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A B S T R A C T   

In this article, we develop a generator to suggest a generalization of the Gumbel type-II model known as 
generalized log-exponential transformation of Gumbel Type-II (GLET-GTII), which extends a more flexible model 
for modeling life data. Owing to basic transformation containing an extra parameter, every existing lifetime 
model can be made more flexible with suggested development. Some specific statistical attributes of the GLET- 
GTII are investigated, such as quantiles, uncertainty measures, survival function, moments, reliability, and 
hazard function etc. We describe two methods of parametric estimations of GLET-GTII discussed by using 
maximum likelihood estimators and Bayesian paradigm. The Monte Carlo simulation analysis shows that esti
mators are consistent. Two real life implementations are performed to scrutinize the suitability of our current 
strategy. These real life data is related to Infectious diseases (COVID-19). These applications identify that by 
using the current approach, our proposed model outperforms than other well known existing models available in 
the literature.   

Introduction 

Lifetime phenomenon modeling and interpretation is an important 
component of statistical research in a broad variety of scientific and 
technical fields. The study of lifetime data analysis has developed 
rapidly and expanded in terms of methodology, theory, and application 
fields. Continuous distributions of probabilities and other methods of 
generalization or transformation have been introduced in the frame
work of characterising real life events. Such generalizations derived 
either by incorporating one or more than one shape parameters, or by 
adjusting distribution’s functional form, improve model flexibility and 
model the phenomena more precisely. Extensive software innovations 
made less emphasis on computational details and thus simplified esti
mation methods. 

The below are popular and frequently referenced transformations 
presented during recent past in statistical studies for characterizing real 
life models. Marshal and Olkin [1] transform survival function by 
putting an additional parameter. Gupta et al. [2] introduced the expo
nentiated family of models by adding the extra shape parameter like an 
exponent to basic cdf. Beta-generated family by Eugene et al. [3] focused 

on Beta type-I and II models. On the other side, Kumaraswamy- 
generated family by Cordeiro and Castro [4] prefers the Kumar
aswamy model instead of the Beta model. Zografos and Balakrishnan [5] 
introduced a versatile gamma-G class of models focused on GG 
(Generalized Gamma) model. 

Here, our goal is to suggest a novel class of model that accommodates 
different kinds of hazard rates for suitable selection of shape parameter. 
The transformation of generalized logarithmic exponential is suggested 
on Gumbel type-II cdf, hereafter referred as Generalized log-exponential 
(GLE) transformation. The model, thus produced, is supposed to have 
both monotone and upside bathtub shaped hazard rates and based on 
the selection of parametric values. Let Y is a random variable (r.v.) with 
cdf and pdf (G(y), g(y) respectively) taken as baseline model. 

F(y) =
log
{

2 − e− ξ(G(y) )λ }

log{2 − e− ξ}
; λ > 0, (1)  

with 
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f (y) =
ξλe− ξ(G(y) )λ

g(y){G(y) }λ− 1

log{2 − e− ξ}(2 − e− ξ(G(y) )λ
)

; λ > 0. (2) 

Motivated from [6], who taken into account less flexible trans
formation. Whereas their approach allows only fixed modulation of 
shape of distributions, our approach is more versatile because it in
corporates additional shape parameter. To explain our perspective, we 
consider Gumbel type-II [7–11] as base model due to its simplicity and 
usability in life testing problem. Our proposed model known as gener
alized log-exponential transformation of Gumbel Type-II (GLET-GTII), 
which extends a more flexible model for modeling life data. 

Infectious diseases are disorders induced by organisms, like viruses, 
parasites, bacteria, fungi etc. A lot of species are living in and on our 
bodies. Normally, they are harmless, or some times they are helpful. In 
certain conditions, however, some organisms may cause illness. How
ever, under certain scenarios, some organisms may develop disease. 
Some infectious diseases can be transferred from one person to another. 
Some are disseminated by bugs or other animals. And one may have 
others by eating tainted water or food or being exposed to toxic or
ganisms. Intimations and symptoms change widely depending on mi
crobes resulting infection, but commonly involve fatigue and fever. 
Slight infections can lead to relax and home medication, while some life- 
threatening infections may require hospitalization. Certain infectious 
diseases, like measles, pneumonia and chickenpox, can be restrained 
using vaccinations. Regular and detailed hand-washing also succours 
protect you from certain infectious diseases. Only minor complications 
are present in most infectious diseases. But some infections, such as 
pneumonia, AIDS and meningitis can become life-threatening. Recently 
a new novel infectious disease which appeared in late 2019 named as the 
Covid-19 has widen to majority of southeast and East Asian countries, 
and resulted in a substantial number of deaths [12]. In December, first 
case of pneumonia,respiratory disease, with symptoms close to severe 
acute respiratory SARS 34-CoV, was confirmed in Wuhan City, China 
[13]. Fever, cough, shortness of breath and occasional water
y diarrhea are often symptoms of COVID-19 [14]. 17,238 cases of 

COVID-19 infection and 361 deaths in China were declared in February 
2020 [15]. Here we used daily deaths data because of COVID-19 for 
China (January 23rd to March 28th) and Europe (1st − 30th March). For 
these two data sets, we used over new proposed four parametric model 
known as GLET-GTII. Some specific statistical attributes of the GLET- 
GTII are investigated, like moments and associated measures, reli
ability function, cumulative hazard rate function, linear representation 
of model, measure of skewness, Quantile function, measure of kurtosis, 
moments generating function, non-central moments, central moments, 
mean, variance, factorial generating function, characteristic function, 
mean deviation and conditional moments are obtained and studied. 
Furthermore, measures of uncertainty containing entropy measures 
namely Reny, Mathai-Houbold Entropy, Tsallis, Verma, Kapur Entropy 
and ω-Entropy are obtained. In addition, model parameters are calcu
lated by employing maximum likelihood and the Bayesian framework. 
To study efficiency of GLET-GTII model a simulation study was carried 
out. Finally, using the deaths number data set because of COVID-19 for 
China and Europe to unveil adaptability of proposed distribution. The 
outcomes revealed that it might better fit than various known distri
butions. For both data sets, density, Log-likelihood and trace graphs are 
plotted. 

Proposed distribution and its properties 

For illustration, the pdf of GTII model with parameters γ,δis 

g(y|γ, δ ) = γδy− γ− 1exp{ − δy− γ} γ, δ, y > 0. (3)  

with cdf as 

G(y|γ, δ ) = exp{ − δy− γ}, γ, δ, y > 0. (4) 

Using transformation (GLE), suggested in Eq. (1), resulting distri
bution have pdf and cdf of the following form 

Fig. 1. Plots of f(y)of GLET-GTII at different parameteric values.  
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f (y|γ, δ, ξ, λ ) =
ξλγδy− γ− 1e− ξ(exp{− λδy− γ} )exp{ − δλy− γ}

log{2 − e− ξ}(2 − e− ξ(exp{− λδy− γ} ) )
; γ, δ, ξ, λ > 0.

(5)  

F(y|γ, δ, ξ, λ ) =
log
{

2 − e− ξ(exp{− λδy− γ} )
}

log{2 − e− ξ}
; γ, δ, ξ, λ > 0. (6) 

It is obvious that F(y|γ, δ, ξ, λ) differentiable and grows from 0 to ∞. 
Reliability Function 
The reliability function R(y|γ,δ,ξ, λ) of the GLET-GTII is defined by 

R
(

y|γ, δ, ξ, λ
)

= P
(

Y > y
)

= 1 −
log
{

2 − e− ξ(exp{− λδy− γ} )
}

log{2 − e− ξ}
. (7) 

Hazard rate function (hrf) 
The hrf h(y|γ, δ, ξ, λ) = f(y|γ, δ, ξ, λ)/[1 − F(y|γ, δ, ξ, λ)] is a particularly 

valuable tool for lifetime study and is given as 

h
(

y|γ, δ, ξ, λ
)

=
ξλγδy− γ− 1e− ξ(exp{− λδy− γ})exp{ − δλy− γ}

(2 − e− ξ(exp{− λδy− γ}) )[log{2 − e− ξ} − log{2 − e− ξ(exp{− λδy− γ}) }]
.

