.3018 0.2883 0.3152 0.3229 0.3157 0.3215 0.3215
DS17 0.0635 0.0538 0.0712 0.0692 0.0769 0.0462 0.0558 0.0538 0.0865 0.0692 0.0712 0.1192
DS18 0.0438 0.0866 0.0438 0.0438 0.0500 0.0063 0.0375 0.0438 0.0804 0.0500 0.0866 0.0688
i

reveal that the proposed FO-CSW is a superior method com-
pared to the other proposed methods that are based on using
the modified fractional-order cuckoo search algorithm with five
various distributions approaches. The proposed FO-CSW got the
est mean fitness values in four cases, and it is not worse than any
ther method on most of the use of data-sets. In comparison with
ll of the given methods in Table 4, FO-CSML also outperformed
he comparative methods in terms of the mean fitness function
10
except HGSO; they got an equal number of best-obtained results
(each method got the best results in two cases).

The standard deviation (STD) values of the proposed algo-
rithm’s fitness function are given in Table 5. From these results,
it can be seen that the proposed FO-CSW exceeded the other
proposed methods on most of the used data-sets. According to
the STD measure, FO-CSW achieved the best results in four cases
n terms of the STD measure. Moreover, FO-CS achieved better
W
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riedman test results for the first experiment.
Measure CS FO-CS FO-CSML FO-CSP FO-CSC FO-CSW HHO HGSO WOA SSA GWO GA

Fitness 4.47 6.11 5.94 5.42 6.67 4.06 4.33 5.56 8.11 7.61 8.72 11.00
Rank 3 7 6 4 8 1 2 5 10 9 11 12
Attributes 6.36 6.83 7.36 8.31 7.53 3.53 3.72 4.58 4.50 8.89 4.44 11.94
Rank 6 7 8 10 9 1 2 5 4 11 3 12
Accuracy 5.72 7.22 7.78 8.86 7.42 7.69 7.14 6.36 3.69 7.17 3.86 5.08
Rank 9 5 2 1 4 3 7 8 12 6 11 10
Fig. 3. Average of accuracy overall tested for each algorithm.
Fig. 4. Average of fitness value overall tested for each algorithm.
Fig. 5. Average of number of selected feature overall tested for each algorithm.
11
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Fig. 6. Minimum of fitness values by the recommended FO-CSW and the other FO-CS variants as well as the basic CS for (a) DS1, (b) DS2, (c) DS3, (d) DS4, (e) DS5,
(f) DS6, (g) DS7, (h) DS8, (i) DS9, (j) DS10, (k) DS11, and (l) DS12.
fitness function results with excellent STD values compared to
other comparative methods in the majority of data-sets. Com-
pared to all comparative methods in Table 5, HGSO got the best
cases in most data-sets, which means that HGSO is a powerful
competitor method in this research. Thus, the proposed FO-CSW
beets all the comparative methods according to the STD measure.
12
For the all feature selection algorithms, the minimum results
of the fitness function values are given in Table 6. The obtained
results proved that the proposed FO-CSW and FO-CSML are able
to get better results compared to other proposed methods. It got
the best results in six out of eighteen cases. However, FO-CSW
provides average of the best fitness value better than FO-CS
ML
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Fig. 7. Minimum of fitness values by the recommended FO-CSW and the other FO-CS variants as well as the basic CS for (a) DS13, (b) DS14, (c) DS15, (d) DS16, (e)
S17 and, (f) DS18.
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verall the tested datasets. The obtained high-performance by
he proposed FO-CSW algorithm demonstrates its capability to
equilibrium the exploration and exploitation during the optimiza-
tion process. As per the obtained-results, the performance of the
proposed FO-CSW algorithm is proven on the small-sized data-
ets and large-sized data-sets. The three data-sets (i.e., DS17, and
S16) are comparatively large, and the minimum fitness values
f the proposed FO-CSW is obviously less compared to all other

comparative methods.
According to the last evaluation measure (worst fitness func-

tion values), the proposed algorithms using the FO-CS with the
used distribution approaches, as shown in Table 7, got better
results than the other comparative methods relatively. The pro-
posed FO-CSW achieved better results in comparison with the
proposed algorithms as well as in comparison with other compar-
ative methods. It obtained high-performance results (worst mean
fitness values) in five out of eighteen experimented data-sets.

