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Abstract

Human sensing, motion trajectory estimation, and identification are central to a wide range of 

applications in many domains such as retail stores, surveillance, public safety, public address, 

smart homes and cities, and access control. Existing solutions either require facial recognition or 

installation and maintenance of multiple units, or they lack long-term re-identification capability. 

In this paper, we propose a novel system – called EyeFi– that combines WiFi and camera on a 

standalone device to overcome these limitations. EyeFi integrates a WiFi chipset to an overhead 

camera and fuses motion trajectories obtained from both vision and RF modalities to identify 

individuals. In order to do that, EyeFi uses a student-teacher model to train a neural network to 

estimate the Angle of Arrival (AoA) of WiFi packets from the CSI values. Based on extensive 

evaluation using real-world data, we observe that EyeFi improves WiFi CSI based AoA estimation 

accuracy by more than 30% and offers 3,800 times computational speed over the state-of-the-art 

solution. In a real-world environment, EyeFi’s accuracy of person identification averages 75% 

when the number of people varies from 2 to 10.

I. INTRODUCTION

Human sensing, motion trajectory estimation, and identification have a wide range of 

applications, including in retail stores, surveillance, public safety, public address, and in 

access control. For example, in retail stores, it is useful to capture customer behavior to 

determine an optimal layout for product placement, detecting re-appearing shoppers after 

weeks to track shopper retention rate, separating employees from shoppers to generate an 

accurate heatmap of motion pattern of (only) shoppers. For surveillance, it is useful to 

identify and track a limited set of people from a crowd, e.g., tracking undercover police 

agents from a group of people to ensure their safety. Once a class of people is identified, that 
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can be leveraged for public address based on additional contexts. For example, when an 

active shooter in a building has been identified through a security camera, targeted and 

customized messages can be sent to different groups of people in different parts of the 

building through accurate identification to help to find safe escape routes – instead of 

sending a generic SMS to everyone, possibly including the shooter.

A wide variety of sensing technologies exist for human sensing, motion trajectory 

estimation, and identification that uses cameras, WiFi, Bluetooth, and ultrasonic sensors. 

However, there are shortcomings of each of these sensing modalities. For example, 

ultrasonic sensor-based identification [10] does not scale to thousands of reappearing 

shoppers in retail stores. Camera-based solutions suffer from illumination, occlusion, 

background cluttering, and change of perspective and fail to support long term identification, 

e.g., detecting a shopper after two weeks when they show up in a different colored dress in a 

retail store when body appearances based identification is applied [9]. Facial recognition can 

be potentially used for person identification at scale. However, facial recognition is banned 

in many places, e.g., San Francisco [2], and it is difficult to employ in some settings such as 

in retail stores where typically panoramic cameras mounted on ceilings can hardly see faces. 

Sniffing WiFi MAC addresses provide coarse-grained location information, e.g., a shopper is 

within 30 meter radius of a WiFi access point without providing location insights to infer 

customer-product interaction. To achieve precise localization using WiFi, multiple WiFi 

beacons or receiving units need to be set up, maintained, and coordinated, which can be very 

expensive [12].

In this paper, we propose to fuse two powerful sensing modalities – WiFi and camera – in 

order to overcome the aforementioned limitations of the state-of-the-art solutions. We call 

our proposed solution EyeFi. EyeFi does not require facial recognition, provides long-term 

re-identification, does not require deployment and maintenance of multiple WiFi units, and 

has the potential to provide such intelligent capabilities on a standalone device. To this end, 

EyeFi integrates a WiFi chipset (with multiple antennas) to a camera. As a result, a single 

EyeFi unit can detect, track, and re-identify people as far as the camera can see. Our current 

implementation of EyeFi uses a panoramic camera mounted on a ceiling. However, other 

types of cameras such as a bullet camera will also work.

EyeFi uses the on-board camera to detect, track, and estimate the motion trajectories of the 

people in its field of view. Simultaneously, using the on-board WiFi chipset, EyeFi overhears 

WiFi packets from nearby smartphones and extracts the Channel State Information (CSI) 

data from the WiFi packets. The CSI information is used to estimate the Angle of Arrival 

(AoA) of the smartphone from the EyeFi unit. Compared to existing WiFi-based AoA 

estimation techniques [12], EyeFi uses a smartphone in motion as a transmitter (not a 

stationary desktop computer), uses a low sampling rate (around 23 packets per second), and 

uses a novel teacher-student based visually guided neural network to speed up the AoA 

estimation by over 3,800 times. For each person (i.e., smartphone) generating the WiFi 

traffic, a sequence of AoAs is estimated to capture the motion trajectory of the individual. 

Then EyeFi performs cross-modal trajectory matching to determine the identity of the 

individuals. It is based on the assumption that most people use smartphones and the same 

smartphone is usually used for an extended period of time. Also, as smart watches are 
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becoming popular and getting equipped with WiFi chipsets (e.g., Samsung Gear S3 and 

Apple Watch 4), EyeFi can leverage wireless devices beyond smartphones. Note that the 

MAC addresses can be hashed to safeguard the privacy of the individuals, but it is still useful 

for long-term re-identification and behavior analysis.

