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SUMMARY

Immune cells’ metabolism influences their differentiation and functions. Given that a complex 

interplay of environmental factors within the tumor microenvironment (TME) can have a profound 

impact on the metabolic activities of various immune, stromal, and tumor cell types, there is 

emerging interest to advance understanding of these diverse metabolic phenotypes in the TME. 

Discussing various cell-extrinsic contributions to the metabolic activities of immune cells and 

recent technical advances in experimental systems and metabolic profiling technologies, we 

propose future directions to better understand how immune cells meet their metabolic demands in 

the TME, which can be leveraged for therapeutic benefit.
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INTRODUCTION

Metabolic conditions in the tumor microenvironment (TME) are influenced by many factors, 

including gradients of nutrient and oxygen levels, tissue vascularization, heterocellular 
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interactions, and systemic metabolism. However, much of the research used to define 

principles of tumor cell metabolism have relied heavily on cultured cells, which cannot fully 

recapitulate the metabolic conditions of tumor metabolism in vivo, especially tumor cell-

extrinsic factors such as nutrient availability and immune infiltration. To improve the 

modeling capacity of experimental systems used to study the TME, various cell-intrinsic and 

environmental inputs should be considered. However, as the TME contains sundry cell types 

with diverse and flexible metabolic programming, precise investigation of the metabolic 

demands, adaptations, and interactions among various immune and cancer cells is complex. 

Recent discussion of such intercellular interactions has been presented in detail by a number 

of excellent reviews (Bader et al., 2020; Lau and Vander Heiden, 2020). Here, we first 

highlight how immune cell metabolism and function can be influenced by the TME, and 

then discuss emerging technical advances in experimental modeling and metabolomics that 

may be exploited in future studies to further our understanding of immune cell metabolism 

in the complex context of the TME.

1 ENVIRONMENT SHAPES IMMUNE CELL METABOLISM AND FUNCTION

1.1 Nutrient Availability

Much of the work in immunometabolism to date has focused on how cells concurrently and 

differentially utilize nutrients to satisfy metabolic demands associated with effector 

functions and differentiation states. Indeed, the metabolic activities of different immune cell 

types, particularly lymphocytes, has been extensively reviewed elsewhere (Buck et al., 2017; 

Lau and Vander Heiden, 2020). The metabolic program of normal resting cells primarily 

serves to meet the bioenergetic requirements of maintaining homeostatic processes that 

require ATP. In contrast, proliferating cells—both normal and malignant—not only need to 

generate energy to support cell growth, but must also meet various anabolic demands of 

macromolecule biosynthesis (e.g., proteins, nucleotides, lipids) and cellular redox 

homeostasis (Cantor and Sabatini, 2012; Kong and Chandel, 2018; O’Sullivan et al., 2019; 

Pearce et al., 2013; Sugiura and Rathmell, 2018). A central metabolic program associated 

with activation of innate (dendritic cells (DCs), macrophages, neutrophils) and adaptive 

(CD8+ and CD4+ T cells, B cells) immune cell is aerobic glycolysis, also commonly known 

as the Warburg effect (Lunt and Vander Heiden, 2011; Warburg, 1956). Increasing glucose 

uptake and glycolysis not only provides precursors for proliferation, such as glucose-

dependent serine production for nucleotide synthesis (Ma et al., 2019), but also supports 

IFN-γ production (Cham and Gajewski, 2005; Chang et al., 2013a). For instance, T helper 

(Th) cells are highly glycolytic (Michalek et al., 2011; Shi et al., 2011), relying on the 

glucose transporter GLUT1 for inflammatory cell (i.e., Th1 and Th17) effector function, and 

GLUT1-mediated glycolysis in regulatory T (Treg) cells regulates the balance between 

proliferation and suppressive capacity (Gerriets et al., 2016). However, this may pose a 

challenge for tumor-infiltrating immune cells given that glucose availability can vary in the 

TME (Siska et al., 2017; Sullivan et al., 2019). Specifically, there is evidence that glucose 

limitation in TME can compromise effector functions of tumor infiltrating lymphocytes 

(TILs) and the antitumor effects of natural killer (NK) cells (Chang et al., 2013b, 2015; Ho 

et al., 2015).