In general, the previous results showed that the best values
obtained by FO-CS variants equal to 60% of all measures namely,
they obtained the best values in 67% of the accuracy measure
in all datasets, 0.50% of the selected features, and 78% of the
standard deviation, also 56% of the fitness function values, the
minimum, and the worst values. These results indicate that the
variants of the proposed method can effectively compete with
other algorithms in selecting the most relevant features.

Besides, from the given results, it can be recognized that
the fractional-order calculus has increased the efficacy of the
proposed algorithms, especially with the Weibull distribution
approach in terms of fitness function values. The main reason
here is that the proposed FO-CSW has evaded from converging
owards the local area and improved its exploration functions
o address more complex cases. Hence, it can make an excellent
rade-off between the exploration and exploitation strategies.

Furthermore, Figs. 3–5 depict the results of the average of the

ccuracy, the fitness value, and the number of selected features,

13
respectively, for each algorithm overall the tested data-sets. These
figures provide extra evidence about the high performance of
the proposed FO-CS variants with heavy-tailed distributions as
feature selection approaches, which provide better results than
the other methods.

For further analysis of the results of FO-CS variants, as feature
selection approaches, the non-parametric Friedman test [73] is
used as in Table 8. From this table, it can be noticed that the
FO-CSP provides better results in terms of accuracy overall the
tested data-set. Whereas, in terms of the number of selected
features, FO-CSW allocates the first rank with a mean rank of
nearly 3.5, and it has the smallest mean rank in terms of fitness
value. Moreover, we can see that the FO-CSW obtained the first
rank in the fitness function and the smallest selected attributes
(in these measures, the smallest value is the best), whereas it
was ranked third in the accuracy measure (in this measures the
largest value is the best). Although the FO-CSW was ranked third,
the first and the second rank were for the other variants of
the proposed method (i.e., FO-CSP and FO-CSML); therefore, the
roposed method variants obtained the first five ranks compared
ith the other algorithms.
Generally, the proposed FO-CSW has a superior exploration

earch capability due to the used fractional-order calculus be-
ween the candidate solutions, which encourage its exploration
bilities over the search processes when it is needed and in
he following phase, it can efficiently converge on the neigh-
orhood of explored locations by using the Weibull distribution
pproach, chiefly, through the final iterations. Consequently, this
roposed method (FO-CSW ) has stabilized a balance between
he exploration and exploitation strategies, so its influence can
e recognized in the enhanced fitness results and the smallest
umber of selected features compared to all other comparative
ethods in this research.
As the acceleration convergence speed is the other aspect that

hould be discussed and evaluated for the recommended FO-
S variant, the convergence curves based on the optimal fitness
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Fig. 8. Average of fitness values by the recommended FO-CSW and the other FO-CS variants as well as the basic CS for (a) DS1, (b) DS2, (c) DS3, (d) DS4, (e) DS5,
(f) DS6, (g) DS7, (h) DS8, (i) DS9, (j) DS10, (k) DS11, and (l) DS12.
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function and the mean convergence curves for the basic CS and
FO-CS variants have been drawn for the eighteen datasets to
demonstrate the efficiency of the recommended FO-CSW as in
igs. 6, 7 and 8, 9, respectively. By inspecting the convergence
urves of the minimum fitness functions of Figs. 6–7, it can be
een that the CS suffers from stagnation in several functions in
 u

14
nearly 80% of the studied datasets. In contrast, the FO-CS variants
expose high qualified performance, especially FO-CSW , FO-CSML,
nd FO-CSC as they show successful performance for 6, 6 and 5
atasets, respectively. The average convergence curves across the
et of independent runs are drawn as in Figs. 8–9 for achieving
nbiased comparison. By inspecting the figures, it can be seen
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Fig. 9. Average of fitness values by the recommended FO-CSW and the other FO-CS variants as well as the basic CS for (a) DS13, (b) DS14, (c) DS15, (d) DS16, (e)
S17 and, (f) DS18.
able 9
S results of the FO-CS variants along with the compared algorithms in both COVID-19 data-sets.