This work has the following contributions:

• First, we design and implement a novel multi-modal sensing system called 

EyeFi, which is the first system that fuses WiFi CSI with camera for human 

sensing, motion trajectory estimation, and long-term identification and has the 

potential to offer such analytics on a standalone device. EyeFi overcomes several 

limitations of the state-of-the-art solutions as it does not require the use of facial 

recognition and the cost of deployment and installation of multiple WiFi units.

• Second, since no such system and datasets are available, we collect over 74 GB 

of data containing videos and WiFi CSI values of over one million WiFi packets 

with over 15 volunteers from two different environments to develop and test our 

solution. We annotate a major portion of the dataset1.

• Third, we develop a novel student-teacher based neural network to estimate AoA 

from CSI values. Instead of just using camera-based motion trajectory as the 

ground truth, we force the network to regress the AoA of state-of-the-art SpotFi 

algorithm [12], and thereby, forcing the network to learn multipaths and estimate 

AoA more accurately. We also propose novel techniques to smooth the WiFi-

based trajectory for cross-modal matching.

• Finally, based on extensive evaluation using real-world data, we find that EyeFi 

improves WiFi CSI-based AoA estimation accuracy by more than 30% and 

offers 3,800 times computational speed up over the state-of-the-art solution, 

enabling EyeFi a real-time system. We observe that the average accuracy of 

EyeFi for person identification is 75% when the number of people varies from 2 

to 10.

II. USAGE SCENARIOS

We describe two real-world usage scenarios of EyeFi.

• Customer Behavior Analysis.

Once a customer arrives at a store, his smartphone generates WiFi traffic to discover local 

access points. After he connects to the local WiFi access point, his checking of notifications, 

viewing of websites for better prices or deals of similar items, listening of SpotiFi music, or 

messaging of friends generates more WiFi traffic. All of these WiFi traffic is overheard by 

the WiFi chipset of EyeFi system. EyeFi extracts the MAC address and CSI values from the 

WiFi packets, timestamps each value, and records them. Using our proposed algorithm, 

EyeFi performs AoA estimation and matches the AoA sequence with one of the trajectories 

observed from the camera. Due to the use of the MAC address, the customer can be 

1More information on EyeFi data and deployment can be found at the project page https://github.com/munir01/EyeFi
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identified over a long period and even at a different store. EyeFi hashes the MAC address to 

anonymize the customers, but can still generate high-level analytics of aggregated customer 

behavior.

• Emergency Situation.

During emergency situations, EyeFi can send location and person-specific targeted messages 

to guide people to safety. For example, in a retail environment, EyeFi can send different 

messages to employees who know the store area, law enforcement officers that are armed, 

and customers who need help. In case of an emergency, such as the presence of an active 

shooter, the law enforcement officers can be notified of the shooter’s exact location 

(determined using cameras) so that they can take proper actions, employees can be 

instructed to assist customers and to commence emergency protocol, and customers can be 

given specific instructions on their phones based on their location (e.g., the nearest and safe 

escape route or a safe hiding place).

III. BACKGROUND

A. WiFi AoA Estimation

In a WiFi network, a transmitter and a receiver communicate by sending packets back and 

forth through a certain band. The communication band contains multiple channels in which 

each channel is a certain range of frequencies. During the transmission, the Channel State 
Information (CSI), which describes the properties of the channel, is being recorded by the 

receiver. The properties of such channels are a description of the combined effect of the 

scattering, fading, and power decay between the transmitter and receiver. The WiFi chipset 

natively estimates the Channel State Information (CSI) to improve communication 

efficiency. With recent studies, researchers have found that CSI can be used for WiFi 

sensing, including but not limited to angle of arrival estimation, human detection, and breath 

detection.

For the angle of arrival (AoA) estimation, one classical method is the MUSIC algorithm 

[19]. If two antennas are separated d distance apart, the additional phase shift introduced due 

to the distance is −2π ×d×sin(θ)×f/c, where θ is the AoA, f is the signal frequency, and c is 

the speed of light. The MUSIC algorithm works by estimating the steering matrix A in X = 

AF, where X is the measurement matrix of the received signal, and F is the matrix of 

complex attenuation. In a recent WiFi-based localization algorithm [12], the AoA of the 

direct path (which is relevant to the localization problem) is isolated by taking the 

eigenvector of the matrix, XXH, for which, the eigenvalue is zero. The eigenvector goes 

through further processing to obtain the direct path.

IV. SYSTEM DESIGN

A. Overview

EyeFi is a framework that fuses information from visual domain captured from camera and 

CSI measurements of WiFi packets to jointly track human motion trajectories and identify 

them for many applications. Using on board computer vision algorithm, the camera detects 
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people, estimates their location and motion trajectories, but unable to identify and re-identify 

people across time and/or multiple cameras without a shared field of view across cameras. 

However, WiFi provides a way of identification through user-specific information, i.e., the 

MAC address of the user’s smartphone, but the derived motion trajectory is coarse grained 

and inaccurate. EyeFi exploits the properties of these two sensing modalities to fuse the 

trajectories obtained from both for fast and accurate person identification across time and 

space. The system primarily consists of a camera and a WiFi sniffer. EyeFi does not require 

installation of any apps or beacons on the users’ smartphone and does not add additional 

overhead to the phone.