(8) 

The odd ratio is defined as 

ϒy(y|γ, δ, ξ, λ)=
Ry(y)
hy(y)

=

(
2− e− ξ(exp{− λδy− γ})

)[
log{2− e− ξ}− log

{
2− e− ξ(exp{− λδy− γ})

}]2

log{2− e− ξ}ξλγδy− γ− 1e− ξ(exp{− λδy− γ})exp{− δλy− γ}
.

(9) 

Cumulative hrf 
The cumulative hrf is defined as 

H(y) =
∫ y

0
h
(

t|γ, δ, ξ, λ
)

dt,

Therefore, 

H(y) = − log
{

log{2 − e− ξ} − log
{

2 − e− ξ(exp{− λδy− γ} )
}

log{2 − e− ξ}

}

. (10) 

Where Ry(y)and hy(y)is defined in Eqs. (7 − 8). Utilizing MATLAB, 
Mathematica, Maple, R and Minitab computing packages, Eqs. (1)–(10) 
are being evaluated readily. The sketches of Eq. (5), Eq. (6) and Eq. 
(8)are shown in Figs. 1 2 and 3 for different options of the parameters. 

Fig. 2. Graphs of S(y) of GLET-GTII at different values of parameters.  

Fig. 3. Plots of CDF of GLET-GTII at different values of parameters.  
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Fig. 1 shows influence of λon density of GLET-GTII and demonstrates 
flexibility of the pdf in Eq. (5)forms where low symmetry, modality, 
high tails and skewness can be evaluated directly. Such figures show the 
flexibility of the GLET-GTII model. Figs. 2 and 3 are plotted for the 
S(y)and CDF of the GLET-GTII. On the other hand, decreasing and up
side bathtub pattern of hrfs are noted in Fig. 4. It is also observed that for 
given value of γ,δ, ξand λ > 0,h()indicates the uni-modal behavior. 

Expansion for pdf 
Using geometric infinite sum of series for 1

(2− e− ξ(exp{− λδy− γ } ) )
=

∑∞
q=0

(− 1)q
2q+1 e− ξq(exp{− λδy− γ} ). The pdf responds to the following expansion 

f (y|γ, δ, ξ, λ)=
∑∞

q=0
(− 1)qξγδλy− γ− 1e− ξ(exp{− λδy− γ})exp{− δλy− γ}e− ξq(exp{− λδy− γ})

2q+1log{2− e− ξ}
,

(11)  

f (y|γ, δ, ξ, λ ) =
∑∞

q=0
( − 1)qξγλδy− γ− 1e− ξ(q+1)(exp{− λδy− γ} )exp{ − δλy− γ}

2q+1log{2 − e− ξ}
,

(12)  

and now using exponential series e− x =
∑∞

n=0( − 1)nxn

n! in Eq. (12) we 
have 

f (y|γ, δ, ξ, λ)=
∑∞

k,q,p=0
( − 1)k+q+pξk+p+1λγδy− γ− 1qkexp{ − (k+p+1)δλy− γ }

k!p!2q+1log{2 − e− ξ}
.

(13)  

Random number generator 

Let r.v. q̃U(0,1). Then Y is obtained as 

log
{

2 − e− ξ(exp{− δy− γ} )
}
= q[log{2 − e− ξ} ], (14)  

log
{

2 − e− ξ(exp{− λδy− γ} )
}
= log{2 − e− ξ}

q
,

e− ξ(exp{− λδy− γ} ) = 2 − {2 − e− ξ}
q
,

exp{ − λδy− γ} = −
1
ξ

log[2 − {2 − e− ξ}
q
],

Y = Q(δ, γ, ξ, λ),

=

⎛

⎜
⎝ −

1
δ

log
(

−
1
ξ

log[2 − {2 − e− ξ}
q
]

)1
λ

⎞

⎟
⎠

− 1
γ

̃GLET − GTII(γ, δ, ξ, λ).

(15) 

Fig. 4. Graphs of hrf of GLET-GTII for different values of parameter.  
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Particularly, by placing q = 0.25,0.50,0.75 in Eq. (15), Ist and 3rd 

quartile and median are attained. 
Significant measurements of kurtosis and skewness are ϕ4 = μ4/σ4 

and ϕ3 = μ3/σ3, respectively, in which fundamental κth moment repre

sents by μκ and standard deviation represents by σ. As moments of GLET- 
GTII model can not occur for some values of parameter, suitable in
dicators for quantile-based Skewness and Kurtosis are more appropriate. 
These indicators are more robust and do exists for distributions in the 

Fig. 5. Plots of skewness and kurtosis of GLET-GTII model.  

Fig. 6. graphs for Median of GLET-GTII model.  

Table 1 
Numerical values of descriptive measures.  

γ  δ  ξ  λ  μ′

1  μ′

2  μ′

3  μ′

4  Var C.V. SB  KM  

4 0.5 0.2 0.1 0.55998 0.36764 0.33854 31888.2 0.05407 41.5235 0.21837 1.40271 
4 0.5 0.3 0.5 0.82490 0.79528 1.07101 146747 0.11481 41.0760 0.21985 1.40681 
4 0.5 0.5 1.0 0.95479 1.05892 1.62699 251366 0.14730 40.1976 0.22174 1.41427 
4 0.5 0.7 2.0 1.10831 1.41826 2.49258 434625 0.18991 39.3201 0.22231 1.42059  

5 0.5 0.2 0.1 0.62253 0.42404 0.334708 0.36499 0.03649 30.6842 0.20018 1.37502 
5 1.0 0.3 0.5 0.97511 1.03837 1.27836 2.16801 0.08753 30.3398 0.20201 1.37923 
5 1.5 0.5 1.0 1.18923 1.53875 2.29114 4.67117 0.12449 29.6684 0.20456 1.38702 
5 2.0 0.7 2.0 1.41984 2.18552 3.85298 9.24075 0.169578 29.0031 0.20575 1.39382  

6 3.5 0.2 1.0 1.36045 1.96148 3.07591 5.54933 0.11066 24.4514 0.18799 1.35782 
6 3.5 0.3 1.5 1.44154 2.19945 3.64442 6.93488 0.12140 24.17 0.19226 1.36207 
6 3.5 0.5 2.0 1.48619 2.33203 3.96212 7.70249 0.12326 23.6234 0.19305 1.37001 
6 3.5 0.7 2.5 1.51871 2.42939 4.19528 8.25804 0.12291 23.0847 0.19465 1.37707  
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absence of moments. SB (Bowley’s Skewness) and KM (Moors’ Kurtosis) 
measures are specified as 

SB =
F− 1(6/8) + F− 1(2/8) − 2F− 1(4/8| )

F− 1(6/8) − F− 1(2/8)
, (16)  

KM =
F− 1(7/8) − F− 1(5/8) + F− 1(3/8) − F− 1(1/8)

F− 1(6/8) − F− 1(2/8)
. (17) 

When SB < 0 and SB > 0, then model is left and right skewed 
respectively and is symmetrical for SB = 0. Instead, a large KM indicates 
a heavy tail for the distribution and a mild tail for a low KM . 

Fig. 5 is plotted to analyze the influence of SB and KM in light of 
GLET-GTII model and as per parametric values. In Fig. 6, the behavior of 
median in relation of GLET-GTII model is sketched. 