Kaymak et al. Page 2

Cancer Cell. Author manuscript; available in PMC 2022 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition to glucose, the availability of different amino acids can also influence immune 

cell metabolism. For example, T cells and macrophages may catabolize glutamine to fuel 

ATP production (Blagih et al., 2015; Carr et al., 2010; Jha et al., 2015). Yet, blunting 

glutamine catabolism can promote both increased CD8+ TIL effector function and tumor 

regression, owing to differential demands for glutamine utilization among tumor cells and 

TILs (Leone et al., 2019). Given the metabolic variability among cell types in the TME, the 

targeted inhibition of metabolic enzymes may drive distinct cell-specific consequences. For 

instance, either genetic or pharmacologic blockade of glutaminase (GLS)—which 

metabolizes glutamine into glutamate—has been shown to impair proliferation and 

activation of CD4+ and CD8+ T cells with little effect on cytokine production. The same 

blockade can also suppress the differentiation of CD4+ Th17 cells (Johnson et al., 2018). In 

addition, supraphysiologic arginine levels provided by the synthetic cell culture medium 

RPMI 1640 can blunt cytokine production mediated by T cells but increase their survival 

(Geiger et al., 2016). Tryptophan depletion also can reportedly hinder T-cell function 

through activation of the integrated stress response (Munn et al., 2005). Further, the 

extracellular availability of both serine (Labuschagne et al., 2014; Ma et al., 2017; Ron-

Harel et al., 2016) and methionine (Gao et al., 2019; Roy et al., 2020; Sinclair et al., 2019) 

can influence the proliferation of tumor cells and T lymphocytes through effects linked to 

one-carbon metabolism. In T cells, as the folate and methionine cycles are uncoupled and 

serine-derived carbon does not transit to the methionine cycle, methionine may be the 

exclusive source of the methyl moiety in S-adenosylmethionine (SAM) and, by extension, an 

essential amino acid for methylation reactions (Roy et al., 2020). In addition, others have 

recently demonstrated that alanine availability can affect protein synthesis during the early 

stages of T cell activation (Ron-Harel et al., 2019). Interestingly, genes that encode amino 

acid transporters are amongst the most upregulated genes upon T cell activation (Howden et 

al., 2019), suggesting that amino acid exchange is a critical aspect of immune regulation in 

the TME. Together, these results highlight that amino acid availability can have distinct cell-

specific effects on immune cell metabolism and function, perhaps suggesting the potential to 

target amino acid metabolism of different immune subtypes in the treatment of human 

disease.

Purported waste products of cellular metabolism—including lactate, kynurenine, and 

adenosine—can also exert immunomodulatory effects in the TME. For example, whereas 

lactate can suppress the cytolytic capacity of CD8+ effector cells (Brand et al., 2016; 

Calcinotto et al., 2012; Fischer et al., 2007), it may instead be used by Treg cells to support 

metabolic demands (Angelin et al., 2017; Wang et al., 2020). Further, lactate accumulation 

in a murine model of arthritis induces upregulation of the monocarboxylate transporter 

SLC5A12 in CD4+ T cells, a transporter class similarly upregulated in activated T cells. This 

leads to elevated levels of intracellular acetyl-CoA and citrate, as well as decreased T cell 

motility (Pucino et al., 2019). Others have also demonstrated that lactate generated by 

melanoma cells can diminish immune surveillance by T cells and NK cells by suppressing 

nuclear factor of activated T cells (NFAT)-dependent IFN-γ production (Brand et al., 2016). 

Further, recent evidence also indicates that lactate can be used to fuel the TCA cycle in both 

normal tissues and certain lung cancers (Faubert et al., 2017; Hui et al., 2017), suggesting 

that lactate may promote immune evasion in the TME by supporting demands of tumor 
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growth (Angelin et al., 2017). In addition, elevated levels of kynurenine, a downstream 

product of tryptophan catabolism, can induce immunosuppression in T cells (Fallarino et al., 

2006; Mezrich et al., 2010; Opitz et al., 2011). Remarkably, Triplett and colleagues recently 

demonstrated that the enzyme-mediated depletion of systemic kynurenine could increase the 

tumor infiltration and proliferation of CD8+ lymphocytes (Triplett et al., 2018). Lastly, the 

accumulation of adenosine, a breakdown product of nucleotide metabolism, effectively 

reduces the cytotoxic effects mediated by T and NK cells, but enhances the activation of 

immunoregulatory M2 macrophages (Csóka et al., 2012; Huang et al., 1997).