A high-level architecture of EyeFi is shown in Figure 1. A surveillance camera with a WiFi 

chipset is installed at the desired location and it overhears WiFi packets of intended subjects 

like shoppers. Smartphones generate WiFi packets after connecting to the local WiFi access 

point. When a smartphone is not connected to an access point, it still generates WiFi packets 

to discover nearby access points. These packets are captured by EyeFi along with CSI 

information, which is used to estimate AoA of the WiFi source. However, since the 

estimated AoAs are very noisy, they are further processed to smooth the motion trajectory. 

Meanwhile, the camera reports the locations of detected human subjects (which may contain 

more/less people than the number of smartphones that the WiFi unit has detected) and their 

motion trajectories. Both the trajectories from the camera and the WiFi are sent to the 

trajectory matching module that identifies people using WiFi MAC addresses by performing 

cross modal trajectory matching.

B. Motivational Experiments

EyeFi is motivated by the poor performance of existing person identification solutions. For 

example, a possible alternative to EyeFi is to use a camera-based solution that uses facial 

recognition to track people across time and locations. However, cameras installed in public 

places like a retail store can barely see the faces of the customers. In order to understand the 

performance of a camera-based system, we apply a facial recognition algorithm on a video 

feed that we collected during our empirical study.

Figure 2 shows a frame from our video feed which contains eight human subjects 

highlighted using red rectangular boxes. We use a Python-based facial recognition software 

[1] to detect faces in this frame. The result is catastrophic. The software detects 0 faces after 

running the algorithm on the entire video. This is because as we can see in the example 

video frame, a human subject can be facing away from the camera and his dress and floor 

color can be very similar – which poses an additional challenges to object recognition and 

matching in a purely vision based domain. Also, existing pre-trained vision-based models do 

not work well with panoramic images.

To complement the vision-based system, one can add WiFi-based localization to the system 

by running the SpotFi [12] algorithm on the collected CSI data. However, based on our 

experiments, the Matlab implementation [3] of the SpotFi algorithm (provided by the 

authors) requires around 1.5 – 2 seconds to generate AoA estimation for a single WiFi 

packet. For 8 hours of continuous WiFi stream at the data rate of 20 packets per second, the 

total number of WiFi packets is 576,000. With 1.5 seconds computation time for each 
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packet, the AoA estimation requires 240 hours. Even though the computation time can be 

reduced by using a more efficient implementation, the computation time will still be too 

long to be viable for processing a large number of WiFi data points for the intended 

application. Based on these initial experiments, we develop EyeFi to overcome these 

limitations and to achieve a faster, accurate, and practical solution that works in real-life 

scenarios.

V. ALGORITHM

EyeFi is a modular system that combines information from visual domain with RF domain. 

For camera based person detection, tracking, and trajectory estimation, EyeFi uses the 

proprietary software that comes with Bosch Flexidome IP Panoramic 7000 camera. Our 

evaluation shows that the existing firmware of the camera can estimate AoA of individuals 

with an average of 1.03 degree error. EyeFi is agnostic of underlying computer vision 

technique of person detection and tracking as long as the accuracy is similar. So, we focus 

on WiFi based AoA estimation, trajectory smoothing, and cross modal trajectory matching. 

However, we use the camera based location information to improve accuracy and execution 

speed of WiFi based AoA estimation. In this section, we describe each of these components 

in detail.

A. Camera Assisted WiFi Based AoA Estimation

WiFi communication produces Channel State Information (CSI) which can be used to 

estimate the Angle of Arrival (AoA) of the incoming WiFi signals. Methods like SpotFi [12] 

extend computationally expensive MUSIC algorithm which uses linear algebra to 

decompose and estimate AoA. However, from our experiments, the SpotFi algorithm is 

evidently slow and does not work well in large AoA scenarios (e.g., 60°90°). Examples are 

given in Section VII-B.

To reduce the computation time and to improve overall AoA estimation performance in 

order to be viable for EyeFi, we seek a data-driven machine learning-based approach to 

estimate AoA from CSI data. To that end, we try different neural network architectures and 

after observing similar performance of multiple complex networks, we choose a fully 

connected neural network that takes CSI data as input and regresses the AoA values (shown 

in Figure 3) as it performs equally well. For the CSI data, there are 90 complex numbers for 

each packet, which correspond to 30 subcarriers from 3 antennas. We format these 90 

complex numbers into a vector of 180 numbers which represent the real and imaginary parts. 

The neural network has 6 hidden layers in addition to the input and output layer. For the 

activation function, we use Leaky ReLU [15] for improved performance [29] and to 

accommodate the negative value of the imaginary part:

y = x, if x ≥ 0
slope × x, otherwise (1)

We also use dropout [23] to reduce overfitting. We use L1 loss function and Adam optimizer 

for training.

Fang et al. Page 6

Int Conf Distrib Comput Sens Syst Workshops. Author manuscript; available in PMC 2021 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For training the neural network, we take inspiration from knowledge distillation, more 

specifically, the teacher-student model where the student network learns from the soft labels 

of a teacher model [6]. We treat the SpotFi [12] algorithm as the teacher model for the 

training purpose. Even though the goal of our neural network is to regress AoA using CSI 

and we provide hard label of AoA from camera as ground truth, forcing the network to 

regress the AoAs of the SpotFi, which are the soft labels in our case, in addition helps to 

ensure the network is forced to learn multipaths as accurately as the teacher model (SpotFi) 

and hence has a better chance of generalizing to a different environment. As shown in Figure 

3, the output of the network is a vector of size five as the network regresses to one AoA from 

camera and four multipaths from SpotFi. We test our hypothesis regarding the need for a 

teacher-student model and find that such a model helps to improve AoA estimation accuracy 

and helps with generalization in a different environment as described in Section VII-B.