Table 1 displays the numerical values of μ′

1,μ
′

2,μ
′

3,μ
′

4, Variance, C.V., 
KM|γ, δ, ξ, λ and SB|γ, δ, ξ, λ for GLET-GTII distribution. From Table 1, the 
considerable effects of γ, δ, ξand λare noted on abovementioned 
measures. 

Order statistics 

Order statistics (OS) exist in several fields of theory and functional 
statistics. Suppose Y(1)⩽Y(2)⩽…⩽Y(n) is OS of a random sample of n size 
from F(y). Then, for m = 1,2,…, n, probability density function of mth 

OS, Y(m) is given by 

f(m)(y|γ, δ,ξ, λ)=ΨF(y|γ,δ, ξ, λ)m− 1
{1 − F(y|γ, δ, ξ, λ)}n− mf (y|γ, δ,ξ, λ),

(18)  

where Ψ = n!
(m− 1)!(n− m)!

, where F(⋅) and f(⋅) are cdf and pdf of GLET-GTII, 
accordingly.Utilizing the specification of binomial expansion for 
term:{1 − F(y|b, η ) }n− m. Thus from Eq. (5), Eq. (6) and Eq. (18), 
probability density function of Y(m) as 

f(m)(y|γ, δ, ξ, λ ) = Ψ
∑n− m

f=0
( − 1)f

(
n − m

f

)

F(y|γ, δ, ξ, λ )m+f − 1f (y|γ, δ, ξ, λ ).

The cdf of Y(m) is 

F(m)(y|γ, δ, ξ, λ ) =
∑n

j=m

(
n
j

)

F(y|γ, δ, ξ, λ )j
{1 − F(y|γ, δ, ξ, λ ) }n− j

.

(19) 

In particular, cummulative density functions of Y(1) and Y(n) respec
tively, are given by 

F(n)(y) = (F(y) )n
, F(1)(y) = 1 − {1 − F(y) }n (20) 

Let Q*
(m)()is quantile function of Y(m) (for 0 < q < 1). Then, from Eq. 

(20)

Q*
(1)(q) = Q*

{
1 − [1 − q]1/n

}
, Q*

(n)(q) = Q*( q1/n),

where quantile function of Y is Q*(). For i.i.d. random values case, it is 
feasible to obtain sth ordinary moment expression of the order statistics 

for μ́ s < ∞. So, as Silva et al. [16], the μ́ s moment of mth order statistic 
Y(m) as  

where 

j(s) = s
∫∞

0 ys− 1{1 − F(y) }jdy. In particular, for the GLET-GTII distribu
tion, we obtain 

μ́
s

(m)=s

×
∑n

j=n− m+1

(
j− 1
n− m

)(
n
j

)

(− 1)j− n+m− 1
∫ ∞

0
ys− 1

[

1−
log
{

2− e− ξ(exp{− λδy− γ})
}

log{2− e− ξ}

]j

dy.

(22)  

Stochastic ordering (SO) 

The notion of SO for continuous positive random variables is a 
common and effective concept for calculating relative behavior. We 
must recall some basic meanings. Suppose that r.v. Y is greater than X 

(i) Stochastic order (S-O) Y⩾stX. if FY(y)⪰FX(y)∀y; (ii) hazard rate 
order (Hr-O) Y⩾hrX if hX(y)≽hY(y)∀y; (iii) likelihood ratio order (LHr-O) 
Y⪰lrX, if fX(y)fY (y) reduces in y. The below mentioned results are known (see 
[17]): 

Y⪰lrX⇒Y⪰hrX⇒Y⪰stX. (23) 

The GLET-GTII distributions are ordered with respect to the strongest 
“likelihood ratio” ordering as mentioned in the following theorem. 

Theorem 1. Let X̃GLET-GTII (γ, δ, ξ, λ1), and ỸGLET-GTII 
(γ, δ, ξ, λ2). If λ1⩽λ2, then Y⩾lrX (Y⩾hrX,Y⩾stX). 

Proof. Consider likelihood ratio (LHr) as 

fX(y)
fY(y)

=
λ1(e− δy− γ

)
λ1 − λ2

(
2ee− λ2 δy− γ ξ − 1

)

λ2(2ee− λ1 δy− γ ξ − 1)
, y > 0, (24)  

now differentiate Eq. (24) w.r.t y, we attain the expression given below 

d
dy

(
fX(y)
fY(y)

)

=
y− γ− 1γδλ1(e− δy− γ

)
λ1 − λ2

λ2

(
1 − 2ee− λ1 δy− γ ξ

)2

[
− λ1

(
2ee− λ2 δy− γ ξ − 1

){
1 + 2ee− λ1 δy− γ ξ

(
− 1 + ee− λ1 δy− γ ξ

)}

+ λ2

(
2ee− λ1 δy− γ ξ − 1

){
1 + 2ee− λ2 δy− γ ξ

(
− 1 + ee− λ2 δy− γ ξ

)} ]
,

(25)  

d
dy

[
fX(y)
fY(y)

]

⩽0.

Hence it demonstrates that Y⩾lrX, and according to Eq. (23), Y⩾hrX, 
and Y⩾stX are also hold. 

Moments, central moments and certain related measures 

For any statistical consideration, moments are profoundly signifi
cant, usually in applications. The special parameters that can be used to 
describe a homogeneous data set’s behaviour are called moments. 

(21)   
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Consequently, for GLET-GTII model, the μ́ s which is sth non-central 
moment is obtain as follows. If Y has probability density function in 
Eq. (5), we get 

μ́ s = E(Ys) =

∫∞

0

ysdF(y|γ, δ, ξ, λ ); s = 1, 2,… (26) 

The belowmentioned outcome gives μ́ s (sth non-central moment) of Y 
in G-F (gamma function) form. 

Theorem 2. For γ,δ, ξ,λ > 0, the μ́ s(y|γ, δ, ξ, λ ) of Y is translated as 

μ́ s(y|γ,δ,ξ,λ)=
∑∞

p,q,k=0
(− 1)p+q+k ξp+k+1λs/γδqk

p!k!2q+1log

(

2− e− ξ

)

[δ{p+k+1}]1−
s
γ

Γ(1− s/γ),

(27)  

where, usual G-F is Γ(). 

Proof. Consider 

μ́ s =

∫∞

0

ysdF(y|γ, δ, ξ, λ ).

By using the expansion form of pdf that given in Eq. (13) yields 

μ́ s(y|γ, δ, ξ, λ ) =
∑∞

p,q,k=0
( − 1)p+q+k ξp+k+1λγδqk

p!k!2q+1log{2 − e− ξ}

∫∞

0

ys− γ− 1exp{ − (p + k + 1)δλy− γ }dy.

(28) 

Allowing z = (p + k + 1)λy− γ using the result 
− γ(p + k + 1)λy− γ− 1dy = dz and after some algebraic manipulation we 
have 

μ́ s(y|γ, δ, ξ, λ ) =
∑∞

p,q,k=0
( − 1)p+q+k ξp+k+1λγδqk

p!k!2q+1log{2 − e− ξ}

∫∞

0

(
z

(p + k + 1)λ

)− s
γ exp( − δz)
(p + k + 1)

dz.

(29) 

Since, Γ(τ)=
∫∞

0

yτ− 1e− ydy, therefore the above integral provides the 

sth moment given by Eq. (27). 
In particular, the first four moments of Y are: 

μ́ 1 =
∑∞

p,q,k=0
( − 1)p+q+k ξp+k+1λ1/rδqk

p!k!2q+1log

⎛

⎝2 − e− ξ

⎞

⎠[δ{p + k + 1} ]1−
1
γ

Γ(1 − 1/γ),

(30)  

μ́ 2 =
∑∞

p,q,k=0
( − 1)p+q+k ξp+k+1λ2/rδqk

p!k!2q+1log

⎛

⎝2 − e− ξ

⎞

⎠[δ{p + k + 1} ]1−
2
γ

Γ(1 − 2/γ),

(31)  

μ́ 3 =
∑∞

p,q,k=0
( − 1)p+q+k ξp+k+1λ3/rδqk

p!k!2q+1log

⎛

⎝2 − e− ξ

⎞

⎠[δ{p + k + 1} ]1−
3
γ

Γ(1 − 3/γ),

(32)  

and 

μ́ 4 =
∑∞

p,q,k=0
( − 1)p+q+k ξp+k+1λ4/rδqk

p!k!2q+1log

⎛

⎝2 − e− ξ

⎞

⎠[δ{p + k + 1} ]1−
4
γ

Γ(1 − 4/γ).