The impact of free fatty acids on immune cell function in the TME continues to be an active 

area of investigation. While early models of immune cell metabolic reprogramming 

proposed that glycolytic and oxidative (fueled by long-chain fatty acid oxidation (FAO)) 

metabolic programs were associated with distinct immune cell populations (e.g., CD8+ T 

effector (Teff) versus T memory (Tmem) cells, M1 versus M2 macrophages) (O’Neill and 

Pearce, 2016; Pearce et al., 2013), the reality has proven to be far more nuanced. Etomoxir, 

an inhibitor of CPT1A—an enzyme that catalyzes the rate-limiting step in mitochondrial 

long-chain FAO—has immunomodulatory effects on CD8+ Tmem cell differentiation and 

M2 macrophage polarization (Huang et al., 2014; van der Windt et al., 2012), reinforcing the 

notion that FAO-fueled OXPHOS supports these processes. However, genetic evidence has 

indicated that CPT1A is dispensable for CD8+ Teff function and Tmem generation, as well 

as for CD4+ Treg suppressive capacity (Raud et al., 2018). Further, the suggested influence 

of etomoxir on M2 macrophage polarization has been attributed to off-target effects of the 

compound (Divakaruni et al., 2018). Nonetheless, CD8+ T cells with elevated Cpt1a 
expression display a metabolic advantage in vivo (Klein Geltink et al., 2017; van der Windt 

et al., 2012), underscoring a role for mitochondrial metabolism in supporting optimal T cell 

function. Long-chain FAO may be more critical for tissue-resident immune cells; recent 

work has demonstrated that fatty acid import (via FABP4 and FABP5) and CPT1A-

dependent lipid oxidation are required for the persistence of tissue-resident CD8+ cells in 

peripheral tissues (Pan et al., 2017), while the lipid transporter CD36 is required for 

accumulation of CD4+ Treg cells in the TME (Wang et al., 2020). Interestingly, TILs in B16 

melanoma tumors display enhanced fatty acid catabolism, a phenotype attributed to low 

glucose levels in the TME (Zhang et al., 2017), hinting at a role for FAO in metabolically 

flexible immune cells in the TME.

Beyond their role as fuel sources, saturated fatty acids can also promote the production of 

pro-inflammatory cytokines (e.g., IL-23 during Th17 responses), whereas polyunsaturated 

fatty acids have been linked to anti-inflammatory cytokine production (e.g. IL-10) (Wang et 

al., 2015). Short chain fatty acids (SCFAs), which are largely byproducts of microbial 

metabolism, can act as positive regulators of CD8+ Teff function as well (Bachem et al., 

2019; Balmer et al., 2016; Trompette et al., 2018). For example, butyrate—which acts as an 

HDAC inhibitor—can influence T cell function by mediating G-protein-coupled receptor 

signaling (Bachem et al., 2019). In addition, recent work by Qui and colleagues 

demonstrated that acetate can enhance Teff cell function by reinforcing permissive 

epigenetic marks (i.e., H3K27ac) and chromatin accessibility at key effector cytokine loci 

(e.g., Gmzc, Ifng, Tnfa) (Qiu et al., 2019). These results are consistent with the notion that 

the composition of the gut microbiome can influence metabolite availability and thus, 
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patient responses to immunotherapy (reviewed in (Gopalakrishnan et al., 2018)), though 

specific contributions of microbiome-derived metabolites to immune function in the TME 

require further research.

1.2 Oxygen, pH, and Ion Concentration

Tissue oxygen (O2) concentrations are dictated by competing rates of O2 diffusion and 

consumption. Most tissues experience oxygen levels of 2–9% (average 40 mm Hg) 

(Krzywinska and Stockmann, 2018), while cells in the TME may instead experience hypoxic 

conditions (<2% oxygen) that are driven by disorganized vasculature and the increased 

metabolic rate of tumor cells (Bertout et al., 2008). Such hypoxic conditions promote the 

stabilization of hypoxia inducible factor-1α (HIF-1α), whose expression is associated with 

increased inflammatory potential in both myeloid and lymphoid cells (Palazon et al., 2014). 