B. WiFi based Trajectory Smoothing

The estimated AoA from CSI data is noisy – which we can see from Figure 4, where both 

the estimations from SpotFi and our neural network generated ones show similar 

characteristics. Such noisy characteristic can be caused by sensor measurement noises, 

body-shadows, and multi-path effects. Even in a controlled environment, the noisy situation 

improves but is not eliminated. To address this issue, we smooth the data to better align with 

the ground truth.

Typically smoothing is based on the idea that noise has a certain distribution and added to 

the underlying real data. For such data, employing moving average usually achieves a good 

result. However, the data from the AoA estimation does not show such a distribution. 

Applying moving average in our time series data causes the result to bias towards the noisy 

direction. An example of applying moving average algorithm on the data from Figure 4(b) is 

shown in Figure 5(a). We can see that the smoothed results are biased toward the noisy 

direction.

For non-parametric based methods such as Locally Weighted Scatterplot Smoothing 

(LOWESS) can produce better results in some cases as it does not assume the data fits some 

specific distribution. However, in our case, the AoA data can become extremely noisy such 

as around packet number 200 – 250. These abrupt fluctuations can severely distort the 

smoothed result as shown in Figure 5(c) after applying LOWESS. Even though it improves 

over the moving average approach, it is still too noisy to match with a camera based 

trajectory.

To achieve the best possible smoothing, we develop a two-stage smoothing pipeline. The 

first stage addresses the noise causing abrupt fluctuations. We define a smoothing window of 

length N with the targeted smoothing data point xt ∈ X at the middle point, where X is a set 

of all the N data points within the window. The variance of all the data points in the 

smoothing window is calculated:

σX
2 = 1

N ∑
i = 1

N
xi − μX

2
(2)
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we then calculate the variance without the targeted data point:

σX
2 = 1

N ∑
i = 1, i ≠ t

N
xi − μX

2
(3)

If the difference between the two variances δ = σX
2 − σX

2  is larger than a threshold λ (we set 

to 1), we treat the target data point as an abrupt noise and replace it with:

xt =
μXbiased , if σX

2 > λvar

μX, otherwise
(4)

The σX
2  and λvar are variance of the smoothing window and a threshold (set to 300) to 

determine if this smoothing window is a volatile region. Our empirical study shows that as 

the neural network learns the multipaths of SpotFi, the estimated AoAs have larger variances 

when the phone is within larger AoA ranges. Example of such areas can be seen in Figure 

4(b) packet 150–225 and 325–375. As they are in the large AoA range, the noise can be 

large and toward the opposite direction. As a result, we use μXbiased  to replace the targeted 

data point when σX
2 > λvar is met. Xbiased is determined as follows:

Xbiased: =
x ∈ X:x ≥ Xmedian , Xmedian ≥ 0
x ∈ X:x < Xmedian , Xmedian < 0 (5)

The Xmedian is the median value of X (considering all N AoA values) in that smoothing 

window. Expression {x ∈ X : x ≥ Xmedian} means elements in X that are larger than their 

median value. μXbiased is the average of Xbiased from Equation 5. For the second case of 

Equation 4, μX is the sample mean of all the AoA data points in the smoothing window. 

Figure 5(b) shows the result of the variance-based smoothing performance over the first 

AoA (i.e., the first element of the output vector) generated by the neural network. As we can 

see from the figure, the noises causing abrupt fluctuations are largely addressed. For the 

second stage of smoothing, we apply LOWESS to the smoothed data and the results are 

shown in Figure 5(d). The mean and median values of the absolute differences between the 

smoothed AoA data and camera generated ground truth AoA of all the figures in Figure 5 

are shown in Table I. It shows that applying LOWESS after variance based smoothing 

significantly reduces the mean and median error of AoA estimation. We perform a detailed 

evaluation in Section VII-C.

C. Identification Through Trajectory Matching

To identify individuals, EyeFi performs a cross-modal trajectory matching. The simplest 

approach is to apply Euclidean distance between two trajectories to find the shortest 

distance,
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dj, k = ∑
i = 1

N
T i, j − T i, k

2
(6)

where Ti,j and Ti,k are the AoA trajectories for subject j (computed using camera) and k 
(computed using WiFi CSI), respectively from a window of size N. By ranking the dj,k we 

can find the matched one with the shortest distance.

If each subject walks differently, Euclidean distance could be enough to identify subjects as 

long as the AoA estimation from each sensing modality is accurate. However, to identify 

subjects that have a similar path, we also take into consideration of the rate of the change in 

AoA trajectories. Specifically, we use polynomial functions to represent the trajectories and 

match with the desired subject. For a matching window of size N, we have can represent the 

segment with:

y = a ⋅ x3 + b ⋅ x2 + c ⋅ x + d (7)

where x ∈ X[1,N]. The polynomial fitting problem is also a smoothing operation, where 

small noises are filtered out. The estimated y data points are used for calculating the 

Euclidean distance between the trajectories from WiFi and camera after fitting polynomials. 