Data-set1

CS FO-CS FO-CSML FO-CSP FO-CSC FO-CSW HHO HGSO WOA SSA GWO SGA

Accuracy

Best 0.7133 0.8067 0.8467 0.8333 0.8267 0.8400 0.7600 0.7867 0.8267 0.7933 0.7533 0.7667
Mean 0.6907 0.7613 0.8267 0.8133 0.8093 0.8267 0.7267 0.7653 0.7587 0.7680 0.7080 0.7373
STD 0.0167 0.0307 0.0249 0.0163 0.0130 0.0105 0.0267 0.0173 0.0417 0.0238 0.0272 0.0180
Worst 0.6667 0.7333 0.7933 0.7933 0.7933 0.8133 0.6933 0.7400 0.7200 0.7333 0.6800 0.7200

Fitness value

Mean 0.2814 0.0180 0.0159 0.0166 0.0187 0.0098 0.0328 0.0324 0.0388 0.2555 0.1374 0.3990
STD 0.0048 0.0027 0.0047 0.0028 0.0023 0.0023 0.0089 0.0060 0.0078 0.0072 0.0088 0.0058
Best 0.2747 0.0144 0.0118 0.0144 0.0175 0.0066 0.0219 0.0228 0.0281 0.2468 0.1285 0.3900
Worst 0.2878 0.0214 0.0227 0.0214 0.0228 0.0123 0.0455 0.0389 0.0491 0.2638 0.1521 0.4035
Attr 177.2 25.6 27.6 27.6 25.4 27.4 23.4 25.4 26.4 172.4 72.2 263.4

Data-set 2

Accuracy

Best 0.9895 0.9842 0.9895 0.9947 0.9737 1.0000 0.9789 0.9789 0.9526 0.9895 0.9579 0.9842
Mean 0.9779 0.9779 0.9874 0.9842 0.9705 0.9926 0.9632 0.9579 0.9337 0.9789 0.9347 0.9811
STD 0.0094 0.0069 0.0029 0.0064 0.0047 0.0060 0.0134 0.0144 0.0177 0.0064 0.0228 0.0047
Worst 0.9632 0.9684 0.9842 0.9789 0.9632 0.9842 0.9474 0.9421 0.9105 0.9737 0.9000 0.9737

Fitness value

Mean 0.2814 0.0180 0.0159 0.0166 0.0187 0.0098 0.0328 0.0324 0.0388 0.2555 0.1374 0.3990
STD 0.0048 0.0027 0.0047 0.0028 0.0023 0.0023 0.0089 0.0060 0.0078 0.0072 0.0088 0.0058
Best 0.2747 0.0144 0.0118 0.0144 0.0175 0.0066 0.0219 0.0228 0.0281 0.2468 0.1285 0.3900
Worst 0.2878 0.0214 0.0227 0.0214 0.0228 0.0123 0.0455 0.0389 0.0491 0.2638 0.1521 0.4035
Attr 123.8 23.2 24.4 24 21.8 22.8 26.6 25.2 22.6 112.2 68 178.4
from this convergence that, in most cases, the FO-CSW has faster
onvergence, for example, DS2, DS9, DS11, DS12, DS16, DS17,
nd DS18. However, FO-CSML provides better convergence at DS3,
S5, and DS13. Also, CS has the best convergence rate at DS1
nd DS7. From all these graphs, it can be observed that the high
ffect of Fractional-order and Heavy-tailed distributions on the
onvergence CS.

.4. Experimental series: FS using COVID-19 data-sets

In this section, the FO-CS variants are evaluated using two
eal-world COVID-19 images which have different characteristics.
15
5.4.1. Data-sets description
In this study, two data-sets are used to assess the perfor-

mance of the developed FO-CS as the COVID-19 X-ray classifi-
cation method. These data-sets are contained only two classes
(i.e., COVID and No-Findings), which are used for binary classifi-
cation, or they have three classes (i.e., COVID, No-Findings, Pneu-
monia) which used for multi-class classification. The description
of these data-sets are given in the following

1. Data-set 1: This is an X-ray image data-set which collects
from different two sources. The first source is the COVID-
19 X-ray images collected by Cohen JP [74]. This source
has 127 COVID-19 X-ray. The second source named Chest
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Fig. 10. Sample of COVID-19 X-ray from Data-set 1 [74].
Fig. 11. Sample of COVID-19 X-ray from Data-set 2 [75,76].
X-ray, which collected by Wang et al. [58]. This data-
set contains normal and pneumonia X-ray images. From
16
this source, 500 no-findings and 500 pneumonia are used.
Fig. 10 depicts sample from this data-set (Data-set 1).
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Fig. 12. Average of fitness values by the proposed FO-CS variants and other counterparts for (a) Data-set 1, and (b) Data-set 2.
2. Data-set 2: This data-set has 219 and 1341 for positive
and negative COVID-19 images, respectively. It is collected
collaboration between different teams such as Qatar Uni-
versity, University of Dhaka (Bangladesh), also collabora-
tors from Malaysia and Pakistan medical doctors [75]. In
addition, the Italian Society of Medical and Interventional
Radiology (SIRM) [76]. Fig. 11 shows sample of Data-set 2.