Similar to oxygen availability, extracellular pH varies across the TME—likely in 

concordance with local accumulation of lactate—and extracellular acidification (pH ~5.8–

6.6) can have broad effects on immune cells (Huber et al., 2017; Singer et al., 2018). 

Notably, small ion availability can also have dramatic effects on T cell function. Elevated 

sodium levels can drive increased inflammatory potential in CD4+ Th17 cells 

(Kleinewietfeld et al., 2013; Wu et al., 2013), and increased potassium availability can 

compromise nutrient uptake and effector function in CD8+ T cells (Vodnala et al., 2019).

Although Hif1a deletion has been shown not to affect metabolic reprogramming of activated 

T cells (Wang et al., 2011), several studies have demonstrated that hypoxic conditions can 

have immunomodulatory effects (Lim et al., 2020). For example, Hif1a expression in CD8+ 

T cells regulates their proliferation and influences their effector function by promoting a 

glycolytic phenotype (Finlay et al., 2012; Lum et al., 2007; Palazon et al., 2017). In murine 

breast tumor models, the deletion of Hif1a in CD8+ T cells can result in reduced tumor 

infiltration and cytotoxic function (Palazon et al., 2017), indicating that HIF-1α can serve a 

key role in the maintenance of Teff cell function. Further, models of adoptive cell transfer 

(ACT) have demonstrated that hypoxic pre-conditioning can improve the cytotoxicity and 

tumor clearance mediated by CD8+ T cells (Gropper et al., 2017). Notably, several studies 

have shown that oxygen restriction can also have immunosuppressive effects. For example, 

immunosuppressive (Arg1+) tumor-associated macrophages (TAMs) spatially associate with 

hypoxic regions in mouse breast tumors (Carmona-Fontaine et al., 2017), while Hif1a 
deletion in macrophages impairs both mobilization and activation (Cramer et al., 2003). In 

addition, TILs were absent from hypoxic regions in a murine model of fibrosarcoma 

(Hatfield et al., 2015), and limited oxygen availability has been associated with T cell 

exhaustion in a murine model of melanoma (Najjar et al., 2019). Further, HIF-1α can 

promote immunosuppressive characteristics of CD4+ CD25+ Tregs (Ben-Shoshan et al., 

2008). Together, these studies illustrate that oxygen availability can strongly impact immune 

cell function in the TME.

1.3 Intercellular interactions

The diverse milieu of immune, cancer, and stromal cells present within the TME creates a 

dynamic environment, fostering crosstalk between cancer and immune cells that can be 

influenced by tumor type (Gentles et al., 2015). Advances in single cell techniques, such as 
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mass cytometry and single-cell genomics, have revealed considerable complexity among 

stromal and immune cell subtypes in the TME, as well as heterogeneity in the metabolic 

profiles of these cells (Hartmann and Bendall, 2020; Li et al., 2017; Xiao et al., 2019). 

Recent work characterizing metabolic enzyme expression in T cell subsets by mass 

cytometry has the advantage of characterizing the metabolic potential of rare immune 

subsets from tumors (Hartmann et al., 2020). The major caveat with any single cell profiling 

approach is that metabolic enzyme expression only defines how the table is set; nutrient 

availability in the TME will ultimately define what meal is served. Analysis of The Cancer 

Genome Atlas (TCGA) datasets revealed six dominant immune signatures—wound healing, 

IFN-γ dominant, inflammatory, lymphocyte poor, immunologically quiet, and TGF-β 
dominant—associated with 33 different cancer types (Thorsson et al., 2018). The cell types 

that contribute to these signatures are not fully understood but likely influence anti-tumor 

immunity. For instance, potential nutrient competition between distinct cell populations that 

share overlapping metabolic demands could lead to limitations in the availability of glucose 

and other cellular fuels. Similarly, stromal and immune cell types can contribute to shaping 

the metabolic composition within the TME, thus affecting both the nutrient utilization and 

drug responses of neighboring cancer cells (Halbrook et al., 2018; Sousa et al., 2016).