Also, instead of using the standard Euclidean distance function, we apply weights to each 

AoA data point. Using the polynomial function, we can find the rate of change at every data 

point Ri. Then, we calculate the absolute rate of change of differences Ri = Ri, j − Ri, k  for 

each pair of trajectories. Then the weighted distance is calculated as follows.

dj, k
∧ = ∑

i = 1

N
T i, j − T i, k

2 ⊗ Ri (8)

Here, the operator ⊗ represents element-wise multiplication. We only apply weighted 

Euclidean distance to smaller windows (less than 200 packets) as using it for larger 

matching windows will smooth out sharp trajectory changes that will deteriorate the 

performance of the matching. For larger matching windows, the standard Euclidean distance 

is used as it provides good performance and less computation overhead.

VI. DATA COLLECTION

A. Hardware and Software Setup

In this work, we use Bosch Flexidome IP Panoramic 7000 camera to collect vision data and 

Intel 5300 WiFi Network Interface Card (NIC) installed in an Intel NUC to collect WiFi 

data. The camera is mounted on a ceiling at a height of 2.85 meters whereas the WiFi card is 

located at the same location as the camera but at a height of 1.12 meters forming a unified 

coordinate system. We collect data in two different locations as shown in Figure 6. Figure 

6(a) shows the lab area where the majority of the data are collected, and Figure 6(b) shows 

the Kitchen area where the collected data are used for testing only (not used for training). 

The lab area is rectangular having dimensions of 11.8m x 8.74m and the kitchen area is 
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irregularly shaped with maximum distances of 19.74m and 14.24m between two walls. The 

kitchen also has numerous obstacles and different materials that pose different RF reflection 

characteristics. The change in the environment creates a vastly different RF characteristic 

that is used to test the robustness and generalizability of the system.

To collect WiFi data, we set up a Google Pixel 2 XL smartphone as an access point and 

connect the Intel 5300 NIC to it for WiFi communication (both are shown in Figure 7). The 

phone transmits 20–25 packets per second to the NUC. Such a low packet transmission rate 

simulates realistic scenarios, e.g., apps in the phone are receiving notifications. We use 

Linux CSI Tool [8] to record the CSI information from the Intel 5300 WiFi NIC on Intel 

NUC.

B. Collected Dataset

We collect data over multiple days and vary the number of people present in the scene. In the 

end, we have transmitted over 1.2 million WiFi packets and collected corresponding CSI 

values of over 13 hours. We also have over 15 different individuals holding the phone to 

capture various ways people hold phones, their walking patterns, and different heights. In 

addition to a single person walking in the scene, we also have multiple people walking 

simultaneously.

VII. EVALUATION

A. Evaluation Setup

We evaluate how each component of our system performs. We divide our dataset into 

different sets for this purpose. Part of the data collected from the lab area is used for our 

training and algorithm development. Data collected from the kitchen area are only used for 

testing the robustness and generalizability of the system. To identify the subject with the 

phone and test the accuracy of identification, we use the data from our camera system as 

ground truth. The camera detects individuals and provides the (x,y) coordinates of each of 

the detected subject, which is used to estimate AoA.

We first evaluate the accuracy of the camera in terms of its ability to estimate (x,y) 

coordinates and AoA by standing in 16 different locations throughout the lab and comparing 

the differences between the camera and our actual measurements. We find that the average 

error of the camera is (0.32, 0.29) meters for estimating (x,y) coordinates and 1.03 degree 

for AoA. It shows that we can use the location data from the camera system as ground truth 

for the training and testing.

B. Neural Network Based AoA Prediction

1) Training Data: As discussed in Section V-A, our training data consists of SpotFi 

generated AoAs and camera generated ground truth AoA. To prepare the dataset, we need to 

address the phase offsets between the 3 RF chains in the Intel 5300 NIC. [31] states that the 

phase offsets between these chains are deterministic and the offset between two RF chains 

only poses two possible values. We determine the two values based on our own 

measurements using methods stated in [31].
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During the data collection, it is impractical to measure the phase offsets each time the 

system reboots. To address this issue, we apply all possible (four) combinations of the phase 

offset when calculating AoAs using the SpotFi algorithm. Once all the SpotFi AoA data are 

generated, we find the correct phase offset by choosing the one with the smallest mean 

absolution difference between the AoA from SpotFi and AoA from the camera. Then, we 

use the SpotFi data with correct phase offsets calibrated to train our neural network models.

2) Neural Network Models: For the AoA estimation, we train our neural network 

models with different outputs to evaluate the performance of the teacher-student model and 

whether the neural network can learn the SpotFi algorithm. We train three different neural 

network models: SpotFi Only NN that uses SpotFi generated AoA results for training, 

SpotFi + Camera NN that is our teacher-student model, and Camera Only NN that uses only 

the camera generated ground truth AoA for training. All the neural network models are 

trained with the same training dataset with roughly 400,000 WiFi-camera AoA pairs.