(33)   

Proposition 1. Let Y be a random variable following the GLET-GTII 
distribution, then the central moments is  

where, Γ() is usual gamma function. 

μs(y|γ, δ, ξ, λ ) =
∫∞

0

(y − μ)sf (y)dy (35)  

Substituting by the Eq. (27) into Eq. (35) after certain simple cal
culations, we get 

μs(y|γ,δ,ξ,λ)=
∑s

t=0

∑∞

p,q,k=0

(
s

t

)

(− 1)p+q+k+t μtξp+k+1λs− t/rδqk

p!k!2q+1log

⎛

⎝2− e− ξ

⎞

⎠[δ{p+k+1}]1−
s− t

γ

Γ(1− (s− t)/γ).
(36)  

Remark 1. The variance of GLET-GTII model is obtained from Equa
tion (36) for s = 2. 

Moment generating function (mgf) 

The mgf of GLET-GTII distribution may be indicated as 

μs(y|γ, δ, ξ, λ ) =
∑s

t=0

∑∞

p,q,k=0

(
s

t

)

( − 1)p+q+k+t μtξp+k+1λs− t/rδqk

p!k!2q+1log

⎛

⎝2 − e− ξ

⎞

⎠[δ{p + k + 1} ]1−
s− t
γ

×Γ(1 − (s − t)/γ ) ,

(34)   
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M(y|γ, δ, ξ, λ)=
∑∞

s=0

ts

s!
μ́ s(y|γ, δ, ξ, λ),

=
∑∞

s,p,q,k=0

ts

s!
( − 1)p+q+k ξp+k+1λs/rδqk

p!k!2q+1log

(

2 − e− ξ

)

[δ{p+ k+1}]1−
s
γ

×Γ(1 − s/γ) .
(37)  

Characteristic function (cf) 

For GLET-GTII model, cf is evaluated as 

Φ(τy|γ, δ, ξ, λ ) =
∫∞

0

eiτydF(y|γ, δ, ξ, λ ). (38) 

After using exponential series, we have 

Φ(τy|γ, δ, ξ, λ ) =
∑∞

s=0

(iτ)s

s!

∫∞

0

ysdF(y|γ, δ, ξ, λ ). (39) 

Hence, we obtain 

Φ(τy|γ, δ, ξ,λ)=
∑∞

s,p,q,k=0

(iτ)s

s!
( − 1)p+q+k ξp+k+1λs/rδqkΓ(1 − s/γ)

p!k!2q+1log

(

2 − e− ξ

)

[δ{p+k+1}]1−
s
γ

.

(40)  

Factorial generating function (fgf) 

For GLET-GTII model, fgf is extracted as follows 

Fy(τy|γ, δ, ξ, λ ) =
∫∞

0

elog(1+τ)y
dF(y|γ, δ, ξ, λ ),

=
∑∞

s=0

(log(1 + τ) )s

s!

∫∞

0

ysdF(y|γ, δ, ξ, λ ),

(41)  

so, 

Fy(τy|γ, δ, ξ, λ ) =
∑∞

s,p,q,k=0

(log(1 + τ) )s

s!
( − 1)p+q+k

×
ξp+k+1λs/rδqk

p!k!2q+1log

(

2 − e− ξ

)

[δ{p + k + 1} ]1−
s
γ

Γ(1 − s/γ) .

(42)  

Incomplete non-central moments (INCM) 

The INCM of model serve as a key role in determining inequality, 
namely Lorenz and Bonferroni’s income quantiles and curves, which 
concentrate on incomplete moments. 

Proposition 2. The sth incomplete moment μ́ Y,s(z, γ, δ, ξ, λ)is 

μ́ Y, s(z, γ, δ, ξ, λ)=
∑∞

p,q,k=0
( − 1)p+q+k ξp+k+1λs/rδqk

p!k!2q+1log

(

2 − e− ξ

)

[δ{p+ k+1}]1−
s
γ

×Γ
{

1 −
s
γ
, z− γδλ(p+ k+1)

}
,

(43)  

where, Γ(a, x) =
∫∞

x ta− 1e− tdt is upper incomplete G-F. 

Proof. By definition 

μ́ Y, s(z, γ, δ, ξ, λ) =
∫z

0

ysdF(y|γ, δ, ξ, λ ), s = 1, 2,… (44) 

Substituting by the Eq. (13) into Eq. (44) after some simple calcu
lations, we have 

μ́ Y, s(z, γ, δ, ξ, λ) =
∑∞

p,q,k=0
( − 1)p+q+k ξp+k+1λγδqk

p!k!2q+1log{2 − e− ξ}

∫z

0

ys− γ− 1exp{

− (k + p + 1)δλy− γ }dy.

Allowing w = (p + k + 1)λy− γ using the result 
− γ(p + k + 1)λy− γ− 1dy = dw and after some algebraic manipulation we 
have 

μ́ Y, s(z, γ, δ, ξ, λ) =
∑∞

p,q,k=0
( − 1)p+q+k ξp+k+1λγδqk

p!k!2q+1log{2 − e− ξ}

×

∫∞

(p+k+1)λz− γ

(
z

(p + k + 1)λ

)− s
γ exp( − δw)
(p + k + 1)

dw .

(45) 

The above integral provides the sth moment given by Eq. (45). 

Lemma 1. I(a, γ, δ, ξ, λ) =
∫∞

a

ydF(y|γ, δ, ξ, λ ) we have  

I (a, γ, δ, ξ, λ) =
∑∞

p,q,k=0
( − 1)p+q+k ξp+k+1λ1/rδqk

p!k!2q+1log

⎛

⎝2 − e− ξ

⎞

⎠[δ{p + k + 1} ]1−
1
γ

Γ
{

a− γδλ(p + k + 1), 1 −
1
γ

}

, (46)   
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where Γ(x, a) =
∫ x

0 ta− 1e− tdt is lower incomplete gamma function. 

Conditional moments and mean deviations 

In predictive inference, the estimation of conditional moments 
E(Ys|Y > t ) |s=1,2,… is useful in interaction with lifetime models. The 
E(Ys|Y > t )is obtained as 

E(Ys|Y > t ) =
1

S(t)

⎡

⎣E(Ys) −

∫t

0

ysf (y)dy

⎤

⎦,

=
1

S(t)
[(

μ́ s(y|γ, δ, ξ, λ ) − μ́ Y,s(t, γ, δ, ξ, λ)
) ]

,

(47)  

where S(t),μ́ s, and μ́ Y, s are defined in Eqs. (7), (27) and (43). The mean 
deviations about mean μ = E(Y) and μ̃ (median) are stated as 

Θ1(Y) =
∫ ∞

0
|y − μ|dF(y|γ, δ, ξ, λ ), (48)  

and 

Θ2(Y) =
∫ ∞

0
|y − μ̃|dF(y|γ, δ, ξ, λ ), (49)  

respectively. The quantity Θ1(Y) and Θ2(Y)are calculated as follows, 

Θ1(Y) = 2
∫ ∞

μ
yf
(

y
)

dy − 2μ+ 2μF(μ), (50)  

Θ2(Y) = 2
∫ ∞

μ̃
yF
(

y
)

dy − μ, (51)  

using Lemma 1, we have 

Θ1(Y) = 2I(μ, γ, δ, ξ, λ)+ 2μF(μ) − 2μ, (52)  

Θ2(Y) = 2I(μ̃, γ, δ, ξ, λ) − μ, (53)  

where F(μ)is specified in (6). 