The potentially competitive environment within the TME can also induce TILs to enter an 

exhausted state. Exhausted CD8+ T (Tex) cells are a subpopulation of CD8+ Teff cells that 

exhibit reduced effector function and proliferative capacity, and can arise during chronic 

infection or cancer (McLane et al., 2019). Tex cells are associated with metabolic 

insufficiency that may be driven in part by the activation of one (or more) checkpoint 

inhibitor receptors, such as PD-1, LAG3, or CTLA-4 (Bengsch et al., 2016; Previte et al., 

2019). Metabolic characterization of exhausted CD8+ T cells suggests that PD-1 inhibits 

glycolysis and supports fatty acid oxidation, resulting in the accumulation of CD4+ Tregs 

that can suppress the effector functions of CD8+ T cells (Bengsch et al., 2016; Patsoukis et 

al., 2015). Interestingly, PD-1 blockade has been shown to reverse the inhibition of 

glycolysis in exhausted T cells within a murine sarcoma (Chang et al., 2015). Indeed, 

therapeutic interventions designed to target checkpoint inhibitors have garnered extensive 

interest in the treatment of human cancers (Buck et al., 2017). Given the influence of tumor-

immune crosstalk on anti-tumor immunity, experimental co-culture models may provide an 

alternative approach to monoculture strategies in order to model heterocellular interactions 

within the TME and how these impact immune cell responses and tumor cell sensitivity to 

small molecule drugs.

Ultimately metabolism in the TME is influenced by numerous factors that impact local 

nutrient availability, including cell-intrinsic metabolic programs driven by oncogenes (and 

complicated by genetic heterogeneity within the tumor) and cell-extrinsic factors such as 

tissue vascularization and nutrient and oxygen gradients within the tumor (Figure 1). Whole-

body metabolic fluxes also influence tissue metabolite levels and are heavily influenced by 

diet and the microbiota (Ang et al., 2020; Biggs et al., 2017; Hui et al., 2020; Rooks and 

Garrett, 2016). Layered on top of this are tumor-stromal interactions, especially evolving 

tumor-immune cell interactions, that have the potential to impact the metabolic and 

inflammatory environment within the TME. Improved modeling of metabolism in the TME 
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will require being mindful of environmental conditions (nutrient and oxygen levels), 

knowledge of tumor origin and genetic background, and tumor-immune crosstalk (Figure 1).

2 MODELING METABOLISM IN THE TUMOR MICROENVIRONMENT

Several recent studies have collectively established that metabolic phenotypes may vary by 

experimental model. For example, the use of stable isotope tracers in vivo using either 

mouse models or human patients has revealed that nutrient utilization by cancer and immune 

cells can differ from those observed using cell-based culture approaches (Davidson et al., 

2016; Fan et al., 2019; Hensley et al., 2016; Ma et al., 2019). Though there are inherent 

caveats associated with all experimental models, an increased recognition that environmental 

factors contribute to cell metabolism (DelNero et al., 2018; Lyssiotis and Kimmelman, 2017; 

Muir et al., 2018; Singer et al., 2018; Wolpaw and Dang, 2018) has rapidly escalated efforts 

to improve the capacity of in vitro culture systems to more closely recapitulate conditions in 

human circulation or tumor-specific environments (Cantor, 2019).

2.1 Physiological media formulations

The complete medium formulations that remain the workhorses of cell culture studies across 

all areas of biology typically consist of a synthetic basal medium (e.g., MEM, DMEM, 

RPMI 1640) that poorly reflects metabolite availability in human biofluids, which is also 

supplemented with a largely undefined serum component (Cantor, 2019). Such media were 

primarily designed to promote the rapid growth of specific cell types, rather than to model in 
vivo biochemical conditions. Despite the extensive evidence for how biochemical conditions 

influence immune cell metabolism (Singer et al., 2018), most cell culture studies (Arora, 

2013) are still carried out using these complete media. To address this discrepancy, there has 

been a recent rise in development of strategies to more closely model biochemical conditions 

encountered in vivo through the use of improved media formulations or systems that 

dynamically buffer nutrient concentrations (Birsoy et al., 2014). Here we focus on unbiased 

bottom-up approaches to systematically develop physiologic media that more closely 

recapitulate the metabolic composition of human blood.