To evaluate how the number of training samples affect the neural network performance, we 

train our SpotFi + Camera NN teacher-student model with different size of the training 

dataset, and test the performance of the neural network on the validation dataset (roughly 

58,000 WiFi-camera AoA pairs from the lab) and a subset of the data collected in the 

Kitchen area (roughly 22,000 WiFi-camera pairs). The results are shown in Figure 8. The X-

axis is the percentage of the dataset (roughly 400,000 WiFi-camera AoA pairs) used to train 

the neural network and Y-axis is the absolute difference between the neural network 

prediction and ground truth AoA. We report mean, median and standard deviation of the 

difference here. In Figure 8(a), we see that the performance of the neural network on the 

validation dataset improves as the size of the training dataset increases. The same trend are 

also being observed with the Kitchen area dataset. The improvements become minimal after 

80% of the dataset is being used for training. It shows that our training dataset is large 

enough to train our neural network model.

We also test if our epoch is large enough to complete the training of the network for 

improving the AoA estimation by calculating the mean and median AoA difference after 

each epoch with both the datasets from lab and the kitchen. The results are shown in Figure 

9. As we can see, the performance improvements level out when the number of epochs is 

larger than 75. The similarity between Figure 9(a) and Figure 9(b) shows that our neural 

network model generalizes to a difference environment as it learns.

We test all three models on an unseen test dataset. Table II shows the mean and median of 

the absolute AoA difference between the predicted one and ground truth for the neural 

network models and SpotFi. From the table, we see similar performance between the SpotFi 
algorithm and the SpotFi Only NN that demonstrates that the neural network can learn the 

SpotFi algorithm. Camera Only NN and SpotFi + Camera NN both show improved 

performance over SpotFi and SpotFi Only NN, and our teacher-student model SpotFi + 
Camera NN shows the best performance. The neural network learns the underlying 

relationship between the CSI and AoA, and the teacher-student model further improves the 

generalizability of the neural network on different test cases and environments.
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3) Robustness and Efficiency of AoA Estimation Neural Network: We test the 

robustness of our teacher-student neural network model on both unseen CSI data collected in 

the lab and kitchen area using over 30,000 and 20,000 WiFi packets, respectively. The 

results are shown in Table II. It shows that the performance of the neural network is 

comparable across different environments and shows better results than SpotFi. The 

difference between the SpotFi results in two environments can be because of different 

environment RF characteristics and percentage of the phone in different AoA range (SpotFi 

performs worse in large AoA range).

In addition to the performance improvement on the AoA estimation, the neural network also 

improves the execution speed. SpotFi takes around 1.5 seconds to estimate AoA per WiFi 

packet, thus making it difficult to be useful in a real-time solution. Based on using 22,854 

WiFi packets collected from the kitchen, we see that our neural network is around 3809 

times faster than SpotFi, which can be further improved using GPU computation and batch 

data, enabling EyeFi a real-time solution.

C. Smoothing

We use the kitchen data (different environment from the training) from the previous 

subsection to evaluate the performance of our smoothing algorithm. We measure the mean 

and median absolute errors between the smoothed AoA data and camera derived ground 

truth AoA data. The results are shown in Table III. In this table, NN is the AoA estimation 

from our neural network model, Variance Based is the results after our first stage smoothing, 

Variance + LOWESS is our full smoothing stack, and we also report the result by only 

applying the LOWESS algorithm in LOWESS. From this table, we can see that smoothing 

improves on the original neural network generated AoA estimation. Our smoothing stack 

produces the best results with both lowest mean and median absolute errors.

The results from LOWESS based smoothing is better than our variance based smoothing in 

Table III. This is different from the results presented in Table I which is the statistics for 

Figure 5. This is because in Figure 5, we choose a segment of the data where the neural 

network introduced more noise and the ground truth is in the large AoA range.

D. Identification

To evaluate the performance of identification, we collect datasets with multiple people 

walking in the scene simultaneously. The results are reported in Figure 10. We consider 

SpotFi as our baseline. It uses AoA data generated by the SpotFi algorithm and identifies the 

subject through Euclidean distance. EyeFi uses weighted Euclidean distance for 

identification on the two staged smoothed data generated by the teacher-student neural 

network. As stated in Section V-C, we only apply our weighted distance for the sequence 

size of fewer than 200 packets. The accuracy is calculated by sliding a window of size N 
along the time-series data, identify the subject with the AoA data within the window range, 

then computing the percentage of the number of accurately identified time-segments 

throughout the test dataset. The window size starts at 5, which means using only 5 packets. 

For example, in Figure 10(a), we can successfully identify the subject 90% of the time in a 

normal 2 people scenario. Since we collect data at a rate of 20–25 packets per second, 5 
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packets represent a duration of 0.25s or less. As more people are present in the scene, the 

difficulty of identification increases. As shown in Figure 10(b), the accuracy is worse than 

the 2 people case. The performance further drops with 5 people in the scene as shown in 

Figure 10(c).

Figure 10(d) shows the result of identification with 10 people walking simultaneously. The 

results show that EyeFi can still identify even though the accuracy drops in smaller 

windows. The identification accuracy of 10 people is a bit higher than that of 5 people when 

the window size is 500. This can be due to the human subject who is holding the phone 

walks in a different path than the rest of the group. This allows the identification can be 

100% accurate when the window size is large. However, in real situations, 500 packets span 

about 25 seconds during our data collection. With an average human walking speed of 1.1 

meters per second, a person can walk about 27.5 meters during that time frame. Given the 

number of packets large enough and the path is different enough to be distinguished from 

other trajectories, EyeFi could achieve near 100% accuracy in identification.