Uncertainty measures 

In this section, entropies such as Verma, Renyi entropy, Tsallis etc for 
GLET-GTII model are being investigated. 

Entropy measures 

Entropy is a significant idea in several relevant fields communica
tions, measure-preserving dynamical systems, information theory, to
pological dynamics, thermodynamics, statistical mechanics etc, as a 
calculation of different characteristics such as uncertainty, disorder, 
randomness, energy that cannot produce work, complexity, etc. There 
are many definitions of entropy and they are not inherently ideal for all 
applications. 

Renyi entropy R̃σ(Y)
For GLET-GTII model, the R̃σ(Y)is 

R̃σ(Y) =
1

1 − σ log
∫∞

0

f σ(y|γ, δ, ξ, λ )dy, σ ∕= 1, σ > 0, (54)  

where 

f σ(y|γ, δ, ξ, λ ) =
(

ξλγδy− γ− 1e− ξ(exp{− λδy− γ} )exp{ − δλy− γ}

log{2 − e− ξ}(2 − e− ξ(exp{− λδy− γ} ) )

)σ

,

=
∑∞

p,q,k=0
( − 1)p+kξp+k+σ(λγδ)σσpqky− σ(γ+1)

p!k!q!2q+σ

×
exp{ − (p + k + σ)δλy− γ }Γ(σ + q)

Γ(σ)(log{2 − e− ξ} )
σ .

(55) 

By using the above information, we have 

∫∞

0

f σ(y|γ, δ, ξ, λ )dy =
∑∞

p,q,k=0
( − 1)p+k Γ(σ + q)ξp+k+σ(λγδ)σσpqk

p!k!q!2q+σΓ(σ)(log{2 − e− ξ} )
σ

×

∫∞

0

y− σ(γ+1)exp{ − (p + k + σ)δλy− γ }dy.

(56) 

Now substituting, (p + k + σ)λy− γ = z, the above integral becomes 

∫∞

0

f σ(y|γ, δ, ξ, λ )dy =
∑∞

p,q,k=0
( − 1)p+k Γ(σ + q)ξp+k+σ(λγδ)σσpqk

Γ(σ)p!k!q!2q+σ(log{2 − e− ξ} )
σ

×

∫∞

0

z
− (1− σ)

(
γ+1

γ

)

e− δzdz.

(57) 

After simplification, we have 

∫∞

0

f σ(y|γ, δ, ξ, λ )dy =
∑∞

p,q,k=0
( − 1)p+kΓ(σ + q)ξp+k+σλ(1− σ)/γγσ− 1δσσpqk

Γ(σ)p!k!q!2q+σ(log{2 − e− ξ} )
σ

×

Γ
{

1 −

(
γ + 1

γ

)

(1 − σ)
}

δ
1−

(
γ+1

γ

)

(1− σ)

.

(58) 

Finally, R̃σ(Y)becomes 

R̃σ(Y) =
1

1 − σ log

{
∑∞

p,q,k=0
( − 1)p+kΓ(σ + q)ξp+k+σλ(1− σ)/γγσ− 1δσσpqk

Γ(σ)p!k!q!2q+σ(log{2 − e− ξ} )
σ

×

Γ
{

1 −

(
γ + 1

γ

)

(1 − σ)
}

δ
1−

(
γ+1

γ

)

(1− σ)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(59) 

It should be remembered that Shannon entropy of a r.v. Y is attained 
as a special case of R̃σ(Y)when σ→1. 

Verma Entropy Vα,β(Y)
For GLET-GTII model, the Vα,β(Y)is 

Vα,β(Y) =
1

α − β
log

∫∞

− ∞

f α+β− 1(y|γ, δ, ξ, λ )dy,α − 1 < β < α, α⩾1, α

∕= β,
(60)  

where 
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f α+β− 1(y|γ,δ,ξ,λ)=
(

ξλγδy− γ− 1e− ξ(exp{− λδy− γ})exp{− δλy− γ}

log{2− e− ξ}(2− e− ξ(exp{− λδy− γ}))

)α+β− 1

,

=
∑∞

p,q,k=0
(− 1)p+kξp+k+α+β− 1(λγδ)α+β− 1

(α+β− 1)pqky− (α+β− 1)(γ+1)

p!k!q!2q+σ

×
exp{− (p+k+α+β− 1)δλy− γ}Γ(α+β− 1+q)

Γ(α+β− 1)(log{2− e− ξ})
α+β− 1 .

(61) 

It is significant to remember that, when α→1, in (60), it reduces to 
R̃σ(Y). On the other hand, if β→1 and α→1, in (60), then it approaches to 
the Shannon entropy. By using abovementioned information, we get 

∫∞

0

f α+β− 1(y|γ, δ, ξ, λ)dy=
∑∞

p,q,k=0
( − 1)p+kξp+k+α+β− 1(λγδ)α+β− 1

(α+β − 1)pqk

p!k!q!2q+α+β− 1

×
Γ(α+β − 1+q)

Γ(α+β − 1)(log{2 − e− ξ})
α+β− 1

∫∞

0

y− (α+β− 1)(γ+1)e− (p+k+α+β− 1)δλy− γ dy .

(62) 

Now substituting, λ(p+k+α+β − 1)y− γ = t,the above integral be
comes   

After simplification, we have   

Finally, Vα,β(Y) becomes 

Vα,β(Y)=
1

α− β
log

[
∑∞

p,q,k=0
(− 1)p+kΓ(α+β− 1+q)ξp+k+α+β− 1(λγδ)α+β− 1

(α+β− 1)pqk

Γ(α+β− 1)p!k!q!2q+α+β− 1(log{2− e− ξ})
α+β− 1

×

Γ
{

1−
(

γ+1
γ

)

(2− α− β)
}

δ
1−

(
γ+1

γ

)

(2− α− β)

⎤

⎥
⎥
⎥
⎦
.

(65)  

Tsallis entropy 
For GLET-GTII model, Tsallis entropy Tσ(Y)is defined as 

Tσ(Y) =
1

σ − 1

⎛

⎝1 −

∫∞

0

f σ(y|γ, δ, ξ, λ )dy

⎞

⎠, σ ∕= 1. (66) 

As, f σ(y|γ, δ, ξ, λ )and 
∫∞

0

fσ(y|γ, δ, ξ, λ )dy are given in (57)-(60) 

respectively. Hence, using these information, the final form of Tσ(Y)is 

Tσ(Y) =
1

σ − 1

(

1 −
∑∞

p,q,k=0
( − 1)p+kΓ(σ + q)ξp+k+σλ(1− σ)/γγσ− 1δσσpqk

Γ(σ)p!k!q!2q+σ(log{2 − e− ξ} )
σ

Γ
{

1 −

(
γ + 1

γ

)

(1 − σ)
}

δ
1−

(
γ+1

γ

)

(1− σ)

⎞

⎟
⎟
⎟
⎠
.

(67)  

∫∞

0

f α+β− 1(y|γ, δ, ξ, λ )dy =
∑∞

p,q,k=0
( − 1)p+kΓ(α + β − 1 + q)ξp+k+α+β− 1(λγδ)α+β− 1

(α + β − 1)pqk

Γ(α + β − 1)p!k!q!2q+α+β− 1(log{2 − e− ξ} )
α+β− 1

×

∫∞

0

z
− (1− (α+β− 1) )

(
γ+1

γ

)

e− δzdz.