Cantor and colleagues developed human plasma-like medium (HPLM) (Cantor et al., 2017), 

which contains over 60 metabolites and salt ions at concentrations that represent average 

reported values for normal adult human plasma (Psychogios et al., 2011; Wishart et al., 

2013). Through the use of HPLM, the authors discovered an example of metabolic 

regulation mediated by a metabolite (uric acid) that, among basal media, was uniquely 

defined in HPLM, and whose plasma concentrations differ by up to 10-fold between humans 

and mice. The authors went on to demonstrate that HPLM could influence the relative 

cytotoxicity induced by 5-Fluorouracil, a classic chemotherapeutic that is widely used. 

These results provide evidence that the influence of metabolite availability on cell 

physiology and drug responses need not be restricted to considerations of nutrient utilization 

alone, and also suggest the potential to identify additional unforeseen metabolite-drug 

interactions.

Through an independent and parallel approach, Vande Voorde and colleagues developed a 

comparable basal medium (Plasmax) designed to reflect the polar metabolite composition of 
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human blood (Ackermann and Tardito, 2019; Voorde et al., 2019). Among the relative 

metabolic differences described in cultured cells, the authors reported that differential 

arginine availability between Plasmax and a conventional medium can influence the 

direction of a reaction catalyzed by argininosuccinate lyase within the urea cycle. The 

authors also showed that by culturing certain breast cancer cells in Plasmax supplemented 

with relatively low levels of serum, the availability of selenium (at concentrations defined in 

Advanced DMEM/F12) could influence the colony-forming capacity of these cells.

Notably, the impact of physiologic media on cultured cells is not restricted to studies of 

cancer metabolism. Recent work demonstrated that, compared to the historically used 

medium to culture normal and malignant blood cells (RPMI 1640), HPLM induced 

markedly different transcriptional responses in human primary T lymphocytes and improved 

their activation upon antigen stimulation (Leney-Greene et al., 2020). This medium-

dependent influence on T cell activation was traced to the differential availability of calcium, 

which is provided at a 6-fold higher levels in HPLM than RPMI 1640, indicating that small 

ion availability should be another key consideration in future models of the TME.

The development of physiologic media need not be limited to recapitulating the metabolite 

composition of human plasma, particularly in considering the environment(s) encountered 

by cancer and immune cells within a tumor. Through metabolic characterization of tumor 

interstitial fluid (TIF) isolated from tissue-specific murine tumors, Sullivan and colleagues 

recently reported that metabolite availability in TIF can differ from matched murine plasma, 

and that TIF composition may be influenced by additional factors such as cancer type and 

tumor location (Sullivan et al., 2019). These results suggest the potential to also generate 

synthetic media guided by non-plasma conditions, though given the anticipated 

heterogeneity of intratumoral environmental contexts, such approaches will likely require 

careful consideration in the selection and modeling of these biofluids.

While most efforts toward modeling the defined biochemical conditions of cell-based culture 

models have focused on polar metabolite availability, the characterization of extracellular 

lipid composition in different biofluids remains an ongoing consideration. For most 

complete media, the major source of lipophilic species is a supplement of 10–20% serum 

from fetal bovine or calf. However, lipid composition can vary between serum sources and 

lots, thus impacting experimental reproducibility. Charcoal stripping to remove serum lipids 

and enhance reproducibility can also deplete critical growth factors and hormones, further 

complicating current strategies to incorporate lipids into culture media at defined 

concentrations. Given the reported role of free fatty acids as a fuel for certain cancer and 

immune cell populations (Röhrig and Schulze, 2016), the development of robust and 

accessible approaches to incorporate at least certain free fatty acids to physiologic media at 

defined concentrations will be an important future direction to consider.

2.2 Tumor spheroids and organoid models

While physiological culture media systems have sought to recapitulate in vivo nutrient 

availability, tumor spheroid and organoid models have aimed to better model other 

environmental factors that cells encounter in normal tissues or in the TME. Three-

dimensional (3D) organoid culture models, which are designed to more closely mimic the 
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mechanical properties of the extracellular matrix, can also affect cell metabolism and drug 

responses (Fujii et al., 2016). For example, colorectal cancer (CRC) spheroids used to model 

nutrient gradients in the TME revealed p53-dependent metabolic vulnerabilities in response 

to cholesterol-lowering drugs (i.e., statins), which were not otherwise observed in cells 

cultured as monolayers (Kaymak et al., 2020). In addition, Neal and colleagues developed 

an air-liquid interface (ALI) method for culturing patient-derived organoids (PDOs), which 

enabled the propagation of tumor cells and embedded immune cell populations (including T, 

B, and NK cells and CD14+ or CD68+ macrophages) for several weeks (Neal et al., 2018). 