VIII. DISCUSSION

A. Limitations of Our Proposed Solution

There are two major limitations of EyeFi. First, it requires having a smartphone with WiFi 

communication. Second, it is unable to identify if multiple people walking together in a way 

that results in similar AoA trajectories. For the first limitation, the usage of the phone is very 

common but not all users will connect to public WiFi such as the ones provided by the store 

in our case. However, EyeFi can still receive WiFi packets generated by phones while 

discovering local access points. This property allows the system to estimate AoA and track 

the subject. However, if the WiFi interface is disabled or the smartphone is not generating 

any WiFi traffic, then EyeFi will not be able to identify people. But the camera can still 

provide analytics on behavior of people to some extent. For the second limitation, in retail 

stores, if the trajectories are the same for a few people, identifying either could provide the 

same analytic regarding customer behavior.

B. Motion Across Multiple Cameras

In areas where multiple cameras are deployed with or without shared field of view, EyeFi 

can leverage existing camera-based re-identification algorithm [33] to identify the same user 

across multiple cameras to provide full trajectory in the covered area. By leveraging WiFi, 

EyeFi can enable identification at different spatio-temporal segments, thus reducing the 

search space for the vision based identification and enable more accurate long-term re-

identification.

C. Generalization to Multiple Phones

The presence of multiple phones in the scene will have minimal effect on the performance of 

the system. This is due to the nature of WiFi communication that enables multiple devices to 

talk to each other without interference. This also means that the CSI information collected at 

the WiFi unit for each device has the same quality. EyeFi only relies on CSI information and 

does not require a high transmission rate which further reduces the impact of multiple 
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devices. During our data collection, all other WiFi devices and communications are 

functioning normally and no effects are observed.

D. Effects of Using Phones

Differs from most previous works that use Intel 5300 NIC for both communication devices, 

we use a smartphone at one end. The internal antenna design is vastly different from the 

external antenna used with Intel 5300 NIC devices and the holding of the phone by a human 

subject also affects the WiFi signal quality. During our experiments, we also observe poor 

performance and stability issues in AoA estimation with phones in comparison to Intel 5300 

NIC with external antennas, and the AoA results are worse than that is reported in previous 

works such as [12]. Note that Linux CSI Tool [8] offers the best performance and stability 

using injection mode, which is currently unavailable with the phone.

E. Effects of Environment

In our evaluation, we test EyeFi in two different environments that shows stable performance 

among them. This demonstrates the robustness and generalizability of our system. However, 

different environments can affect the performance of WiFi AoA estimation if the 

environment is very crowded with obstacles between the phone and WiFi access point to 

create a non-line-of-sight situation. In such a situation, the WiFi signal is distorted which 

degrades the AoA estimation performance. However, if the trajectories between different 

subjects in the scene are different from each other, the system should be able to identify. In 

our experiment, there are times where the phone is blocked by human bodies which distort 

the WiFi signal as well. With our smoothing pipeline, the identification can still perform 

well.

F. Privacy Issues

Privacy is a major concern nowadays and we design EyeFi with that in mind. Current 

camera-based systems mostly use facial recognition for user re-identification across time. 

However, facial recognition is unreliable in many settings (discussed earlier) and can be 

racial biased. There are also laws [2] to ban facial recognition to prevent such bias and 

protect privacy. In contrast to vision-based facial recognition systems to track a user across 

time, EyeFi only collects the MAC address of the phone and hashes that to obtain a 

consistent identification marker. Given most human subjects do not change phones very 

frequently, the hashed MAC address can be used as a reliable marker across time. As EyeFi 

does not keep the link between a hashed MAC address and its particular user, even if the 

hashed MAC addresses are compromised, it will be very difficult to use that to identify a 

particular user.

IX. RELATED WORK

A. WiFi CSI AoA Estimation

WiFi CSI based AoA estimation has been explored in many works. [12] exploits CSI values 

of WiFi subcarriers to extend the number of virtual antenna for obtaining AoA of the direct 

path along with several strong multipaths. They cluster AoAs of multipaths from multiple 

packets and choose AoA of direct path based on cluster quality. To localize a subject their 
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work relies on triangulation from multiple APs. [24] propose an algorithm for sub-

nanosecond time-of-flight calculation, from which they localize a subject with one AP. [25] 

use frequency domain super-resolution algorithms to overcome the bandwidth limitation of 

WiFi for precise localization. [27] extracts subcarriers less prone to multipaths and uses 

them to estimate AoA. [22] proposes to use multipath reflections to triangulate the subject 

instead of using multiple APs. [21], [28] uses fingerprinting to map WiFi physical layer 

properties for localization. [20] studies human movement’s effect on WiFi CSI based AoA 

estimation. [7] proposes phased signal processing for localization using triangulation that 

requires coordination of nodes for precise localization. [32], [34] propose CSI based 

fingerprinting techniques for AoA estimation. Differs from previous works, our system 

utilizes a data-driven model that results in fast computation that enables real-time 

application scenarios.