(63)   

∫∞

0

f α+β− 1(y|γ, δ, ξ, λ )dy =
∑∞

p,q,k=0
( − 1)p+kΓ(α + β − 1 + q)ξp+k+α+β− 1(λγδ)α+β− 1

(α + β − 1)pqk

Γ(α + β − 1)p!k!q!2q+α+β− 1(log{2 − e− ξ} )
α+β− 1

×

Γ
{

1 −

(
γ + 1

γ

)

(2 − α − β)
}

δ
1−

(
γ+1

γ

)

(2− α− β)

.

(64)   
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Mathai-Houbold entropy 
For GLET-GTII model, ĨMH(Y)(see Mathai and Haubold [18]) is 

defined as 

ĨMH(Y) =
1

σ − 1

⎛

⎝
∫∞

0

f 2− σ(y|y|γ, δ, ξ, λ )dy − 1

⎞

⎠, σ ∕= 1. (68) 

Similar arguments to f2− σ gives 

f 2− σ(y|γ, δ, ξ, λ ) =
(

ξγλδy− γ− 1e− ξ(exp{− λδy− γ} )exp{ − δλy− γ}

log{2 − e− ξ}(2 − e− ξ(exp{− λδy− γ} ) )

)2− σ

,

=
∑∞

p,q,k=0
( − 1)p+kξp+k+2− σ(λγδ)2− σ

(2 − σ)pqk

Γ(2 − σ)p!k!q!2q+σ

×
exp{ − (p + k + 2 − σ)δλy− γ }Γ(2 − σ + q)

(log{2 − e− ξ} )
2− σy(2− σ)(γ+1) .

(69) 

Therefore, the final form of ̃IMH(Y)becomes 

ĨMH(Y) =
1

σ − 1

[
∑∞

p,q,k=0
( − 1)p+kξp+k+2− σ ( λ(σ− 1)/γγ1− σδ2− σ)(2 − σ)pqk

p!k!q!2q+2− σ(log{2 − e− ξ} )
2− σ

×

Γ(2 − σ + q)Γ
{

1 −

(
γ + 1

γ

)

(σ − 1)
}

Γ(2 − σ)(p + k ++2 − σ)
1−

(
γ+1

γ

)

(σ− 1)
δ

1−

(
γ+1

γ

)

(σ− 1)

− 1

⎤

⎥
⎥
⎥
⎦
.

(70)  

Kapur entropy 
Kapur entropy ̃Iα,β(Y)of Y with GLET-GTII model is defined as 

Ĩα,β(Y) =
1

β − α log

⎧
⎪⎨

⎪⎩

∫∞

0

f α(y)dy

∫∞

0

f β(y)dy

⎫
⎪⎬

⎪⎭
, (71)  

=
1

β − α

⎡

⎣log

⎧
⎨

⎩

∫∞

0

f α(y)dy

⎫
⎬

⎭
− log

⎧
⎨

⎩

∫∞

0

f β(y)dy

⎫
⎬

⎭

⎤

⎦,

(72) 

Similar arguments to f σ using in Eq. (55), we get 

Ĩα,β(Y)=
1

β − α log

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑∞

p,q,k=0
( − 1)p+kΓ(α+q)ξp+k+αλ(1− α)/γ γα− 1δαpqk

Γ(α)p!k!q!2q+α [log{2− e− ξ}]α

Γ

{

1−

(
γ+1

γ

)

(1− α)

}

δ
1−

(
γ+1

γ

)

(1− α)

∑∞

p,q,k=0
( − 1)p+kΓ(β+q)ξp+k+β λ(1− β)/γ γβ− 1δββpqk

Γ(β)p!k!q!2q+β [log{2− e− ξ}]β

Γ

{

1−

(
γ+1

γ

)

(1− β)

}

δ
1−

(
γ+1

γ

)

(1− β)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(73)  

ω-entropy 
ω-entropy Hω(Y)of Y with GLET-GTII model is defined as 

Hω(Y) =
1

ω − 1
log

⎛

⎝1 −

∫∞

0

f ω(y|γ, δ, ξ )dy

⎞

⎠,ω ∕= 1. (74) 

As, fω(y|γ, δ, ξ, λ )and 
∫∞

0

fω(y|γ, δ, ξ, λ )dy are calculated in Eqs. 

(55)–(58) respectively. Therefore, by using these information, 
Hω(Y)takes the following form 

Hω(Y)=
1

ω− 1
log

⎛

⎜
⎜
⎜
⎝

1

−
∑∞

p,q,k=0
(− 1)p+kΓ(ω+q)ξp+k+ωλ(1− ω)/γγω− 1δωpqk

Γ(ω)p!k!q!2q+ω[log{2− e− ξ}]
ω

Γ
{

1−
(

γ+1
γ

)

(1− ω)
}

δ
1−

(
γ+1

γ

)

(1− ω)

⎞

⎟
⎟
⎟
⎠
.

(75)  

Estimation 

We proceed by presenting estimates of the parameters of suggested 
model via different techniques. The maximum likelihood (MLH) esti
mation and Bayesian methodology for estimation objective. Working the 
Matlab (log_lik), the Ox program (subroutine MaxBFGS), R (optimum 
and MaxLik features), or SAS (PROC NLMIXED), the GLET-GTII model 
parameters is assessed from log-likelihood depending on sample. Addi

Table 2 
Bias and MSEs for GLET-GTII parameters.  

n Estimates |Bias| MSE |Bias| MSE 

25 γ  0.05349 0.04131 0.05195 0.03889  
δ  0.02363 0.05389 0.48473 0.47003  
ξ  0.06983 0.27452 0.05833 0.19709  
λ  0.17637 0.08444 0.16527 0.24835  

100 γ  0.00893 0.00665 0.05155 0.01360  
δ  0.08816 0.01505 0.44401 0.24933  
ξ  0.01703 0.06209 0.01002 0.04344  
λ  0.11184 0.01978 0.15599 0.07652  

150 γ  0.00581 0.00442 0.04392 0.00909  
δ  0.07367 0.01356 0.42902 0.21545  
ξ  0.01222 0.04402 0.00560 0.02818  
λ  0.10633 0.01609 0.14010 0.06064  

250 γ  0.00368 0.00265 0.03419 0.00456  
δ  0.06702 0.01225 0.41674 0.19044  
ξ  0.00351 0.02534 0.00287 0.01758  
λ  0.10298 0.01344 0.13326 0.05035  

350 γ  0.00174 0.00187 0.02768 0.00261  
δ  0.04001 0.01197 0.40509 0.17547  
ξ  0.00282 0.01843 0.00175 0.01260  
λ  0.09998 0.01197 0.12491 0.04937  

Table 3 
Descriptive measures for Data Sets.  

Descriptive statistics Data I Data II 

Q1 13.00 120.8 
Q3 82.75 1414.0 
Median 33 385.0 
Mean 49.74 841.4 
Trimmed 44.8 703.96 
Minimum 3 6 
Maximum 150 2824 
SD 43.87 938.69 
Range 147 2818 
Skewness 0.82 0.92 
Kurtosis − 0.62 − 0.63  
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tionally, some goodness − of − fit statistics are applied to compare density 
estimates and selection of models. 

Maximum likelihood (ML) estimation 

The ML estimates are presented via optimization of equation corre
sponding to γ,δξand λ. They are also described as the maximum of log- 
likelihood function (LLHF) and defined by ly|γ, δ, ξ, λ = logL(y|γ, δ, ξ, λ ). 

L(y|γ, δ, ξ, λ ) =
∏n

i=1

ξγλδy− γ− 1
i e− ξ(exp{− λδy− γ

i })exp
{
− δλy− γ

i
}

log{2 − e− ξ}
(

2 − e− ξ(exp{− λδy− γ
i })

) . (76) 

The LLHF for GLET-GTII distribution is given by data set y1,…,yn. 

