Skip to main content
. 2020 Nov 13;68:131–148. doi: 10.1016/j.inffus.2020.11.005

Algorithm 2.

Proposed GSAF for PTM selection.

Step 1 Input: Training set Y1 and validation set Y2
Step 2 for k = 1: NPTM (k is the index of PTM)
for L=1:Lmax (L is the index of NLR)
Step 2.1 PTM Retrain
Import k-th PTM M0(k),
Use L2TFL via data Y1 and removing L layers,
Obtain M3(k,L),
Step 2.2 Feature Extraction
Generate features fM(k,L) from M3(k,L).
Step 2.3 Train OHNN
Initialize OHNN Bi(k,L),
Train OHNN Bi(k,L) using input as fM(k,L),
Obtain Bt(k,L),
Step 2.4 Obtain Indicator
Obtain performance indicator I(k,L) over validation set Y2
end
end
Step 3 Generate and sort the indicator vector I(k,L),
Step 4 Obtain the rank list RGSAF,
Step 5 Choose the top two best models (determine PTM and NLR):
M[RGSAF(1)] and M[RGSAF(2)]