B. Multi-Modal Localization

Recent works have proposed multi-modal localization systems. [5] uses mobile phone 

sensors to associate a person visual information. The idea is to match a person’s movement 

signature between these two modalities and use this signature as MAC address for enabling 

the public server to send messages to the particular person. [4] proposes to use WiFi RSSI 

strength as an indication to depth information of the user. They use that depth information in 

association with RGB image from the camera to localize a person. [17] uses extended 

Kalman filter with accelerometer and WiFi RSSI as input for tracking people in a dynamic 

environment. This work relies on a pre-computed WiFi signal strength map for an 

environment. [30] uses a particle filter to integrate vision and radio localization system for 

sub-meter localization accuracy. In [18], [11], the fusion of vision and RF is done for 

different applications, e.g., fall detection, recalibration, and industrial workspaces. However, 

these solutions require the deployment of multiple cameras and/or RF units and none uses 

CSI information.

C. Identification

One of the main motivations behind EyeFi is the ability to identify human subjects across 

time. ID-Match [13] uses RFID tags and a 3D depth camera to identify and assign IDs to 

each person. RFID and BLE are used in [14] to identify individuals. These works require 

additional sensors or devices on the human subject which is inconvenient and can be 

potentially costly. The use of additional tags also presents difficulties when trying to tack the 

same subject across time as they can be easily misplaced or forget to carry. For vision based 

systems such as [26] which uses human motion pattern and color of clothing. However, such 

systems do not work with panoramic cameras that we are using. FORK [16] uses a depth 

sensor mounted above a doorway for person detection and identification based on the body 

shape of individuals. However, such an approach does not scale across thousands of people.

X. CONCLUSION

In this work, we propose EyeFi, a multimodal system that fuses WiFi and camera data to 

identify individuals by capturing motion trajectories from each modality. We design a 

teacher-student based neural network model to estimate AoA accurately, which speeds up 
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AoA estimation by over 3800 times with 30% higher accuracy, enabling EyeFi to be a real-

time system. We test the performance in two different environments and find the neural 

network based AoA estimation is robust to a change of the environment. When evaluating 

the accuracy of person identification, we see that EyeFi can achieve an average of 75% 

accuracy across all number of packets in a 2 to 10 people scenario. For future works, we will 

improve performance for each component and build an end-to-end system that can identify 

people in real-time.
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Fig. 1: 
An overview of EyeFi system architecture.

Fang et al. Page 18

Int Conf Distrib Comput Sens Syst Workshops. Author manuscript; available in PMC 2021 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Facial recognition software can not recognize any of the 8 human subjects present in the 

view. All figures best viewed in color.
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Fig. 3: 
Neural network model used in the AoA estimation. Training data includes the ground truth 

AoA from camera and SpotFi generated AoA data. There are 6 hidden layers and the 

number of neurons for each layer is listed underneath.
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Fig. 4: 
Both outputs from (a) SpotFi and (b) neural network exhibit noisy characteristics. Red 

represents the ground truth from camera and blue represents the first multipath from SpotFi 

(in (a)) and neural network (in (b)) generated AoA, respectively.
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Fig. 5: 
Comparison between different smoothing techniques. (a) is smoothed with moving average, 

(b) is smoothed with our variance based initial smoothing, (c) is AoA data smoothed with 

LOWESS, and (d) is after applying LOWESS on smoothed data from (b).
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Fig. 6: 
Data collection environment seen from panoramic cameras. (a) lab area which is large and 

rectangular shaped, (b) kitchen area which is irregular and has many obstacles. An Intel 

NUC is located at the middle of each figure forming a unified co-ordinate system of the 

camera and NUC.
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Fig. 7: 
Data collection equipment. On the right (yellow box) is the Intel NUC with Intel 5300 WiFi 

card installed with three external antennas. On the left (red box) is the Google Pixel 2 XL 

phone for communication. Note that all the data are collected while a subject is holding the 

phone in his/her hand.

Fang et al. Page 24

Int Conf Distrib Comput Sens Syst Workshops. Author manuscript; available in PMC 2021 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8: 
Neural network performance for different size of training dataset.
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Fig. 9: 
Neural network performance during training.
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Fig. 10: 
Identification accuracy for different number of people.
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TABLE I:

Mean and Median error of AoA estimation after applying different smoothing algorithms on the example data 

shown in Figure 5

Moving Average Variance based LOWESS Variance based + LOWESS

Mean (°) 19.45 12.39 22.77 10.14

Median (°) 15.47 8.33 10.93 6.40
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TABLE II:

Mean and Median on AoA estimation performance of different neural network models and SpotFi on data 

collected from lab and kitchen area.

Lab Kitchen

Mean (°) Median (°) Mean (°) Median (°)

SpotFi 59.17 58.08 50.14 44.03

SpotFi Only NN 62.97 63.29 45.55 46.01

Camera only NN 31.87 14.57 36.61 20.63

SpotFi + Camera NN 30.56 13.98 35.08 18.72
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TABLE III:

Smoothing performance with different smoothing techniques and combinations.

NN Variance Based Variance + LOWESS LOWESS

Mean (°) 24.61 12.98 10.80 12.17

Median (°) 11.76 9.59 7.91 8.09
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