5.4.2. Results and discussion
In this section, the comparison results between the variants of

FO-CS and other algorithms are discussed. All of the algorithms
used the extracted features from algorithms introduced in Sec-
tion 5.1. In this section, the extracted features from the COVID-19
x-ray images are the input for the proposed approach that aimed
to reduce these features by removing the irrelevant ones. The
parameter settings for each algorithm are similar to the previous
experiments of the UCI data-set.

Table 9 shows the average of results in terms of accuracy,
fitness value, and the number of selected features. One can be
observed from this table that the FO-CSW algorithm provides
better results than other algorithms in terms of accuracy. In
general, it has the first rank according to the STD, and the worst
of accuracy. However, according to the Best value of the accuracy,
the FO-CSML has the higher. By analyzing the results of COVID-19
Data-set 1 in terms of fitness value, it has been observed that the
FO-CSC has better value according to the Mean and Best fitness
value. However, the GA and FO-CSW provide better results in
terms of STD and worst of fitness value, respectively.

According to the results of the algorithms using the second
COVID-19 data-set (i.e., Data-set 2), it can be observed that mean
and Best of the accuracy of FO-CSW is better than others. Also, in
the worst value of accuracy, FO-CSML and FO-CSW have the same
erformance, but FO-CSML is more stable in terms of accuracy.
n addition, the FO-CSW provides better performance in terms of
ean, Best, and Worst fitness value, but FO-CSC is more stable

han FO-CSW in terms of fitness value. From all of these results, it
an be noticed that the following observation, firstly, the variants
f FO-CS, in general, provide better results than other algorithms.
econdly, the heavy-tailed distribution has the largest effect on
O-CS, which has high accuracy and smaller fitness value than
evy flight distribution. Finally, using the content of FO leads
o improve the performance of CS and the conclusion from the
esults of FO-CS when compared with traditional CS algorithms
n real-world COVID-19 X-ray images.

Fig. 12(a) shows the average of the fitness value cross the
umber iterations. From this convergence curve, it can be ob-
erved that FO-CS and FO-CS are the most competitive FS
W C

17
algorithms applied to COVID-19 X-ray images, and they converge
faster than other algorithms, followed by FO-CSML and FO-CSP ,
respectively for the first data-set. The FO-CSW is the superior one
in the case of the second data-set.

From the previous results, we noticed that the proposed FO-
CS based on heavy-tailed distributions provide better results than
other algorithms for both UCI datasets and COVID-19 X-ray im-
ages. However, there are some limitations of these variants, such
as determine the optimal value of the parameters for heavy-tailed
distributions. In addition, determine the number of terms and
derivative order coefficient.

6. Conclusions

In this study, we present four variants of the recent fractional-
order cuckoo search optimization algorithm (FO-CS) using heavy-
tailed distributions instead of Lévy flights to classify the extracted
features from COVID-19 x-ray data-sets. The considered heavy-
tailed distributions included the Mittag-Leffler distribution, the
Pareto distribution, the Cauchy distribution, and the Weibull dis-
tribution. The application of these distributions can be used to
improve mutation operators of MA, and it can be used to escape
from non-prominent regions of the search space. For appraising
the performance of the proposed variants before applying to
the COVID-19 classification approach, we used eighteen data-sets
from the UCI repository, and we compared their results with
several well-regarded MA utilizing several statistical measures. At
this end, the FO-CS based on heavy-tailed distributions variants
have been employed for the COVID-19 classification optimization
task to classify the data-sets for normal patients, COVID-19 in-
fected patients, and Pneumonia patients. Two different data-sets
have been studied, and the FO-CS novel approaches have been
compared with numerous MA to evaluate the proposed approach
for classifying such of those important data-sets to introduce
a reliable and robust technique that helped in classifying the
COVID-19 data-sets efficiently and with high accuracy. The FO-CS
based on Weibull distribution showed its superiority compared
to the other proposed variants and recent well-regarded MA. In
future work, we will try to evaluate the proposed method in
different applications, such as parameters estimation and solving
various engineering problems.
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