Fig. 12. Density plots and Trace plots of parameters γ, δ, ξ and λ for data set I.  

Fig. 13. Density plots and Trace plots of parameters γ, δ, ξ and λ for data set II.  

Table 7 
Posterior summaries of the GLET-GTII model for data set I and II.  

Data n Parameter 2.5% 97.5%  Posterior 
Mean 

Posterior 
Variance   

γ  0.228357 0.481515 0.343964 0.004009 
I 30 δ  0.129464 0.357515 0.220179 0.002465   

ξ  1.858141 4.526620 3.052603 0.380427   
λ  0.013755 0.044269 0.025770 0.000051    

γ  0.184741 0.431814 0.295535 0.004113 
II 66 δ  0.382319 0.876892 0.602914 0.016561   

ξ  0.391735 0.885013 0615787 0.015930   
λ  0.064211 0.141740 0.098712 0.000397  
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ly|γ, δ, ξ, λ = nlog(γ) + nlog(ξ) + nlog(δ) + nlog(λ) − ξ
∑n

i=1
exp
{
− λδy− γ

i
}

− δλ
∑n

i=1
y− γ

i − (γ + 1)
∑n

i=1
logyi − nlog[log{2 − e− ξ} ]

−
∑n

i=1
log
(

2 − e− ξ(exp{− λδy− γ
i })

)
.

(77) 

By differentiating Eq. (77), we get MLEs of the corresponding pa
rameters γ, δξand λ. The components of score vector Λγ, δ, ξ, λ =

(Λγ,Λδ,Λξ,Λλ)τ is as follows 

Λγ=
∂ly|γ, δ, ξ, λ

∂ly|γ
=

n
γ
−
∑n

i=1
log(yi)+λδ

∑n

i=1
y− γ

i log(yi)+ξλδ
∑n

i=1
e− δλy− γ

i y− γ
i log(yi)

− ξλδ
∑n

i=1

y− γ
i log(yi)e− (ξexp{− λδy− γ

i }+λδy− γ
i )

(
2 − e− ξ(exp{− λδy− γ

i })
) ,

(78)  

Λδ =
∂ly|γ, δ, ξ, λ

∂ly|δ

=
n
δ
− λ
∑n

i=1
y− γ

i + ξλ
∑n

i=1
e− δλy− γ

i y− γ
i + ξλ

∑n

i=1

y− γ
i e− (ξexp{− λδy− γ

i }+λδy− γ
i )

(
2 − e− ξ(exp{− λδy− γ

i })
) ,

(79)  

Fig. 7. Box plots for data sets I and II.  

Table 5 
Values of the considered measures for Data Set I.  

Distribution GLET-GTII GIWD Frechet AGT-II GT-II EB-XII 

W*  0.10657 0.28434 0.28433 0.28444 0.28434 0.23364 
A*  0.79738 1.75835 1.75829 1.75861 1.75835 1.48713 
K − S  0.08904 0.12843 0.12845 0.12888 0.12843 0.11457 
p-value 0.67210 0.22640 0.22620 0.22290 0.22640 0.35170 
AIC 656.367 668.203 666.203 670.162 666.203 664.695 
CAIC 657.023 668.590 666.394 670.818 666.397 665.082 
BIC 665.126 674.772 670.583 678.921 670.583 671.264 
HQIC 659.828 670.799 667.934 673.623 667.934 667.291  

Table 6 
Values of the considered measures for Data Set II.  

Distribution GLET-GTII GIWD Frechet AGT-II GT-II EB-XII 

W*  0.06748 0.15402 0.15425 0.15404 0.15402 0.12913 
A*  0.49019 0.98445 0.98601 0.98453 0.98444 0.84641 
K − S  0.11845 0.15964 0.17716 0.15960 0.15964 0.14954 
p-value 0.75020 0.38800 0.26980 0.38820 0.38790 0.46870 
AIC 469.175 475.394 474.074 477.394 473.394 473.437 
CAIC 470.775 476.317 474.518 478.994 473.838 474.360 
BIC 474.780 479.597 476.876 482.998 476.196 477.641 
HQIC 470.969 476.738 474.970 479.187 474.290 474.782  
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Λξ =
∂ly|γ, δ, ξ, λ

∂ly|ξ

=
n
ξ
−

ne− ξ

(2 − e− ξ)log(2 − e− ξ)
−
∑n

i=1
e− λδy− γ

i −
∑n

i=1

e− (ξexp{− λδy− γ
i }+λδy− γ

i )
(

2 − e− ξ(exp{− λδy− γ
i })

),

(80)  

Λλ =
n
λ
− δcn

i=1y− γ
i log(yi)+ ξδ

∑n

i=1
e− δλy− γ

i y− γ
i + ξδ

∑n

i=1

y− γ
i e− (ξexp{− λδy− γ

i }+λδy− γ
i )

(
2 − e− ξ(exp{− λδy− γ

i })
) .

(81) 

Setting Λγ,Λδ,Λξ,Λλ = 0 and after solving theses equations, it gives 
the MLEs for GLET-GTII model parameters. An iterative method such as 
the Newton–Raphson approach is needed to solve them numerically. 
Now, utilizing simulation, we investigate performance of MLEs with 
respect to sample size n. The following steps are followed to conduct 
simulation study: stimulate it 5000,samples of size n = 25,100,150,250 
and 350 from GLET-GTII{(1.2,1.7,2.1, 1.5), (0.2,1.4,1.6, 0.8)}; give 
the MLEs for 5000 samples, say δ̂m, γ̂m and ξ̂m for m = 1, 2, …, 5000; 
quantify estimate biases and squared errors (MSEs); where average ab
solute Bias = 1

5000
∑5000

m=1 |φ̂ − φ|and MSE = 1
5000
∑5000

m=1 (φ̂ − φ)2. Table 2 

Fig. 10. The profiles of the Log-likelihood plots for the parameters of data set I.  

Fig. 9. Estimated densities (left) and cdf (right) for data set II.  
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shows the Bias and MSEs for various estimates. We directly noticed that 
Bias and MSEs reduce by enhancement of sample size n. (see Table 3). 

Bayesian mechanism 

Here, we proceed by providing estimation of proposed structure 
parameters via Bayesian mechanism. Let γ, δ, ξand λare random vari
ables. Therefore, the following independent priors are supposed as 
γ̃gamma (υ1, σ1), δ̃gamma (υ2, σ2), ξ̃gamma (υ3, σ3)and λ̃gamma 
(υ4, σ4), where υi,σi ∈ R+, i = 1,2,3,4. The g(γ, δ, ξ, λ|x )joint posterior 
density of γ,δ,ξ and λis as follows 

g(γ, δ, ξ, λ|x ) = L(y|γ, δ, ξ, λ )p(γ)p(δ)p(ξ)p(λ)
∫

γ

∫

δ

∫

ξ

∫

λL(y|γ, δ, ξ )p(γ)p(δ)p(ξ)p(λ)dγdδdξdλ
.

The BE (Bayes estimator) of γis given under SELF 
(Squarederrorlossfunction)[21–26] as 

γ̂BE = E
(

γ|x
)

=

∫

γ

∫

δ

∫

ξ

∫

λγL(y|γ, δ, ξ )p(γ)p(δ)p(ξ)p(λ)dγdδdξdλ
∫

γ

∫

δ

∫

ξ

∫

λL(y|γ, δ, ξ )p(γ)p(δ)p(ξ)p(λ)dγdδdξdλ
,

in a similar fashion δ̂BE = E(δ|x), λ̂BE = E(λ|x) and ξ̂BE = E(ξ|x). Addi

Fig. 11. The profiles of the Log-likelihood plots for the parameters of data set 2.  