Similarly, others have described the use of: a) co-cultured mouse-derived cancer organoids 

with autologous immune cells for the study of PD-1:PDL-1 interactions (Chakrabarti et al., 

2018); b) heterotypic co-culture of CRC spheroids with immune cells to examine the 

infiltration and ensuing response of T and NK cells (Courau et al., 2019); c) organotypic 

tumor spheroids to identify associations between certain cytokines and chemokines and anti-

tumor immunity (Jenkins et al., 2018); and d) co-culture of CRC-derived organoids with 

autologous TILs to predict cellular responses to chemoradiotherapy (Kong et al., 2018). Of 

note, Kong and colleagues demonstrated that antitumor immunity could be rescued by the 

addition of antibodies targeting PD-1, highlighting the potential utility of coculturing TILs 

with tumor organoids to uncover new cancer immunotherapies.

2.3 In vivo tumor characterization

One challenge of in vitro models is how best to recapitulate both the proportion of immune 

cell populations and their functional state within the TME. An excellent example of this is 

CD8+ Tex (for a comprehensive review please see (McLane et al., 2019)). Effectively 

recapitulating the Tex cell state in cell culture has been challenging, although new chronic 

stimulation methods developed to study T cell exhaustion in vitro show promise (Vardhana 

et al., 2020). Chronic infection models, such as LCMV Clone 13, and syngeneic tumor 

models remain the gold-standard for studying this cellular state. Indeed, syngeneic mouse 

models also remain the current workhorse model system for studying tumor-immune cell 

interactions, as well as for testing the efficacy of new immunotherapies (e.g., checkpoint 

inhibitors) (Allard et al., 2016). However, orthotopic xenograft mouse models may better 

recapitulate the relevant TME context (Sullivan et al., 2019). Interestingly, one recent study 

demonstrated that tumor infiltration by various immune cells could vary between models 

that used syngeneic versus orthotopic xenografts, highlighting the potential influence of 

tumor location on immune cell response (Zhao et al., 2017).

3 EMERGING APPROACHES FOR MODELING TUMOR-IMMUNE 

METABOLIC INTERACTIONS

In mice and humans, great progress has been made in the study of in vivo metabolism 

through the use of stable isotope-labeled nutrients in tumors or normal tissues. In some 

cases, these studies have also lent insights into how metabolic activity may vary between 

tumors in a tissue-dependent manner (Fernández-García et al., 2020; Jang et al., 2018). In 

contrast to typical in vitro methods, in vivo tracer studies further enable the consideration of 

nutrient and oxygen gradients in the context of tissue architecture, intracellular interactions, 

and systemic metabolism (Figure 2). For instance, recent work by Ma and colleagues used 
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stable isotope tracer and 13C-glucose infusion techniques to track and compare glucose 

utilization by CD8+ T cells responding to infection in vitro and in vivo (Ma et al., 2019). 

This work revealed that, in contrast to their metabolic phenotypes exhibited in vitro, CD8+ T 

cells in vivo displayed an oxidative phenotype and used glucose carbon for anabolic 

demands such as nucleotide and serine biosynthesis rather than for lactate production. In 

another recent study, Lercher and colleagues used 13C-arginine infusion to understand how 

hepatic metabolism is modulated in response to viral infection (Lercher et al., 2019). 

Together these studies provide a potential foundation for studying the impact of local and 

systemic environments on T cell metabolism and protective immunity (Figure 1).