Fig. 8. Estimated densities (left) and cdf (right) for data set I.  
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tionally, Bayes risk is evaluated by Var(γ|x) = E(γ2
⃒
⃒x) − {E(γ|x) }2, where 

E
(

γ2
⃒
⃒x
)

=

∫

γ

∫

δ

∫

ξ

∫

λγ2L(y|γ, δ, ξ )p(γ)p(δ)p(ξ)p(λ)dγdδdξdλ
∫

γ

∫

δ

∫

ξ

∫

λL(y|γ, δ, ξ )p(γ)p(δ)p(ξ)p(λ)dγdδdξdλ
.

One might notice that estimates are not analytically predictable, so 
we also use the Adaptive Metropolis Hasting algorithm MCMC (Monte 
Carlo Markov Chain) to attain estimates. Figs. 12 and 13 are sketched for 
trace plots and estimated posterior densities for Monte Carlo Markov 
Chain estimates of model parameters using real data sets. These figures 
showed the good convergence of estimates. On the other side, Table 7 
provided the posterior summaries for both data sets. We provide Bayes 
estimates, LCL (lower credible limit), posterior variance, UCL (upper 
credible limit) of credible intervals. The behaviour of the estimated 
densities of all the parameters are slightly positively skewed. 

Implementations of real data 

Two examples are presented here to describe the efficiency of sug
gested distribution. The R software is used to show the improved effi
ciency of GLET-GTII distribution and numerical calculations. Consider 
the following models (i) GIWD (generalized inverse Weibull distribu
tion) [19] (ii) Frechet model (Frechet), (iii) Additive Gumbel Type-II 
(AGT-II) (iv) GT-II (Gumbel Type-II) and (v) EB-XII (Exponentiated 
Burr XII) model for comparative purposes. Different methodologies of 
segregation based on LLHF (log-likelihood function) assessed at MLEs 
were also taken into account: Akaike Information Criterion (AIC) 
computed through AIC : 2[ς − L{(γ̂, δ̂, ξ̂, λ̂); y } ], and Bayesian Informa
tion Criterion BIC : − 2L{(γ̂, δ̂, ξ̂, λ̂); y } + ςlog(n), Corrected Akaike 
information Criterion AICC = AIC +

2ς(ς+1)
n− ς− 1 , Hannan Quinn Information 

Criterion HQIC = − 2L{(γ̂, δ̂, ξ̂, λ̂); y } + 2klog[log(n) ], where 
ςrepresents the number of parameters to be fitted and γ̂, δ̂, ξ̂, λ̂ the es
timates of γ, δ, ξand λ̂. The best model is the one which provides the 
minimum values of those benchmarks. The outputs revealed that GLET- 
GTII distribution is a bestest model than the abovementioned models in 
each case. To check whether the data fits GLET-GTII (γ, δ, ξ, λ)model, 
we use Kolmogorov–Smirnov (K-S) distances among empirical distri
bution function and fitted distribution function. In Tables 5,6, the K-S 

test value and the corresponding critical value are given. The small K-S 
distance and the large critical-value for the test indicate that this data 
matches perfectly almost well with GLET-GTII (γ, δ, ξ, λ)model. Now 
standardized ”goodness of fit” measures are utilized to validate which 
model fits these data best. Cramér-Von Mises and Anderson-Darling test 
statistics are taken into acount (for more detail see Chen and Balak
rishnan [20]). Generally, the smallest values of Cramér-Von Mises (W*)

and Anderson-Darling (A*), indicates the better fit of data. The values of 
the statistics A* and W* are listed inTables 5,6. The summary statistics 
are graphed via box plots for data sets ”I and II” and shown in Fig. 7. A 
very useful tool for interpreting our data is the box plot. In a single clear 
and concise diagram, the box plot contains all the knowledge about data. 
A boxplot is a systematic way to view data distribution based on a 
summary of five numbers (“minimum”, first quartile (Q1), median, third 
quartile (Q3), and “maximum”). A box plot is a visualization that pro
vides a real indication of how the values are distributed out in the data. 
In Figs. 9,10, the estimated densities of GLET-GTII (γ, δ, ξ, λ)and 
competitor models were graphed for more visual comparison. The 
mentioned below data sets are given in Sindhu et al. [27]. (see Figs. 11 
and 8). 

Data I: Daily deaths number because of COVID-19 in China {23rd 

January to 28th March} 
This data is taken from given website ( https://www.worldometers. 

info/coronavirus/country/china/), which indicates the daily number of 
deaths because of COVID-19 in China. The data is given below: 

{8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97, 108, 97, 146 

, 121, 143, 142, 105, 98, 136, 114, 118, 109, 97, 150, 71, 52, 29, 44, 47, 35, 42 

, 31, 38, 31, 30, 28, 27, 22, 17, 22, 11, 7, 13, 10, 14, 13, 11, 8, 3, 7, 6, 9 

, 7, 4, 6, 5, 3, 5}.

Data II:Daily deaths number because of COVID-19 in Europe 
{Ist − 30th March} 

This data is taken from given website (https://covid19.who.int/), 
which indicates daily deaths number because of COVID-19 in Europe. 

{6, 18, 29, 28, 47, 55, 40, 150, 129, 184, 236, 237, 336, 219, 612, 434, 648, 706 

, 838, 1129, 1421, 118, 116, 1393, 1540, 1941, 2175, 2278, 2824, 2803, 2667}.

For each distribution, we estimate the unknown parameters using 
maximum likelihood. The MLEs with their respective standard errors of 
the above models are listed in Table 4. These calculations were made 
using the R programming language. 

Conclusion 

Here, we have suggested a new general construction of flexible 
lifetime models by rendering any existing baseline model more versatile 
via simple transformation. A generalized log-exponential transformation 
model is introduced and its implementation is demonstrated by taking 
Gumbel Type-II model. The mathematical properties of proposed model 
have been analyzed in detail. Additionally, some figures for density and 
hazard function are included. The general non-central incomplete and 
complete moments are also included. Uncertainty measures such as 
entropies (like Renyi, Tsallis, Verma, and Kumar entropy Mathai- 
Houbold) are calculated. The estimation of parameters is accessed by 
utilizing two techniques such as maximum likelihood method and 
Bayesian framework. Through utilizing classical goodness of fit in
dicators, we evaluate the efficiency of GLET-GTII model with its five 
significant counterparts. The posterior densities, Log-likelihood and 
trace plots are drawn for considered data sets. These findings are in line 
with fact that proposed model is quite suitable for implementations of 
real life data. 

Table 4 
Parameters estimates and Standard errors for both Data Sets.    

MLE Error MLE Error 

Model Parameter Data I Data II 

GLET-GTII γ̂  0.206478 0.04659 0.14714 0.10045  

δ̂  3.354146 1.96348 3.50279 2.61427  

ξ̂  3.354146 1.96347 3.50279 2.61427  

λ̂  134.0219 160.264 98.9773 362.710 

GIWD α̂  9.10197 811.843 2.70212 334.481  

β̂  0.91594 0.08369 0.57051 0.07536  

b̂  1.78997 146.234 9.18399 648.661 

Frechet η̂  17.1868 2.45283 99.7713 29.7155  

α̂  0.91589 0.08368 0.59186 0.07787 

AGT-II β̂  7.47910 116.202 9.79414 8033.73  

λ̂  13.4320 3.46155 6.40543 8033.75  

δ̂  4.48651 6.66264 0.57062 0.11674  

α̂  0.91372 0.09052 0.57071 0.21937 

GT-II β̂  0.91595 0.08369 0.57057 0.07536  

α̂  13.5324 3.10943 16.1933 5.71448 

EB-XII β̂  0.42854 0.16904 0.29162 0.13471  

b̂  59.0695 58.8060 52.0316 54.4001  

η̂  2.74026 1.33481 2.39459 1.36109  
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