Yet, caveats also remain for in vivo studies of immunometabolism. One challenge in using 
13C tracers to study immune cell metabolism in vivo is the natural cellular heterogeneity that 

exists in different tissues. Given the heterocellular complexity within a tumor, the use of 

isotopically-labeled infusion techniques typically requires eventual isolation (e.g., via 

sorting or kit-based purification) of a specific cell subset. Sorting immune cell subsets after 

isolation takes time (30 minutes to several hours) and often involves culture in minimal 

buffers that promote changes in metabolite pool sizes (Llufrio et al., 2018). Although this 

timescale preceding metabolite extraction could be incompatible with retaining the 

metabolic profile of cells in vivo (Cantor, 2019; Llufrio et al., 2018), there is evidence that T 

cells retain their metabolic programming during short-term culture after sorting (Ma et al., 

2019). Taking a different approach, sorting immune cells into distinct cell populations (i.e., 

Teff versus Tex cells) followed by immediate ex vivo 13C tracer analysis represents a 

feasible way to model immune cell metabolism in the TME, particularly when studying 

complex cellular heterogeneity or rare cell populations. By further incorporating the use of 

physiological media and more physiologically relevant oxygen tensions, ex vivo tracing 

experiments could potentially offer a more tangible and accessible approach for mimicking 

in vivo conditions (Figure 2).

Extending beyond metabolomic snapshots of isolated cells, imaging techniques such as 

matrix-assisted laser desorption/ionization–time-of-flight (MALDI-TOF) mass spectrometry 

have the potential to further elucidate spatial metabolite composition and nutrient gradients 

within intact tissues. For example, Fan and colleagues used an ex vivo stable isotope-

resolved metabolomics (SIRM) technique and coupled histological characterization for 

samples resected from non-small cell lung cancer patients to investigate tissue metabolism 

over time (Fan et al., 2016b). Further, Hensley and colleagues infused non-small cell lung 

cancer patients with 13C-glucose prior to surgical resection, which revealed that tumor areas 

with high perfusion versus low perfusion exhibited different metabolic phenotypes (Hensley 

et al., 2016). Others have mapped metabolite clusters in human CRC based on 3D 

desorption electrospray ionization (DESI)-MS techniques (Inglese et al., 2017). Perhaps the 

integration of spatial metabolite profiling and high-dimensional immune cell imaging 

techniques (Hartmann and Bendall, 2020) will bring us closer to achieving single cell 

resolution of metabolism within complex tissue environments.
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4 CONCLUSION

The metabolic networks of different cells are dictated by the sum and interplay of several 

intertwined cell-intrinsic and environmental factors. By integrating this concept with recent 

technical advances such as physiologic culture media, culture systems that dynamically 

buffer the concentrations of certain nutrients, stable isotope tracing, and in vivo metabolite 

imaging, it should be possible to develop new strategies that advance our understanding of 

immunometabolism in the TME. In addition, co-culture methods that integrate tumor 

organoids and peripheral blood lymphocytes (Dijkstra et al., 2018) have the potential to 

support more “personalized” metabolic modeling of patient TME conditions. The culture of 

ex vivo tissue slices (Fan et al., 2016a) or PDOs from patient-derived tumors (Neal et al., 

2018) in conditions that more closely recapitulate those in the human body may enable 

opportunities to more closely model metabolic cross-talk between diverse cell types that 

reside in the TME. Therefore, contextualizing the study of immunometabolism will be 

important to improve our understanding of immune cell function and how such knowledge 

can be leveraged to treat human disease.
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Figure 1: Factors influencing metabolism in the TME.
Metabolic conditions in the TME are influenced by many factors. From the perspective of 

the tumor, mutations in oncogenes and tumor suppressor genes can promote cell-intrinsic 

changes in metabolic reprogramming depending on the cancer type (“Origin”). Whole body 

metabolism dictates available nutrients in circulation (“Nutrient Availability”), while local 

nutrient availability in the TME is influenced by tumor vascularization and tissue nutrient 

uptake. Due in part to the high proliferation of cancer cells, nutrient and oxygen gradients 

can form which shape the metabolic activities of cells differently across the tumor. Nutrient 

utilization and signaling by many cell types present (immune, stromal, epithelial, cancer) in 

the TME can also modulate the metabolic conditions within the growing tumor (“Tumor-
Immune Crosstalk”).
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FIGURE 2: Approaches for modeling physiologic immunometabolism using stable isotope 
tracing.
Isotope tracers, in the form of heavy-labeled metabolites, can be administered intravenously 

(top) or ex vivo to sorted cell populations (bottom) to achieve accurate tracing of in vivo 
metabolic pathways. Ex vivo tracing (bottom), in combination with physiologic media and 

oxygen tension, offers a path for physiological modeling of the metabolic state of specific 

cell subsets in vivo that require extensive sorting after extraction.
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